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Since E. coli is considered a fecal indicator in surface water, government water quality
standards and industry guidance often rely on E. colimonitoring to identify when there is an
increased risk of pathogen contamination of water used for produce production (e.g., for
irrigation). However, studies have indicated that E. coli testing can present an economic
burden to growers and that time lags between sampling and obtaining results may reduce
the utility of these data. Models that predict E. coli levels in agricultural water may provide a
mechanism for overcoming these obstacles. Thus, this proof-of-concept study uses
previously published datasets to train, test, and compare E. coli predictive models
using multiple algorithms and performance measures. Since the collection of different
feature data carries specific costs for growers, predictive performance was compared for
models built using different feature types [geospatial, water quality, stream traits, and/or
weather features]. Model performance was assessed against baseline regression models.
Model performance varied considerably with root-mean-squared errors and Kendall’s Tau
ranging between 0.37 and 1.03, and 0.07 and 0.55, respectively. Overall, models that
included turbidity, rain, and temperature outperformed all other models regardless of the
algorithm used. Turbidity and weather factors were also found to drive model accuracy
even when other feature types were included in the model. These findings confirm previous
conclusions that machine learning models may be useful for predicting when, where, and
at what level E. coli (and associated hazards) are likely to be present in preharvest
agricultural water sources. This study also identifies specific algorithm-predictor
combinations that should be the foci of future efforts to develop deployable models
(i.e., models that can be used to guide on-farm decision-making and risk mitigation). When
deploying E. coli predictive models in the field, it is important to note that past research
indicates an inconsistent relationship between E. coli levels and foodborne pathogen
presence. Thus, models that predict E. coli levels in agricultural water may be useful for
assessing fecal contamination status and ensuring compliance with regulations but should
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not be used to assess the risk that specific pathogens of concern (e.g., Salmonella,
Listeria) are present.

Keywords: E. coli, machine learning, predictive model, food safety, water quality

INTRODUCTION

Following a 2018 Shiga-toxin producing Escherichia coli outbreak
linked to romaine lettuce, investigators identified irrigation water
contaminated by cattle feces as the probable source (Bottichio
et al., 2019). Such a conclusion is not uncommon, and fecal
contamination of surface water has been repeatedly identified as
the probable cause of enteric disease outbreaks (Johnson, 2006;
Ackers et al., 1998; Wachtel et al., 2002; Greene et al., 2008;
Barton Behravesh et al., 2011; Food and Drug Administration,
2019; Food and Drug Administration, 2020). As a result, non-
pathogenic fecal indicator bacteria (FIBs), like E. coli, are used to
assess when and where fecal contaminants, including food and
waterborne pathogens, may be present in agricultural and
recreational waterways. Indeed, many countries and industry
groups have established standards for agricultural and/or
recreational surface water based on FIB levels; when samples
are above a binary cut-off the probability of fecal contamination is
deemed sufficient to require corrective action (Health Canada,
2012; US FDA, 2015; Health Canada, 2012; California Leafy
Greens Marketing Agreement, 2017; Environmental Protection
Agency, 2012; Corona et al., 2010; UK EA; EU Parliament, 2006;
SA DWAF, 1996) For instance, the Australian and New Zealand
governments established trigger values for thermotolerant
coliforms in water applied to food and non-food crops
(ANZECC, 2000), while the United States Produce Safety Rule
(PSR) proposed an E. coli-based standard for surface water
sources used for produce production (US FDA, 2015).
Similarly, the California Leafy Greens Marketing Agreement
requires E. coli testing for determining the microbial quality of
water used for produce production (California Leafy Greens
Marketing Agreement, 2017). However, multiple studies have
suggested that the frequency of sampling required by the PSR and
similar regulations may not be sufficient to capture
spatiotemporal variability in microbial water quality (Edge
et al., 2012; McEgan et al., 2013; Havelaar et al., 2017; Weller
et al., 2020c). Thus, supplementary or alternative approaches for
monitoring surface water for potential public health hazards may
be needed (Edge et al., 2012; McEgan et al., 2013; Havelaar et al.,
2017; Weller et al., 2020c).

