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In hydrogeology, inverse techniques have become indispensable to characterize

subsurface parameters and their uncertainty. When modeling heterogeneous,

geologically realistic discrete model spaces, such as categorical fields, Monte Carlo

methods are needed to properly sample the solution space. Inversion algorithms use

a forward operator, such as a numerical groundwater solver. The forward operator

often represents the bottleneck for the high computational cost of the Monte Carlo

sampling schemes. Even if efficient sampling methods (for example Posterior Population

Expansion, PoPEx) have been developed, they need significant computing resources.

It is therefore desirable to speed up such methods. As only a few models generated

by the sampler have a significant likelihood, we propose to predict the significance of

generated models by means of machine learning. Only models labeled as significant

are passed to the forward solver, otherwise, they are rejected. This work compares

the performance of AdaBoost, Random Forest, and convolutional neural network as

classifiers integrated with the PoPEx framework. During initial iterations of the algorithm,

the forward solver is always executed and subsurface models along with the likelihoods

are stored. Then, the machine learning schemes are trained on the available data. We

demonstrate the technique using a simulation of a tracer test in a fluvial aquifer. The

geology is modeled by the multiple-point statistical approach, the field contains four

geological facies, with associated permeability, porosity, and specific storage values.

MODFLOW is used for groundwater flow and transport simulation. The solution of the

inverse problem is used to estimate the 10 days protection zone around the pumping

well. The estimated speed-ups with Random Forest and AdaBoost were higher than

with the convolutional neural network. To validate the approach, computing times of

inversion without and with machine learning schemes were computed and the error

against the reference solution was calculated. For the same mean error, accelerated

PoPEx achieved a speed-up rate of up to 2 with respect to the standard PoPEx.

Keywords: hydrogeology, inverse problem, posterior population expansion, binary classification, geostatistics,

groundwater flow and transport, deep learning, ensemble learning
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1. INTRODUCTION

Groundwater flow and contaminant transport in aquifers depend
on subsurface parameters such as permeability, specific storage,
or porosity. Due to the lack of their direct measurements and
heterogeneity, solving inverse problem is essential to make
reliable predictions of groundwater flow and crucial for water
resources management.

The inverse problem consists in deducing the subsurface
parameters given state variables measured in the field, such
as hydraulic heads or tracer concentrations. The physical
problem leading from parameters to state variables is called the
forward problem; it often involves solving partial differential
equations. While the forward problem has a unique solution,
the inverse problem is usually ill-posed, with non-unique and
unstable solution if framed in a deterministic manner. The
inverse problem is especially difficult when dealing with highly
heterogeneous parameter fields or categorical fields. Therefore,
methods for solving the inverse problem in hydrogeology
(and more broadly in geophysics) have been a topic of
extensive research (Zhou et al., 2014; Linde et al., 2015).
If defined in a probabilistic manner, the inverse problem is
no longer ill-posed and the solution always exists (Tarantola,
2005). When formulated in a Bayesian framework, it needs
defining prior knowledge which allows to properly account
for subsurface heterogeneity. The associated difficulty lies in
estimating the probability density over a non-linear space of
parameters and requires using a Monte Carlo method for
generating many parameter fields and forward model runs.
Depending on the physical problem, the forward model can
be computationally expensive (especially true for transient
groundwater flow or contaminant transport models); the
inversion would typically require long runs and using high-
performance computing resources.

Machine learning, including deep learning, has gained
momentum in water research (Shen et al., 2018), and can be
used to improve the efficiency of the inverse methods (Marçais
and de Dreuzy, 2017). There are two main areas of application
of machine learning related to the inverse problem: first, using
machine learning techniques for modeling the prior knowledge;
second, emulating the forward problem.

Concerning the generation of samples from the prior
distribution, generative adversarial networks (GAN) are
interesting because of their ability to generate geologically
realistic models. Despite significant training times, they are
attractive for the fast generation of fields and because they
offer a low dimensional parametrization, which allows an
efficient exploration of model space (Laloy et al., 2017; Chan and
Elsheikh, 2020). As a consequence, GANs have been successfully
used in Markov Chain Monte Carlo algorithms for solving
groundwater inversion problems (Laloy et al., 2017, 2018).
Due to the possibility of computing gradients in GAN models
space, deterministic inversion using GANs is also possible but
can be hindered by the non-linearities of the problem (Laloy
et al., 2019). Simpler models, such as Support Vector Machines
(SVM) were also used to construct informative geological

prior to constrain sampling for realistic reservoir models
(Arnold et al., 2019).

Concerning the emulation of the forward problem, machine
learning can also be used. For example, Tripathy and Bilionis
(2018) used deep neural network to construct a surrogate for
a stochastic partial differential equations and employed it in
the context of high dimensional uncertainty quantification.
Laloy and Jacques (2019) tested machine learning algorithms
(including deep neural nets, Gaussian processes, polynomial
chaos expansion) to emulate reactive transport model and
found that deep neural networks perform reasonably well in
the context of quantifying uncertainty. Dagasan et al. (2020)
showed how GAN can emulate steady-state flow solver and
used it in the posterior population expansion algorithm (Jäggli
et al., 2018), showing that the results of the inversion were
of similar quality as those obtained using the numerical
flow solver.

All these approaches rely on machine learning techniques
built specifically for a problem at hand and replacing state-of-
the-art methods for either modeling the prior, or emulating the
forward problem.