While an alternative to current monitoring practices is to more
frequently measure FIB levels in the waterway (e.g., immediately
before each irrigation event), studies that quantified costs
associated with the United States PSR found that the low-
frequency testing proposed by the PSR presented a substantial
economic burden to growers (Calvin et al., 2017; Astill et al.,
2018). Additional concerns about the feasibility of water testing
(e.g., access/proximity to labs), and the time lag between sampling
and time of water use (minimum of 24 h) have also been raised
(Havelaar et al., 2017; Wall et al., 2019; Weller et al., 2020c).
Indeed, a study that sampled recreational waterways in Ohio over

consecutive days found that a predictive model was able to better
predict E. coli levels than using E. coli levels from samples
collected on the day preceding sample collection (i.e., 24 h
before) as the prediction; (Brady et al., 2009). Predictive
models may thus provide an alternative or supplementary
approach to E. coli-based monitoring of agricultural and
recreational surface water sources.

While past studies have shown that predictive models can be
useful for assessing public health hazards in recreational water
(Olyphant, 2005; Hou et al., 2006; Brady and Plona, 2009;
Hamilton and Luffman, 2009; Francy et al., 2013; Francy
et al., 2014; Dada and Hamilton, 2016; Dada, 2019; Rossi
et al., 2020), no models, to the author’s knowledge, have been
developed to predict E. coli levels in surface water used for
produce production (e.g., for irrigation, pesticide application,
dust abatement, frost protection). Moreover, many of the
recreational water quality studies only considered one
algorithm during model development (e.g., (Olyphant, 2005;
Brady et al., 2009; Brady and Plona, 2009; Hamilton and
Luffman, 2009), including algorithms [e.g., regression,
(Olyphant, 2005; Brady et al., 2009; Brady and Plona, 2009;
Hamilton and Luffman, 2009)], which has more assumptions
andmay be less accurate than alternate algorithms (e.g., ensemble
methods, support vector machines, (Kuhn and Johnson, 2016;
Weller et al., 2020a)). As such, there is limited data on 1) how
models for predicting E. coli levels in agricultural water should be
implemented and validated, or 2) how the data used to train these
models should be collected (e.g., types of features to focus data
collection efforts on). Addressing these knowledge gaps is key if
the aim is to develop and deploy field-ready models (models that
can be used to create a cost-effective tool with a GUI interface,
incorporated into growers’ food safety plans, and used to guide
on-farm decision-making in real-time). Thus, there is a specific
need for studies that assess and compare the efficacy of models
built using different algorithms and different features (e.g.,
weather, water quality). This latter point is particularly
important since the collection of each feature type carries
specific costs, including time and capital investment, worker
training/expertize, and computational costs. For example,
growers can often easily obtain, with no capital investment,
weather data from publicly accessible stations (e.g., airport
stations, AZMet [cals.arizona.edu/AZMET]), however, since
these stations are unlikely to be located at a given farm, the
utility of these data for training accurate predictive models need
to be determined. Conversely, growers can collect
physicochemical water quality data on-site provided they
invest in equipment (e.g., water quality probes) and train staff
to use the equipment. This proof-of-concept study aims to
address these knowledge gaps and provide a framework on
which future studies focused on developing field-ready models
can build. Specifically, the objectives of this study were to 1)
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develop, assess, and compare the ability of models built using
different algorithms and different combinations of feature types
(e.g., geospatial, water quality, weather, and/or stream traits) to
predict E. coli levels, and 2) highlight how model interpretation is
affected by the performance measure used. Since this is a proof-
of-concept and not an empirical, study that used previously
published data, the focus of the current paper is on identifying
and comparing different algorithms, performance measures, and
feature sets, and not on developing a deployable model, or
characterizing relationships between E. coli levels and features.
The overarching aim of this paper is to provide a conceptual
framework on which future studies can build, and to highlight
what future studies should consider when selecting algorithms,
performance measures, and feature sets.

It is also important to remember when interpreting the
findings presented here, that past research indicates an
inconsistent relationship between E. coli levels and foodborne
pathogen presence (Harwood et al., 2005; McEgan et al., 2013;
Pachepsky et al., 2015; Antaki et al., 2016; Weller et al., 2020c).
Thus, E. coli models, like those developed here, may be useful for
assessing fecal contamination status and ensure compliance with
regulations but should not be used to determine if specific
pathogens of concern (e.g., Salmonella, Listeria) are present.
Since E. coli is used outside food safety as an indicator of fecal
contamination (e.g., for recreational water), the findings from this
study may have implications for mitigating other public health
concerns as well.

MATERIALS AND METHODS

Study Design and E. coli Enumeration
Existing datasets collected in 2018 (Weller et al., 2020b) and 2017
(Weller et al., 2020c) were used as the training and testing data,
respectively, in the analyses reported here. Although the present
study uses data from published empirical studies that
characterized relationships between microbial water quality
and environmental conditions, the study reported here is a
survey focused on comparing algorithms and providing
guidance for future modeling efforts.

Although the same sampling and laboratory protocols were
used to generate both datasets, the datasets differ in the number of
streams sampled (2017 � 6 streams; 2018 � 68 streams; Figure 1),
and sampling frequency (2017 � 15–34 sampling visits per
stream; 2018 � 2–3 visits per stream, (Weller et al., 2020b;
Weller et al., 2020c)). As a result, the 2017 and 2018 data
represent 181 and 194 samples, respectively, (Weller et al.,
2020b; Weller et al., 2020c). At each sampling, a 1 L grab
sample was collected and used for E. coli enumeration using
the IDEXX Colilert-2000 test per manufacturer’s instructions
(IDEXX, Westbrook, ME). Between sample collection and
enumeration (<6 h), samples were kept at 4°C.

Metadata
Spatial data were obtained from publicly available sources and
analyzed using ArcGIS version 10.2 and R version 3.5.3. Briefly,
the inverse-distance weighted (IDW) proportion of cropland,

developed land, forest-wetland cover, open water, and
pasture land for each watershed as well as the floodplain
and stream corridor upstream of each sampling site was
calculated as previously described [(King et al., 2005;
Weller et al., 2020a; Supplementary Table S1). In addition
to characterizing land cover, we also determined if specific
features were present in each watershed. If a feature was
present, the distance to the feature closest to the sampling
site, and feature density were determined (for the full list see
Supplementary Table S1).

Physicochemical water quality and air temperature were
measured at sample collection (Weller et al., 2020c).
Separately, rainfall, temperature, and solar radiation data were
obtained from the NEWA weather station (newa.cornell.edu)
closest to each sampling site (Mean Distance � 8.9 km). If a
station malfunctioned, data from the next nearest station were
used. Average air temperature and solar radiation, and total
rainfall were calculated using non-overlapping periods (e.g.,
0–1 day before sampling, 1–2 days before sampling;
Supplementary Table S1).

Statistical Analyses
All analyses were performed in R (version 3.5.3; R Core Team,
Vienna, Austria) using the mlr package (Bischl et al., 2016).
Model training and testing were performed using the 2018
(Weller et al., 2020b) and 2017 (Weller et al., 2020c) data,
respectively. Hyperparameter tuning was performed using 3-
fold cross-validation repeated 10 times. Tuning was performed

FIGURE 1 | Sampling sites for each of the streams represented in the
training and test data used here. Point size is proportional to (A) mean E. coli
concentration (log10MPN/100-ml) and (B)mean turbidity levels (log10 NTUs).
Municipal boundaries (yellow), and major lakes (blue) are included as
references. The map depicts the Finger Lakes, Western, and Southern Tier
regions of New York State, United States.
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TABLE 1 | List of algorithms used in the study reported here. This table was adapted from Kuhn and Johnson (2016) andWeller et al., (2020a) to i) reflect the algorithms used
here, and ii) report information relevant to continuous (as opposed to categorical) dataa,b

Algorithm Package n < p Centering and
Scaling

Recommended

For Features, It Can Handle Automatic
Feature
Selection

Interpretable

Correlation Missingness Near-Zero
Variance

Noise

Tree-based Learners
Conditional
Inference Tree

party (Hothorn et al., 2006;
Strobl et al., 2007a; Strobl
et al., 2008; Strobl et al.,
2009)

Y N Y Y Y • Y Y

Evolutionary
Optimal Tree

evtree (Grubinger et al.,
2014)

Y N N Y • Y Y

Regression
Treec

rpart (Therneau and
Atkinson, 2019)

Y N • Y Y • Y Y

Ensemble Learners
Conditional
Forest

party (Hothorn et al., 2006;
Strobl et al., 2007a; Strobl
et al., 2008; Strobl et al.,
2009)

Y N Y • Y Y • •

Extremely
Randomized
Trees

extraTrees (Meinshausen,
2010)

Y Y Y Y

Node Harvestc nodeHarvest (Liaw et al.,
2002)

Y N • Y Y Y Y •

Random
Forestc

randomForest (Liaw et al.,
2002)

Y N • Y Y Y • •

Regularized
Random Forest

RRF (Deng and Runger,
2012; Deng and Runger,
2013)

Y N Y N Y Y Y •

Extreme
Gradient
Boosting

xgboost (Chen and
Guestrin, 2016; Brownlee,
2019)