In this paper, we propose a slightly different approach
based on a machine learning classifier, and not substituting
the prior geostatistical model, nor the forward solver. We use
the posterior population expansion method (PoPEx) to invert
a categorical field and our aim is to accelerate the convergence
of the algorithm. During the Monte Carlo exploration of the
model space, models are generated along with the forward
operator results. These data are then used to train a classifier,
which predicts if models would have high or low likelihood
and whether they would contribute much to the posterior
distribution. Then, the classifier can decide if a forward operator
should be called (when the parameter field is predicted to be
favorable) or if a model can be discarded, saving computational
time. This approach is generic, as it does not rely on a specific
geostatistical prior model, neither on a forward solver type.
It is similar in spirit to the approach of building a surrogate
or emulated model (like Laloy et al., 2019; Dagasan et al.,
2020), but instead of reproducing the forward response, it
predicts if the response would match well with the observed
data. A similar idea was proposed by Demyanov et al. (2010),
where SVM classifier was applied to separate high likelihood
models while stochastically sampling parameters space for
reservoir predictions.

To test the efficiency of the proposed method, We consider
an alluvial aquifer. Its geological heterogeneity is modeled
using multiple-point statistics. The inverse problem consists in
interpreting one tracer test. Once the geological heterogeneity
and its remaining uncertainty is identified, the resulting
distribution of geological fields is used to predict the 10-days
capture zone. This problem is used since it is a frequent question
in applied hydrogeology. One has to interpret tracer test data to
then delineate protections zones around future drinking water
production wells. Therefore, in addition to the analysis of the
efficiency of the inverse method, we check also the quality of this
prediction as compared to the reference.
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2. METHODS

In this section, we present a brief review of the posterior
population expansion algorithm, and the machine learning
schemes with their performance metrics used in this study.
Finally, we explain how the schemes are used to accelerate
PoPEx algorithm.

2.1. Inverse Problem and PoPEx Algorithm
PoPEx has been previously introduced and presented in detail
in Jäggli et al. (2017) and Jäggli et al. (2018). It solves the
inverse problem in a probabilistic manner. First, we explain how
the problem is framed; then, we review the algorithm and its
parameters; finally, we show how the solution can be used to
generate a prediction.

2.1.1. Probabilistic Formulation
We will consider that dobs ∈ R

n is a data set obtained from
an experiment with n defining the number of data points. The
data are physical state variables, for example: hydraulic heads,
contaminant concentrations, or flow rates. Let g :M → R

n

be the forward operator, mapping from the model space M

to the data space R
n. The model space defines the set of

physical parameters, which fully describe the system (for example
subsurface parameters) and allows to solve the forward problem
(for example a groundwater flow problem). The forward operator
generates the observable data given the model. In our case, the
forward operator is a groundwater flow and transport model,
and the model space is a set of all possible geological realizations
of the subsurface, which map to permeability, porosity and
specific storage.

The probabilistic solution of the inverse problem is given by
(Tarantola, 2005):

σ (m) = cρ(m)L(m), m ∈ M

with σ the posterior probability density, ρ the prior probability
density, L the likelihood, and c a normalization constant. The
prior probability density is defined by expert knowledge about
the parameter field. For example, it can constrain the type
of geology which is considered. The likelihood evaluates the
mismatch between the data and simulated values (output of the
forward operator).

2.1.2. PoPEx Algorithm
In the following, we provide a rapid and brief overview of PoPEx.
The posterior population expansion algorithm (Jäggli et al., 2018)
is a modified adaptive importance sampler. It iteratively expands
a sampled model set and learns the underlying probability
distribution. It is designed for solving inverse problems when the
space M contains categorical models. It requires a conditional
geostatistical tool (e.g., a geostatistical algorithm which can
generate a new model m from space M given conditioning
points); and a forward solver which computes the likelihood
given themodel. At each iteration k it expands the sampledmodel
set and uses all previously generated models and their likelihoods
to define the conditioning set for the next model mk+1. The
number of conditioning points at every iteration is uniformly

drawn from {0, . . . , nc}, where nc is the maximal number of
conditioning points — a parameter specified by the user. Then,
the new model is generated by the geostatistical tool honoring
the imposed conditioning data and the forward solver computes
its likelihood. The PoPEx algorithm stops after specified number
of iterations N given by the user.

The choice of the conditioning data locations is guided by
the Kullback-Leibler divergence (KLD) map computed between
two discrete probability distributions P and Q on the probability
space X and at each point in the domain:

D(Pk||Q) =
∑

x∈X

Pk(x) log

(
Pk(x)

Q(x)

)
. (1)

Q = {q1, . . . , qs} corresponds to the prior probability maps
for each category, with s the number of categories (e.g.,
geological facies). Pk = {pk1, . . . , p

k
s } correspond to the maps of

facies probabilities but weighted by the normalized likelihoods

estimated at iteration k: L̃(mj) = L(mj)/(
∑k

r=1 L(mr)). The
higher the KLD for a given point, the more likely it is
chosen as a conditioning data location. Once conditioning point
locations are determined, their values are sampled from the local
P distribution.

2.1.3. Prediction
Typically, solutions of the inverse problem are used to generate
some predictions. Let f be the function mapping from models to
predictions, andµ the expected value of some quantity of interest
(e.g., prediction of hydraulic head, capture zone of a well):

µ =

∫

M

σ (m)f (m)dm. (2)

PoPEx uses the set of generated models to approximate (2):

µ =

N∑

i=0

ŵif (mi),

with ŵi a normalized corrected weight of the model i. The
corrected weights are computed from the sampling weights wi:

ŵi =
wα
i∑N

i=1 w
α
i

,

with α the correcting factor. The weights wi are given by:

wi = L(mi)
ρ(mi)

φi(mi)
, (3)

where ρ is the prior distribution function and φi is the sampling
distribution used at the iteration i. The weights need to be
adjusted, as with large model spaces the distribution WN =

{w1, . . . ,wN} can be dominated by few very large samples. The
effective sample size ne provides a measure of the skewness of
the distribution:

ne(W
N) =

∑N
i=1 w

2
i

(
∑N

i=1 wi)2
(4)
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Correcting the weights consists of finding the factor α ∈ (0, 1] as
close (or equal) to 1 such that the effective number of weights of
the set {w1, . . . ,wN} is at least l0, with l0 specified by the user.