Y N Y Y Y Y • •

Instance-Based Learners
k-Nearest
Neighbor

kknn (Hechenbichler and
Schliep, 2004)

• Y N N N • N N

Weighted k-
Nearest
Neighbor

kknn (Hechenbichler and
Schliep, 2004)

• Y N N N • N N

Multivariate
Adaptive
Regression Splines

earth (Milborrow, 2011) Y N Y Y • Y •

Neural Networkd nnet (Venable et al., 2002) Y N N N N N N
Regression

Log-Linear stats N Y N N N N N Y
Partial Least
Squares

pls (Mevik et al., 2019) Y Ne Y N Y N • Y

Principal
Component

pls (Mevik et al., 2019) Y Ne Y N •

Penalized Regression
Elastic Net glmnet (Friedman et al.,

2010)
Y Y Y N N N Y Y

Lasso glmnet (Friedman et al.,
2010)

Y Y Y N N N Y Y

Ridge glmnet (Friedman et al.,
2010)

N Y Y N N N N Y

Rule-Based Algorithms
Cubist Cubist (Kuhn and Quinlan,

2018)
Y Y Y Y Y • N

SVM e1071 (Meyer et al., 2020) Y Y • N Y N N N

aThe information reported here is based on i) Kuhn and Johnson, (2016), ii) the papers cited for each algorithm in themethods section, and iii) the constraints listed in the R packages below
(based on the package version available in January 2020).
bY means the algorithm meets the condition in the header. N means the algorithm does not meet this condition. • means the algorithm is in between (e.g., random forest is not as
interpretable as tree-based methods but is not a 100% black-box method like support vector machines). If the cell is blank it means there was limited information on this condition for the
given algorithm.
cPreferentially selects continuous factors and categorical factors withmany levels as the splitting variable resulting in variable selection bias (Strobl et al., 2007b; Strobl et al., 2008; Strobl et
al., 2009).
dFeature selection recommended before model development.
eCentering and scaling are required but are performed as part of model fitting in the R package.
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to optimize root mean squared error (RMSE). After tuning,
models were trained and performance assessed using RMSE,
R2, and Kendall’s Tau (τ). All covariates were centered and
scaled before model development.

The algorithms used here were chosen to: 1) be comparable to
algorithms used in past studies that predicted foodborne
pathogen presence in farm environments [e.g., random forest,
regression trees (Polat et al., 2019; Strawn et al., 2013; Golden
et al., 2019; Weller et al., 2016)], and 2) include algorithms that
appear promising but have not been previously utilized for
produce safety applications (e.g., extremely randomized trees,
cubist). Extensive feature engineering was not done before model
implementation since the aim was to 1) compare algorithm
performance on the same, unaltered dataset, and 2) as an
opportunity to highlight where and how (e.g., for neural nets;
Table 1) feature engineeringmay be needed. Moreover, due to the
plethora of approaches to feature selection and engineering, a
separate paper focused on assessing the impact of feature
selection and engineering decisions on the performance of
E. coli predictive models may be warranted. In total, 19
algorithms that fall into one of seven categories [support
vector machines (SVM), cubist, decision trees, regression,
neural nets, k-nearest neighbor (KNN), and forests] were used
to develop the models presented here. However, a total of 26
models were developed using all predictors listed in
Supplementary Table S1 (i.e., 26 full models) since multiple
variations of the SVM (4 variations), cubist (4 variations), and
KNN (2 variations) were considered. While advantages and
disadvantages for each algorithm are outlined briefly in
Table 1 and the discussion, more in-depth comparisons can
be found in Kuhn and Johnson (Kuhn and Johnson, 2016).

Separately from the full models, nested models were built
using different feature subsets (Supplementary Table S1).
Features were divided into four categories: 1) geospatial, 2)
physicochemical water quality and temperature data collected
on-site, 3) all other weather data, and 4) stream traits that were
observable on-site (e.g., composition of stream bottom). Nested
models were built using different combinations of these four
feature types, and one of nine algorithms (see Supplementary
Table S3; Figure 2 for all feature-algorithm combinations; a total
of 90 nested models). The nine algorithms used to build the
nested models were randomly selected from the list of 26
algorithms used to build the full models.

Model performance was ranked using RMSE; models that tied
were assigned the same rank. Two other performance measures,
Kendall’s tau (τ) and the coefficient of determination (R2) were
also calculated. Kendall’s tau is a rank-based measure that
assesses a model’s ability to correctly identify the relative (but
not the absolute) concentration of E. coli in novel samples (e.g., if
a sample was predicted to have a high or low E. coli
concentration), while R2 assesses how much variation in
E. coli levels is predictable using the given model. Predictive
performance for top-ranked models was visualized using density
and split quantiles plots. An explanation of how to interpret these
plots is included in the figure legends. For top-ranked models, the
iml package (Fisher et al., 2018; Molnar et al., 2018) was used to
calculate permutation variable importance (PVI) and identify the

features most strongly associated with accurately predicting
E. coli levels in the test and training data. Accumulated local
effects plots were used to visualize the relationship between E. coli
levels, and the six factors with the highest PVI (Apley and Zhu,
2016).

Baseline Models
Polat et al. (2019) developed a series of univariable models to
predict Salmonella presence in Florida irrigation water. Each
model was built using one of nine water quality or weather
features (Polat et al., 2019). Studies conducted in
nonagricultural, freshwater environments (e.g., swimming
beaches) that focused on developing interpretable models used
similar sets of physicochemical and weather features (Olyphant
and Whitman, 2004; Francy and Darner, 2006; Efstratiou et al.,
2009; Shiels and Guebert, 2010; Francy et al., 2013; Bradshaw
et al., 2016; Dada, 2019). To ensure comparability with these
previous studies, and provide baseline models that could be used
to gauge full and nested model performance, we developed eight
log-linear and a featureless regression model. Unlike the log-
linear models, the featureless model did not include any features;
models outperformed by the featureless model were unable to
predict E. coli levels. Seven, separate univariable log-linear models
were created using each of the following factors: air temperature
at sample collection, conductivity, dissolved oxygen, pH, rainfall
0–1 day before sample collection, turbidity, and water
temperature. An eighth model was built using air temperature,
rainfall, and turbidity.

Tree-based and Forest Algorithm
Three tree-based algorithms were used: regression trees (CART),
conditional inference trees (CTree), and evolutionary optimal
trees (evTree) as described in a previous study focused on
predicting pathogen presence in agricultural water (Weller
et al., 2020a). Briefly, the three tree-based algorithms were
implemented using the rpart (Therneau and Atkinson, 2019),
party (Hothorn et al., 2006; Strobl et al., 2007b; Strobl et al., 2008;
Strobl et al., 2009), and evtree (Grubinger et al., 2014) packages,
respectively. The number of splits in each tree and the min
number of observations allowed in terminal nodes were tuned
for each algorithm. Complexity parameters were tuned to
minimize overfitting when implementing the CART and
evTree algorithms, while the mincriterion parameter was set to
0.95 when implementing the CTree algorithm.

Six ensemble algorithms [conditional forest (condRF);
extreme gradient boosting (xgBoost); node Harvest; random
forest (RF); regularized random forest (RRF), and exTree]
were implemented. For the three random forest algorithms,
the number of factors considered for each split, and the
minimum number of observations allowed in terminal nodes
was tuned. To minimize overfitting the coefficient of
regularization was tuned for regRF models, while the
mincriterion parameter was tuned for condRF models. When
implementing the xgBoost algorithm (Chen and Guestrin, 2016),
hyperparameters were tuned that control: 1) learning rate and
overfitting; 2) if splits were formed and the max. number of splits
allowed; 3) number of rounds of boosting; 4) proportion of data
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used to build each tree; 5) number of features considered when
building each tree; and 6) regularization. When implementing the
node Harvest algorithm, hyperparameters were tuned that
control the: 1) min number of samples to use to build each
tree, and 2) max. number of splits allowed in each tree. Unlike the
five other forest-based learners, the number of samples used to
build each tree was not tuned when implementing the exTree
algorithm since neither bagging, bootstrapping, nor boosting is
performed when building exTrees (Simm et al., 2014). Instead,
hyperparameters were tuned that control the: 1) number of
features considered when building each node; 2) the max. size
of terminal nodes; and 3) the number of discretization points to
select at random when defining a new node. The latter parameter
highlights a key difference between the exTrees and random
forest algorithms; random forests use local optimization to make
the best split for a given node, which may not be globally optimal.
To overcome this limitation and decrease computation time, both
the variable used in new nodes, and the cutpoint used to split that
variable were chosen randomly. For all ensemble methods the
number of trees used was set to 20,001.