2.2. Machine Learning Methods
Binary classification is a supervised learning task that has
been extensively studied in the context of predictive data
analytics (Kelleher et al., 2015), statistical learning (Hastie et al.,
2009), and deep learning (Goodfellow et al., 2016). It consists
in predicting the binary label (binary class, encoded as 0 or 1)
given the input data (features). If X is the input (a feature vector,
containing categorical or continuous variables), a binary classifier

f̂ maps X to the binary label ŷ: f̂ (X) = ŷ with ŷ ∈ {0, 1}.
The classifier must be fitted to known data with assigned labels,
and then it can be used to generate predictions on previously
unseen data. In this work, we considered three classifiers:
AdaBoost, Random Forest, and Convolutional neural network
(CNN). Here, we briefly introduce these methods and the cross-
validation technique which was used to tune parameters of the
classifiers and select the best algorithm. We refer to Hastie et al.
(2009) for introductions about AdaBoost, Kelleher et al. (2015)
about decision trees, Breiman (2001) about Random Forest, and
Goodfellow et al. (2016) about CNN and deep learning in general.

2.2.1. Classifiers
AdaBoost is a boosting method (Freund and Schapire, 1997)
which produces a sequence of weak classifiers. The weak
classifiers are iteratively fitted to the data with weights modified
at each step. More weight is given to previously missclassified
samples (initially weights are equal). The final prediction of the
AdaBoost algorithm is a majority vote of all classifiers. Typically,
the weak classifiers used in AdaBoost are shallow decision trees.
The error on the training sample is the average of the fraction
of misclassified samples. The fitting is finished when perfect fit
is achieved or when the total number of estimators has been
reached.

Random Forests (Breiman, 2001), similarly to AdaBoost, rely
on ensembles of decision trees. The decision trees are typically
deeper than in AdaBoost and they are trained on data randomly
sampled from the input. The sampling distribution from which
the training data is drawn is the same for all trees in the forest.
The main parameters of the method are the tree depth and the
number of trees that form the forest. Breiman (2001) claimed
that random forests compare favorably to AdaBoost, yielding
similar errors and being more robust with respect to noise.

For gridded inputs, convolutional neural networks (LeCun
et al., 1989) proved to be effective. Convolutional neural networks
are a special type of neural nets (Goodfellow et al., 2016),
composed of convolutional layers, combined with activation,
pooling and dense layers. They are especially suitable for object
recognition and are state-of-the art classifiers for working
with images.

2.2.2. Cross-Validation
Cross-validation is a technique which allows to estimate the error
(or a score) of the classifier on the unseen data. In K-fold cross-
validation the whole training data is divided into K subsets and

K iterations are performed. In each iteration iter = 1, . . . ,K,
the iter subset in a row is removed from the data to form the
validation set. The rest of the data becomes the training set.
The classifier is fitted to the training set and the error (or a
score) is computed using the validation set: predictions are made
on the validation set and they are compared to true values.
Then, gathering the output of K iterations, one can compute the
statistics of the error or the score function. Kohavi (1995) argued
that the best choice is K = 5 or K = 10.

2.2.3. Performance Measures
We introduce here the commonly used performance measures
for binary classifiers, which are based on the confusion matrix.
Let us suppose that the classification results in TP true positives,
TN true negatives, FP false positives and FN false negatives.
Precision is defined as follows:

precision =
TP

(TP+ FP)
, (5)

it describes how confident we can be that the predicted positive
instance is correct. Recall is given by:

recall =
TP

(TP+ FN)
, (6)

and it describes the ability of the model to find all positive
instances. The harmonic mean of precision and recall is F score
(or F1 score) and it is generalized by Fβ score (Rijsbergen, 1979):

Fβ =
(
1+ β2

) precision · recall

β2precision+ recall
, (7)

where β parameter describes how more recall is important over
precision. For β = 1, the Fβ falls back on standard F score which
is a harmonic mean of precision and recall.

2.3. Accelerating PoPEx
At each PoPEx iteration k, a new modelmk is generated. Instead
of feeding it directly to the forward solver, a learning scheme
can predict if the model’s likelihood is significant enough to
contribute to the solution of the inverse problem. If the model
is not especially useful, it can be discarded; its likelihood is
set to 0. Otherwise, if the learning scheme predicts that the
model is good enough, the forward solver is called and the
exact likelihood of the model is computed. In this way, the
expensive forward solver is not called for every model. Then,
PoPEx proceeds to draw another model and the procedure is
repeated. The discardedmodels do not contribute to the solution;
even if the learning scheme makes a mistake, it will not bias
the results. Discarding useful models or marking low-likelihood
models as good, would only slow down the convergence of PoPEx
but would not introduce incorrect likelihood estimations.

2.3.1. Application of Learning Scheme
The learning scheme needs to be trained before being used with
PoPEx. To this end, a sufficient dataset of pairs (mi, L(mi)) must
be generated. To achieve this, we first run PoPEx in the normal
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mode, for a specified number nt of iterations, evaluating all
models using the forward solver.

Then, the machine learning scheme is trained using the
pairs {(Xi, yi), i = 1, . . . , nt} with Xi the input data and yi the
classification labels. Xi can be models mi or some data obtained
by transformingmi, for example collection indicator variables, or
physical properties (porosity, conductivity) derived frommi. yi ∈
{0, 1} is a binary label describing if a model is useful (0 meaning
an insignificant model with low likelihood and 1 – important
model with high likelihood). We propose to sort all available
likelihoods: {L(mi), i = 1, . . . , nt}, define a ratio r ∈ (0, 0.5] and
set yi = 1 if L(mi) is among the rnt highest likelihoods, and
yi = 0 otherwise.

Once the learning scheme has been trained, the classifier is
used to classify each new model mj, j > nt . Let ŷj be the
prediction of the true label yj. If ŷj = 1, the model mj is fed to
the forward solver and its true likelihood is evaluated. If ŷj = 0,
we set L(mj) = 0 and the forward solver is not called. The
true likelihood of the model remains unknown and the model
does not contribute to the solution of the inverse problem, nor
influences the sampling scheme of PoPEx.

This methodology is motivated by the fact that often only very
few models have high likelihood (Jäggli et al., 2018). Correcting
of the prediction weights was designed to deal with this problem.
Therefore, it is justified to discard models with low likelihood,
as they would not influence the PoPEx predictions anyway.
Applying a perfect classifier in this way, should produce the same
results as the original PoPEx algorithm.

A classifier yields false positives and false negatives. False
positives (e.g., classifying low-likelihood models as useful) cause
that an uninteresting model is being fed to the forward solver. A
classifier producing a lot of false positives would have a weaker
speed-up abilities. False negatives are more problematic, as it
means that good models are discarded. A lot of false negatives
would slow down the convergence of PoPEx, as the sampling
scheme does not benefit from updating KLD maps and learns
more slowly.

2.3.2. Speed-Up Score and Evaluation Metrics
Given the training set for the classifier, it is useful to estimate
the possible speed-up when applying it in the PoPEx scheme.
We suppose here that we want to achieve an inversion result
equivalent (in the sense of prediction error) to running plain
(standard) PoPEx for N iterations. Let us compare the total cost
of expanding an ensemble of nt PoPEx models to N models
and the total cost of expanding to a bigger ensemble with
the machine learning scheme with the equivalent number of
significant models. More models are needed to account for the
fact that due to the learning scheme, some good models are
discarded. To simplify the calculation, we suppose that generated
new models have the same proportion of good and bad models
and we neglect the fact that using ML scheme influences PoPEx
sampling and the quality of generated models.

Let cm be the computational cost of generating a model m,
cg the cost of running the forward problem solver and we set
c = cm/cg . We assume that the forward solver is more expensive
than running the geostatistical model, thus c < 1. The total

computational cost of expanding the ensemble, e.g. adding Nt =

N − nt models without ML is Nt · (cm + cg). Suppose that out of
Nt models, ML scheme generates TP true positives (ŷi = 1 and
yi = 1), TN true negatives (ŷi = 0 and yi = 0), FP false positives
(ŷi = 1 and yi = 0) and FN false negatives (ŷi = 0 and yi = 1).
More models need to be generated to account for the fact that
some positives are not detected, so the total number of modelsNt

must be multiplied by (TP+ FN)/TP. All true and false positives
require the forward solver, thus the total cost with ML will be:

TP+ FN

TP

(
cmNt + cg(TP+ FP)

)
.

We propose to use the ratio of the total computational cost
without ML divided by the cost when using ML scheme as a
speed-up estimator. Let us call it s-score (sscore):

sscore =
Nt · (cm + cg)[

cmNt + cg(TP+ FP)
]
· (TP+ FN) /TP

Using the definitions for precision and recall (5, 6) and the ratio
of “good” models TP+ FN = rNt , we obtain:

sscore =
Nt(cm + cg)

1
recall

cmNt + cg
1

precision rNt

=
1+ c

c
recall

+ r
precision

. (8)

When generating a model is significantly cheaper than
running the forward solver, c → 0 and we obtain a
convenient approximation:

sscore ≈ precision/r, (9)

useful to evaluate rapidly if a learning scheme is potentially a
good candidate for accelerating PoPEx sampling. If c values are
greater than 1, the machine learning scheme is not interesting to
apply, even if the recall is high. Smaller r would yield potentially
large s-score if the precision is high. The s-score can also be
expressed in terms of Fβ score (7):

sscore =
1+ c

r + c
Fβ ,

where β2 = c/r. In this case β is lower than 1 and close to 0,
which attributes more importance to precision than recall.

3. TEST CASE

We consider a 2D synthetic reference field representing a fluvial
aquifer. The data used for the inversion is the synthetic tracer
breakthrough curve recorded at the pumping well. The reference
probabilistic solution for the inverse problem is obtained after
40,000 PoPEx iterations, it will be used to assess the solutions
generated using the learning schemes.

3.1. Synthetic Model of a Fluvial Aquifer
The 2D geology is modeled by multiple-point statistics (MPS),
which allows to account for subsurface heterogeneity and
represent categorical fields (Mariethoz and Caers, 2015). The
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MPS algorithm requires a training image (TI), an example of
the field which is used as a spatial pattern database. Here, we
consider a TI composed of 4 geological facies, representing a
fluvial aquifer (Figure 1), and first published by Jäggli et al.
(2018). The TI has a dimension of 1,000 pixels by 800 pixels with
cell size of 5m by 5m. To obtain the synthetic reference field
(Figure 2A), we performed a Direct Sampling (Mariethoz et al.,
2010) simulation on a regular grid representing 500 m by 500 m
area (100 × 100 pixels). The DeeSse code with multi-resolution
capabilities (Straubhaar et al., 2020) was used with the following
parameters: 2 pyramid levels (with a pyramid for each indicator
variable) with reduction factor 2 at each level and each direction

FIGURE 1 | Training image used for generating the synthetic reality and in the

inversion process.

(x, y); search neighborhood radius: 40 in each direction, number
of neighboring nodes: 60, distance threshold: 0.01, maximal scan
fraction: 0.04. The reference realization was generated with seed
value of 201,913. Moreover, points at x = 374.5m, y = 249.5m
and x = 124.5m, y = 249.5m are considered to have known
facies of category 4, in other words conditioning data is imposed
in these two locations with value 4.