Instance-Based Algorithms
Two instance-based algorithms [k-nearest neighbor (kKNN) and
weighted k-nearest neighbor (wKNN)] were implemented
(Hechenbichler and Schliep, 2004). Implementation of
instance-based algorithms requires tuning the number of

neighbors used when predicting a novel observation.
Additionally, the method for calculating distances between
neighbors (Euclidean or Manhattan) was tuned when
implementing the KNN algorithms. For wKNN, the weighting
kernel was also tuned since several weighting approaches exist.

Neural Nets
Neural networks are a non-linear regression technique and were
implemented here using the mlr (Bischl et al., 2016) and nnet
(Venable et al., 2002) packages. Unlike the other algorithms used
here, neural nets cannot handle correlated or collinear predictors
((Kuhn and Johnson, 2016); Table 1). As such, feature selection
was performed before fitting the neural nets by retaining all
predictors with 1) non-zero coefficients according to the full
elastic net model, and 2) non-zero variable importance measures
according to the full condRF model. In neural net models, the
outcome is predicted using an intermediary set of unobserved
variables that are linear combinations of the original predictors
(Kuhn and Johnson, 2016). As such, the number of intermediary
variables used in the model was tuned as was the max. iterations
run. Since neural net models often overfit (Kuhn and Johnson,
2016), a regularization parameter was also tuned.

Regression and Penalized Algorithms
Regression models, like the baseline models developed here, are
frequently used to assess associations between features and food

FIGURE 2 | Graph of RMSE, which measures a model’s ability to predict absolute E. coli count, vs. Kendall’s tau, which measures the model’s ability to predict
relative E. coli concentration. The dashed line represents the RMSE for the featureless regression model; an RMSE to the right of this line indicates that the model was
unable to predict absolute E. coli counts. To facilitate readability, nested models are displayed in a separate facet from the full and log-linear models. Supplementary
Figures S3, S4 display the nested model facet as a series of convex hulls to facilitate comparisons between models built using different feature types and
algorithms, respectively. The top-performing models are in the top left of each facet.
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safety outcomes [e.g., (Wilkes et al., 2009; Benjamin et al., 2015;
Ceuppens et al., 2015; Pang et al., 2017)]. However, conventional
regression cannot handle correlated or collinear features or a large
number of features. Various algorithms have been developed to
overcome these limitations (Kuhn and Johnson, 2016). We used
five such algorithms here, including penalized regression, partial
least squares regression, and principal component regression.
Penalized regression models apply a penalty to the sum of
squared estimates of errors (SSE) to control the magnitude of
the parameter estimates, and account for correlation between
features (Kuhn and Johnson, 2016). All three penalized
algorithms used here (ridge, lasso, and elastic net) were fit using
the glmnet package using 10 cross-validated folds (Friedman et al.,
2010), which automatically tunes lambda (amount of coefficient
shrinkage). For all three models, a hyperparameter was tuned that
determines if the model with theminmean cross-validated error or
the model within one standard error of the min. was retained. For
ridge and lasso regression, alpha was set to 0 or 1, respectively,
while alpha was tuned for the elastic net model.

To overcome limitations associated with correlated features or
having large numbers of features, principal components regression
(PCR) uses a two-step approach. The dataset dimension is first
reduced using principal components analysis (PCA), and then
regression is performed using the principal components as features.
Since PCA is performed independently of the outcome response, PCA
may not produce components that explain the outcome, resulting in a
poor-performing model (Kuhn and Johnson, 2016). Partial least
squares regression (PLS) does not suffer from this limitation. Like
PCR, PLS finds underlying, linear combinations of the predictors.
Unlike PCR, which selects combinations to maximally summarize the
features, PLS selects combinations that maximally summarize
covariance in the outcome (Kuhn and Johnson, 2016). PCR and
PLS models were both fit using the mlr (Bischl et al., 2016) and pls
(Mevik et al., 2019) packages, and the number of components used
was tuned. Since there are several variations of the PLS algorithm
(Mevik et al., 2019), the PLS algorithm used was also tuned.

Multivariate Adaptive Regression Splines (MARS)
Like PLS and neural net, the MARS algorithm uses the features to
create new, unobserved intermediary variables that are used to
generate model predictions (Kuhn and Johnson, 2016). MARS
creates each new intermediary using fewer features than PLS and
neural net. MARS uses a piecewise linear regression approach that
allows each intermediary tomodel a separate part of the training data
and automatically accounts for interactions (Kuhn and Johnson,
2016). As in other approaches, once a full set of intermediaries has
been created, pruning is performed to remove intermediaries that do
not contribute to model performance (Kuhn and Johnson, 2016).
The MARS models created here were implemented using the mlr
(Bischl et al., 2016) andmda (Hastie and Tibshirani, 2017) packages.
When fitting the MARS models the number and complexity of the
intermediaries retained in the final model were tuned.