3.2. Groundwater Flow and Transport
The aquifer is a confined fluvial aquifer with thickness of 10m
and modeled as a single layer. Each geological facies has a
uniquely defined physical properties (hydraulic conductivity,
porosity and specific storage) and can be interpreted as different
rock type: silt, fine sand, coarse sand, and gravel (Table 1). The
maps of conductivity, porosity and specific storage on a 100 ×

100 regular grid obtained by means of DeeSse simulations are
refined by factor of 5 in each direction, resulting in a 500 × 500
m model with cell size 1 m by 1 m. The value of a parameter at
each location is equal to its value in the parent cell.

A pumping well is placed at x = 374.5m, y = 249.5m
and it pumps water with constant rate of 0.07m3/s. The left
(west) boundary is at constant head 0.5m, the right boundary
(east) at constant head 0 m and the hydraulic heads at top
(north) and bottom (south) boundaries are linearly interpolated
between 0.5m and 0m. The groundwater flow and transport
model was implemented using the flopy python package (Bakker
et al., 2016). The steady-state solution of the flow problem is
used as initial condition for a transient groundwater flow and
transport simulation of a tracer test. The injection well is placed
at x = 124.5m, y = 249.5m. The tracer is injected at a constant
concentration of 1 kg/m3 with a constant injection rate of 1m3/h,
so that a total of 1m3 water is injected during 1 h.

FIGURE 2 | The reference field (A) used as the synthetic reality (considered unknown) and the corresponding concentration curve (B). The orange dots correspond to

data which were used for likelihood calculation.
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TABLE 1 | Physical properties associated with different geological facies.

Facies ordinal 1 2 3 4

Facies Silt Fine sand Coarse sand Gravel

Conductivity (m/s) 10−5 10−4 10−3 10−1

Porosity 0.40 0.35 0.30 0.25

Specific storage (m−1 ) 10−3 5× 10−4 10−4 10−5

FIGURE 3 | Prior probability maps associated with different geological facies (labeled 1, 2, 3, 4).

The total simulation time is 1 h plus 20 days, discretized
in 36 time-steps during initial 1 h and 240 time-steps during
the rest of the simulation time. During this period, the flow
is modeled in transient regime to account for the perturbation
due to the injection. The transport simulation is done with
the following parameters: diffusion coefficient of 1× 10−9 m2/s;
longitudinal dispersivity of 4m and transversal dispersivity of
0.4m. The concentration curve at the pumping well was recorded
and random Gaussian noise with mean 0 and standard deviation
σL = 0.05× 10−5 kg/m3 was added to emulate measurement
error (Figure 2B).

3.3. Reference Solution of the Inverse
Problem
In this scenario, the prior distribution of the geological fields
is modeled using the MPS technique with the same parameters
as those used to generate the reference realization. Two
conditioning points are imposed: the facies 4 (permeable, gravel)
at the pumping well and injection well. A prior ensemble of 1,000
realizations was generated and facies probability maps (Figure 3)
were used as input for the PoPEx algorithm.

The likelihood for this problem should be written as

proportional to exp
(
−1/2σL

∑n
i=1(gi(m)− dobsi )2

)
with σL the

standard deviation of measurement error, g(m) the simulated
values of concentration of the model m, and dobs the
vector of measurements. However, when using this complete
formula, the likelihood values are zero for most realizations
(considering the fact that numerical representation of floating
point numbers has a finite number of digits) and PoPEx
converges very slowly (Jäggli et al., 2018). Therefore, to
avoid this numerical issue, and following Jäggli et al. (2018),
we considered a reduced data set including only six time
steps to estimate the likelihood. The “sampled” likelihood

formula was: exp
(
−1/2σL

∑
i∈I(gi(m)− dobsi )2

)
with I =

{50, 100, 125, 150, 200, 250}.
PoPEx was run for 40,000 iterations with l0 = 100 and

nc = 10. The 10 days groundwater capture zone (van Leeuwen
et al., 1998) was predicted with the forward particle tracking
module of flopy. The particle tracking was performed on the
steady-state solution of the groundwater flow using the original
grid composed of 100 × 100 pixels with the cell size of 5 m
× 5 m. For each pixel in the domain, a probability of being
in the 10 days zone was computed a priori (Figure 4A) and a
posteriori (Figure 4B). Figure 5 shows the prior and posterior
concentration probabilities at the pumping well.

3.4. Application Scenario
While it is possible to apply a classifier directly on a set of
modelsm, in the context of groundwater transport it is favorable
to transform the input prior to feeding it to the ML scheme.
Below we describe how ML inputs are formed and specify the
algorithm parameters.

3.4.1. Transforming Model Into ML Input
The groundwater velocity vector (vx, vy) controls advection and
hydrodynamic dispersion

vx = −
K

ne

∂h

∂x
, vy = −

K

ne

∂h

∂y
(10)

with K the hydraulic conductivity, ne the effective porosity
and h the hydraulic head. The hydraulic heads are computed
using a steady-state MODFLOW (flopy) simulation. Values of
conductivity and porosity are defined according to Table 1.
Two-point numerical derivative is then used to calculate the
hydraulic gradient.
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FIGURE 4 | Prior (A) and posterior (B) probability maps of 10 days zone. The red contour corresponds to the reference 10 days zone (simulated using the synthetic

reality; considered unknown). The white cross represents the injection well. The black contour corresponds to 95% confidence. The posterior was obtained after

40,000 PoPEx iterations.

A B

FIGURE 5 | Prior (A) and posterior (B) tracer concentration curves. The orange dots correspond to data which were used for likelihood calculation. The posterior was

obtained after 40,000 PoPEx iterations.

Given the modelmi which is 100× 100 pixels, Xi is formed by
stacking vx and vy (each of size 98 × 98 pixels) and normalizing
them to the interval [0,1], using one global minimum and
maximum (the maximal/minimal value found in all vectors Xi,
i = 1, . . . , nt). A 98 × 98 image with two channels is formed.
The total number of features in the input is 98 × 98 × 2.
For AdaBoost and Random Forest the input is flattened, while
CNN benefits from the spatial arrangement of the features.
The classification labels are obtained by labeling ratio r of best

likelihoods as good (1), and the rest not significant (0), as
described in section 2.3.1.

3.4.2. Initial PoPEx Ensemble
We generated a PoPEx solution using only 500 iterations
(Figure 6). The initial ensemble is needed for training the
machine learning scheme. The generated set of models with
their likelihoods will be used to tune parameters of the machine
learning schemes, and to select the best classifier for two different

Frontiers in Artificial Intelligence | www.frontiersin.org 8 March 2021 | Volume 4 | Article 624629

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Juda and Renard Boosting PoPEx Using ML Algorithms

FIGURE 6 | Posterior probability map of 10 days zone obtained after 500

PoPEx iterations. The red contour corresponds to the reference 10 days zone

(simulated using the synthetic reality; considered unknown). The white cross

represents the injection well.

ratios r = 0.4 and r = 0.2. To this end, we will apply five-fold
cross-validation. For each ratio, parameters of all methods will be
re-tuned and the corresponding best classifiers will be used for
validating the ML-accelerated PoPEx.

3.5. Test Procedure
To test the methodology, we will compare the results obtained
by the standard PoPEx algorithm after N = 2,000 iterations
with the results obtained by ML-accelerated PoPEx algorithm
after N = 4,000 iterations, taking into account computing
time and error with respect to the reference solution. We will
consider two cases: ratio r = 0.2 and r = 0.4. This test
procedure will be repeated 4 times. Each time with a different
initial PoPEx ensemble (neither being the ensemble used for ML
parameter tuning).

To evaluate the results, the computing time and discrepancy
with the reference solution (40,000 PoPEx iterations) will be
computed. The discrepancy will be measured on the prediction:
10-days zone probability maps compared by means of then
Jensen-Shannon divergence:

J(µ̂||µex) =
1

2

(
D(µ̂||µ̄)+ D(µex||µ̄)

)
(11)

with µ̂ the estimated probability map, µex the exact probability
map, µ̄ = (µ̂ + µex)/2, and D(·||·) Kullback-Leibler
divergence (1).

4. RESULTS

In the first test, we perform a comparison of the performances of
three machine learning algorithms: AdaBoost, Random Forest,
and CNN, and different ratios of models labeled as good
(significant) models. This test corresponds to the practical
application of the methodology to accelerate PoPEx: the choice of
theMLmethod would be based on limited number of realizations

without knowing the true solution. In the second test, we verify
how the best performing methods according to the first step are
able to accelerate the inversion.

Each inversion task was performed on a computing node
composed of 2 Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz CPUs
running 64 threads in total. The total RAM of a node is 256
GB. PoPEx was run with 63 processes (workers) and one master
process. Running inversion with N = 500 iterations required
about 24 h to finish. The approximate average time required
for completing one geostatistical simulation by the computing
node is cm = 6.3 s and for the forward solver: cg = 1.7× 102 s;
c = cm/cg is approximately equal to 0.037.

4.1. Hyperparameter Tuning
The hyperparameter tuning was performed with the initial
ensemble containing 500 realizations. Depending on the ratio,
different number of models were marked as good: 100 models for
r = 0.2, and 200 models for r = 0.4. The validation scores from
five-fold cross-validation on these datasets were used to compare
the models. The cases of two ratios are treated separately.

4.1.1. Random Forest and AdaBoost
The Random Forest and AdaBoost were implemented using
scikit-learn library (Pedregosa et al., 2011). The mean five-
fold cross-validation s-score on the validation sets was used as
performance metric. The Random Forest was tested with the
following range of base estimators: 10 to 10,000. The number
of samples (measured as fraction of all samples in the training
dataset) were varied and scores reported for the ratio r = 0.4
(Figure 7A) and r = 0.2 (Figure 7C). The AdaBoost classifier
was tested with the learning rates in the range 0.0001 to 0.1
and number of estimators varied between 10 to 1,000. The
scores for the ratios r = 0.4 and r = 0.2 are shown in
Figures 7B,D, respectively. In the case r = 0.4, Random Forest
slightly outperformed AdaBoost. The following parameters were
selected: number of classifiers 1,000 and fraction of samples 0.2.
In the case r = 0.2 AdaBoost outperformed Random Forest. The
corresponding optimal parameters are: number of estimators 500
and learning rate 0.01.

4.1.2. CNN Architecture Selection
The CNN was implemented using Keras library and the
initial architecture (Table 2) is an adapted version of the
AlexNet (Krizhevsky et al., 2012) to match the input size in
our study. We considered the following variants of the initial
architecture: included different blocks (1,2,3,4,5) and kernel
factors (1,2,4,8). Five architecture variants were considered: first,
including only block 5; second, including blocks 4,5; third,
including blocks 3, 4, 5; etc. As block 4 and 5 are dense
layers, the architecture with one and two blocks correspond
to feed-forward neural nets. The remaining architectures are
CNNs with two dense layers before the output layer. We also
introduced a second architectural parameter, kernel factor. It
was used to divide the kernel size of convolutional layers
and number of nodes in the dense layers. A higher number
decreases the number of parameters of the neural net. In other
words, the kernel factor defines a number by which the last
column in the Table 2 is divided. In this way, 20 variants
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FIGURE 7 | Five-fold cross-validated s-scores obtained by Random Forest (A,C) and AdaBoost (B,D) for two ratios 0.4 (upper row) and 0.2 (lower row). Mean values

are reported with the standard error of the mean.

of CNN architecture were formed. For each variant, a five-
fold cross-validated learning curve was obtained and the epoch
corresponding to the minimal validation loss was noted. The
batch size was that of the full training set, and Adam optimizer
was used with binary-crossentropy loss and constant learning
rate 0.001. The loss is weighted according to class weights: r for
the class 0 (not significant models) and 1 − r for the significant
(“good”) models. The weights (as in the case of Random Forest)
are used to correct the fact that the training set is not class-
balanced; it forces the algorithm to pay more attention to the

underrepresented class. Then, the five-fold cross-validated s-score
after the optimal epoch was retained. This procedure was applied
for ratio r = 0.4 and r = 0.2 (Figures 8A,B) respectively. Simpler
architectures perform generally better than those containing all
the blocks and simple feed-forward nets outperform the more
complex architectures.