Rule-Based Algorithms
Four variations of the Cubist algorithmwere implemented (Kuhn and
Quinlan, 2018). Cubist models grow a tree where each terminal node

contains a separate linear regression model. Predictions are made
using these terminal models but smoothed using the model
immediately above the given terminal node. Ultimately, this results
in a series of hierarchical paths from the top to the bottom of the tree.
To prevent overfitting these paths are converted to rules, which are
pruned or combined based on an adjusted error rate (Kuhn and
Johnson, 2016). Like tree-basedmodels, an ensemble of Cubistmodels
can be created and the predicted E. coli concentration from all
constituent models averaged to obtain the model prediction (Kuhn
andQuinlan, 2018). This version of the Cubistmodel is called boosted
Cubist (BoostedCub). Separately, from BoostedCub, an instance-
based Cubist can be used to create a k-nearest neighbor Cubist
(kNCub (Kuhn and Quinlan, 2018)). kNCub works by first
creating a tree, and averaging the prediction from the k-nearest
training data points to predict the E. coli concentration in a novel
sample (Kuhn and Quinlan, 2018). The BoostedCub and kNCub can
also be combined to generate a boosted, k-nearest neighbor Cubist
(Boosted kNCub (Kuhn and Quinlan, 2018)). For all Cubist models,
the number of rules included in the final model was tuned. The
number of trees used was tuned for the boosted Cubist models, and
the number of neighbors usedwas tuned for the instance-basedCubist
models.

Support Vector Machines
Four variations of support vector machines (SVM) were
implemented using the e1071 package (Meyer et al., 2020).
Each of the variations used a different kernel transformation.
Each kernel mapped the data to higher or lower dimensional
space, and the number of hyperparameters tuned reflects the
dimensionality of the kernel. In order of most to least
dimensionality, the kernels used were polynomial, sigmoidal,
and radial; a linear kernel was also considered. Regardless of
the kernel used, a penalty parameter that controls the smoothness
of the hyperplane’s decision boundary was tuned. For all SVMs
built using non-linear kernels, a parameter was tuned that
determines how close a sample needs to be to the hyperplane
to influence it. For the sigmoid and polynomial SVMs, a
parameter that allows the hyperplane to be nonsymmetrical
was tuned. For the polynomial SVM, the degree of the
polynomial function was tuned.

RESULTS AND DISCUSSION

One-hundred twenty-five models were developed to predict
E. coli levels in Upstate New York streams used for
agricultural purposes (e.g., produce irrigation; Figure 2; 26 full
models +90 nested models +9 baseline models). Full models were
built using all four feature types, while nested models were built
using between one and four feature types. The feature types
considered were 1) geospatial, 2) physicochemical water quality
and temperature data collected on-site, 3) all other weather data,
and 4) stream traits observable on-site (e.g., stream bottom
composition). Baseline models were either log-linear or
featureless regression models.

The log10 MPN of E. coli per 100 ml was similarly distributed
in the training (1st quartile � 1.95; median � 2.33; 3rd quartile �
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2.73) and test data (1st quartile � 1.90; median � 2.21; 3rd
quartile � 2.54). While an advantage of this study is the use of
two independently collected datasets to separately train and test
the models, the size of each dataset (N � 194 and 181 samples in
the training and test data, respectively), as well as the temporal
and geographic range represented (one growing season per
dataset, one produce-growing region), are a limitation.
However, this study’s aim was not to develop field-ready
models; instead, this study provides a conceptual framework
for how field-ready models can be built once multi-region and
multi-year datasets are available.

By using a continuous outcome, the present study
complements a recent publication that focused on binary,
categorical outcomes [detection/non-detection of enteric
pathogens (Weller et al., 2020a)]. To the authors’ knowledge,
this is also the first study to compare the performance of models
for predicting E. coli levels in agricultural water that were built
using different feature types (i.e., geospatial, physicochemical
water quality features, stream traits, and weather). Since the
skill, capital, time, and computational power required to
collect data on each feature type varies, the findings presented
here will help future studies optimize data collection by focusing
on key predictors (although other predictors may be important in
other produce-growing regions). This in turn will help ensure that
field-ready models developed as part of these future studies do
not require growers to invest substantial time and money
collecting multiple data types. For similar reasons (e.g.,
accessibility to growers, practicality for incorporating into on-
farm management plans), future studies aimed at developing
deployable models may want to consider the degree of feature
engineering performed, however, such considerations were
outside the scope of the present study.