4.2. Choosing ML Algorithm
The five-fold cross-validated scores of tuned AdaBoost, Random
Forest, and CNN algorithms are reported in Table 3. The
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TABLE 2 | Layers of the convolutional neural network used for binary classification.

Block Layer type, activation Kernel/pool size Output shape #kernels or #nodes

Block 1 Conv. 2D, ReLU 5 × 5, stride 2 × 2 (47, 47, 24) 24

Max-pool 3 × 3, stride 2 × 2 (23, 23, 24)

Block 2 Conv 2D, ReLU 5 × 5, stride 2 × 2 (19, 19, 64) 64

Max-pool 3 × 3, stride 2 × 2 (9, 9, 64)

Block 3 Conv 2D, ReLU 5 × 5, stride 2 × 2 (7, 7, 96) 96

Conv 2D, ReLU 5 × 5, stride 2 × 2 (5, 5, 96) 96

Conv 2D, ReLU 5 × 5, stride 2 × 2 (3, 3, 64) 64

Max-pool 3 × 3 (1, 1, 64)

Block 4 Flatten

Dense, ReLU 1,024 1,024

Block 5 Flatten

Dense, ReLU 1,024 1,024

Output Dense, sigmoid 1 1

following mean scores and standard errors of the mean are
compared: s-score (according to the formula 8), precision, recall,
and approximate s-score (precision/r). The s-score value, as
explained in the methodology, can be interpreted as an optimistic
estimator for the real speed-up value.

Table 3 shows that the s-score and the precision obtained with
Random Forest and AdaBoost are higher than those obtained
with CNN for both values of r. The recall values are similar
for all classifiers for r = 0.4, and the recall for r = 0.2
is better for CNN than for AdaBoost and Random Forest.
It means that AdaBoost and Random Forest were able to
achieve a high proportion of good models among all labeled
as good, but missed some good models. Consequently, these
results confirm that the approximate s-score overestimated the
actual ones.

4.3. Test of ML-Accelerated PoPEx
Random Forest with 1,000 estimators and samples fraction 0.4
was chosen for validating ML-accelerated PoPEx for ratio of 0.4,
and AdaBoost with 500 estimators and learning rate 0.001 for
validatingML-accelerated PoPEx for ratio of 0.2. In the validation
experiment, PoPEx in the standard mode was run for N = 2,000
iterations and two ML-accelerated PoPEx versions were run for
N = 4,000 iterations: RF-accelerated PoPEx with r = 0.4 and
AdaBoost-accelerated PoPEx with r = 0.2.

For each of these three PoPEx modes, 4 independent runs
were performed and averages used to compute the mean errors
with respect to the reference solution. The total running times,
and the number of models fed to the forward solver were
recorded. The accelerated modes of PoPEx were trained once
after nt = 500 iterations and from that iteration, the ML schemes
were used.

Example results (1 out of 4) are shown in Figure 9, where
predictions of 10-days zones after all iterations (2,000 for the
standard mode, 4,000 for ML-accelerated) are reported with
Jensen-Shannon error maps. The reference solution obtained
after 40,000 iterations (Figure 4) was used in the Jensen-Shannon
formula (11). In this example, the exact solution took 94 h 45min

to compute, the RF-accelerated with r = 0.4 took 88 h 12 min,
and the AdaBoost-accelerated with r = 0.2 only 47 h 40 min.
The lowest mean JS error achieved RF-accelerated mode with
r = 0.4: 0.010, the exact mode: 0.015 and AdaBoost-accelerated
mode with r = 0.2: 0.014.

Figure 10 shows the convergence of the different PoPEx
modes with respect to the number of iterations. As expected,
ML schemes slow down the convergence due to incorrect model
classifications. Nevertheless, the convergence rate of the RF-
accelerated mode with r = 0.4 is close to the standard mode.
We can also see that this accelerated mode achieves the lowest
values of mean error. Not all the generated models in ML-
accelerated modes are sent to the forward solver, therefore the
time required to achieve a specified number of iterations vary.
This is why it is more representative of computing times to
plot convergence with respect to the total number of models fed
to the forward solver (Figure 11A) or to the total computing
time (Figure 11B). These plots show that both ML-accelerated
methods need computing fewer forward models to achieve the
same error as the standard PoPEx version (Figure 11). These
graphs show also that the convergence rate is similar for both
values of r. If converted to total computing time, however, the RF-
accelerated mode with r = 0.2 presents similar convergence rate
as the standardmode, because manymodels need to be generated
by the geostatistical method but are rejected. RF-accelerated
mode with r = 0.4 still requires systematically less computing
time than the standard mode.

Figure 12 presents speed-up for different mean J-S errors. The
speed-upwas calculated as follows. It is the ratio of the computing
time of the standard PoPEx algorithm by the computing time of
ML-accelerated PoPEx for obtaining the same mean J-S errors.
The simulation time was counted from iteration 500 to the
iteration by which a specified mean J-S error was achieved. ML-
accelerated modes achieve peak speed-ups greater than 2x for
large errors, that is at the beginning of inversion procedure. The
speed-ups for both ratios are similar and the s-score estimates
well the real speed-up rate for r = 0.4. For r = 0.2 the s-score
overestimated the speed-up.
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FIGURE 8 | Five-fold cross-validated s-scores on test sets obtained by CNN for two ratios 0.4 (A) and 0.2 (B), and different kernel factors (kf). Mean values are

reported with the standard error of the mean.

TABLE 3 | Five-fold cross-validated performance of classifiers on the initial ensemble containing 500 realizations.

Classifier r s-score Precision Appr. s-score Recall

AdaBoost 0.4 1.98± 0.03 0.84± 0.02 2.10± 0.03 0.78± 0.05

Random Forest 0.4 2.01± 0.02 0.86± 0.02 2.15± 0.03 0.77± 0.03

CNN 0.4 1.82± 0.01 0.76± 0.01 1.91± 0.03 0.80± 0.03

AdaBoost 0.2 3.1± 0.3 0.77± 0.06 3.9± 0.3 0.48± 0.06

Random Forest 0.2 2.6± 0.2 0.95± 0.05 4.8± 0.3 0.21± 0.04

CNN 0.2 2.48± 0.06 0.56± 0.03 2.8± 0.2 0.63± 0.05

5. DISCUSSION AND CONCLUSION

In this article, we introduced a generic framework for
accelerating the posterior population expansion algorithm
(PoPEx) using machine learning techniques, and tested it on
a groundwater transport problem. Our approach is generic

and does not interfere with the geostatistical method used
for modeling the prior and can be adapted to any type
of forward problem. We found that in our set up, both
Random Forest and AdaBoost performed well for classifying
if generated models are of significance. While AdaBoost and
Random Forest performed similarly for the two ratios, we
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FIGURE 9 | Posterior probability maps of 10 days zone with Jensen-Shannon error maps for standard PoPEx solution with N = 2,000 (A,B), for RF-accelerated

PoPEx with N = 4,000 and r = 0.4 (C,D), and for AdaBoost-accelerated PoPEx with N = 4,000 and r = 0.2 (E,F). The red contour corresponds to the reference 10

days zone. White crosses indicate positions of the injection well (left) and the pumping well (right).
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recommend labeling a relatively high ratio of models as
significant based on their likelihood—the training suffers from
lower variations and results in more stable models. The

FIGURE 10 | Convergence of standard PoPEx method compared with

RF-accelerated PoPEx with ratio r = 0.4 and AdaBoost-accelerated with

r = 0.2. Each point is an average over 4 PoPEx runs, and bars represent the

standard error of the mean.

obtained speedups are close to 2 for this problem, which can
represent a significant gain of computing time and resources for
large problems.

FIGURE 12 | Speed-up with respect to the mean Jensen-Shannon error

standard PoPEx : for RF-accelerated PoPEx with r = 0.4, and

AdaBoost-accelerated with r = 0.2. Each point is an average over 4

PoPEx runs, and bars represent the standard error of the mean.

FIGURE 11 | Error with respect to the number of models computed by the forward solver (A) and with respect to the computing time (B) for standard PoPEx,

RF-accelerated PoPEx with r = 0.4, and AdaBoost-accelerated with r = 0.2. Each point is an average over 4 PoPEx runs, and bars represent the standard error of

the mean.
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Random Forest and AdaBoost performance were comparable
and superior to CNN in the classification task. Kelleher
et al. (2015) pointed out that Random Forests perform well
when the input has many features, as is the case in our
study; AdaBoost performed well in the imbalanced case.
The poor performance of CNN is surprising, as it benefits
from information about the spatial arrangement of the input
data. However, while CNN is very effective in recognizing
shapes which are invariant by translation or rotation, in
our specific case the absolute position of the features is
important to predict the solute transport processes. The fact
that simplified CNN architectures (which were reduced to
feed-forward neural nets) performed generally better than the
more complicated architectures, supports this claim. Further
research is needed to determine if it is possible to design
a specific Neural Network architecture outperforming the
methods presented in this paper. Another important aspect
is that the training dataset including only 500 elements
is probably too small for the neural network to achieve
good performance.

Another challenge for the ML methods is that the labels are
arbitrary and depend on the relative values of the likelihood.
The generated models are not “good” or “bad” in an absolute
sense; they are “better” or “worse” than the others. It is possible
that the same model receives different labels depending on
other models in the ensemble. The imbalanced nature of the
dataset makes it harder to train, especially for low values of
the ratio r. We therefore recommend using the ratio r =

0.4, as it makes training easier and the performance of the
classifier is more robust. Lower ratios are attractive not only
from the point of view of the estimated speed-up, but also
because lower ratios correspond to fewer good models, which
is more relevant in terms of likelihood statistics (few models
represent the majority of posterior weights). However, lower
ratios suffer from the discrepancy between the estimated speed-
up and the actual speed-up. This observation can be explained by
the fact that rejecting a good model slows down the convergence
of PoPEx. If a classifier missclassifies a good model, the core
PoPEx algorithm misses an important information which could
guide the sampling. PoPEx then continues sampling from a
less-informed distribution, proposing worse models. This is why
using a classifier with a low recall (low ratio value) is more
penalizing than when using one with a higher recall (higher
ratio values).

The proposed classification method could be employed
in other Monte Carlo schemes, such as rejection sampling,
importance sampling, or Metropolis algorithm (Tarantola, 2005).
It could even yield better results than with PoPEx algorithm,
as PoPEx is iteratively expanding the ensemble of models by
learning from the already sampled models. Simpler samplers
without memory of previously generated models could benefit
more from the learning schemes.

Finally, an interesting alternative to using classifiers could be
to use regression techniques to directly estimate the likelihood
value. However, this would be a challenging task, as wrong
likelihood estimations could mislead the sampler. It could even
lead to slowing it down if irrelevant models would receive
erroneously high likelihood. In the present work, erroneous
classifications only slow down the inversion but they are not a
source of noise.
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