Trade-Offs Between Interpretability and Accuracy
Need to be Considered When Selecting the Algorithm
Used for Model Development
Model performance varied considerably with root-mean-squared
errors (RMSE), Kendall’s Tau (τ), and R2 ranging between 0.37
and 1.03, 0.07, and 0.55, and −0.31 and 0.47, respectively,
(Supplementary Table S2; Figure 2). The top-performing full
models all performed comparably and were built using either
boosted or bagged algorithms. In order, the top-performing
models were: Boosted kNCub (RMSE � 0.37); xgBoost (RMSE
� 0.37); condRF (RMSE � 0.38); random forest (RMSE � 0.38);
regRF (RMSE � 0.38); and exTree (RMSE � 0.39; Supplementary
Table S2, Figures 2–4). These full models outperformed the top-
ranked nested model, which was built using the PLS algorithm
and water quality, weather, and stream trait factors (RMSE � 0.69;
Supplementary Table S2, Figure 2). Below the cluster of best
performing models in the top-left corner of Figure 2, there is a
second cluster of models that performed well but not as well as the
top-ranked models. It is interesting to note that the best-
performing model in this second cluster was also built using a
boosted algorithm (Boosted Cubist). Moreover, nested models
built using ensemble algorithms generally outperformed those
built using a tree or instance-based algorithm (Supplementary
Figure S3). Overall, ensemble (boosted or bagged) algorithms

substantially outperformed the other algorithms considered
here. This is consistent with findings from a similar study
(Weller et al., 2020a), which also found that ensemble models
outperformed models built using alternative algorithms when
predicting enteric pathogen presence in streams used to source
irrigation water. These findings are also consistent with past studies
that used ensemble methods (e.g., condRF, RF) to develop accurate
models for predicting microbial contamination of recreational
waters (Golden et al., 2019; Zhang et al., 2019; Munck et al.,
2020) and agricultural environments (Golden et al., 2019).

Decision trees, which were previously proposed as candidate
algorithms for developing interpretable, food safety decision-
support tools (Magee, 2019), performed poorly here and in the
aforementioned enteric pathogens study (Figure 2; Weller et al.,
2020a). The poor performance of decision-trees is most likely due
to overfitting during model training (Supplementary Figure S1).
However, the fact that the RMSE of the interpretable models (e.g.,
tree-based models) was generally higher than the RMSE of black-
box approaches (i.e., less interpretable models like SVM and
ensemble algorithms) (Table 1; Figure 2), is illustrative of the
trade-off between model interpretability and model performance
[see (Meinshausen, 2010; Kuhn and Johnson, 2016; Doshi-Velez
and Kim, 2017; Luo et al., 2019; Weller et al., 2020a) for more on
these trade-offs]. Thus, our findings highlight the importance of
weighing the need for interpretability vs. predictive accuracy before
model fitting, particularly in future studies focused on developing
implementable, field-ready models that growers can use for
managing food safety hazards in agricultural water. When
weighing these trade-offs, it is also important to consider that
certain algorithms (e.g., conditional random forest) are better able
to handle correlated and missing data as well as interactions
between features than other algorithms (e.g., k-nearest neighbor,
neural nets; Table 1). Similarly, it is important to consider whether
feature selection is automatically performed as part of algorithm
implementation (see Table 1). Since feature selection is performed
as part of random forest implementation, they are more robust to
the feature set used than neural nets or instance-based algorithms;
this could explain the poor performance of the neural net, KNN,
and wKNN models here. As such, random forest and similar
algorithms may be able to better reflect the complexity and
heterogeneity of freshwater systems particularly if feature
selection will not be performed before model implementation.

The Measure(s) Used to Assess and Compare Model
Performance Should be Determined by How the
Predictive Model Will be Used, and if Actual E. coli
Counts or a Relative Concentration (i.e., High Versus
Low) is Needed
It is important to highlight that only RMSE was used in
hyperparameter tuning and to identify the best performing
models. While RMSE-based rankings generally matched
rankings based on τ and R2, some models with high RMSE
(which indicates worse performance) had similar τ and R2

values to the top RMSE-ranked models (e.g., the neural net
had high RMSE but τ and R2 were similar to models with
lower RMSE; Supplementary Table S2; Figure 2; Figure 4).
This reflects differences in how each measure assesses
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performance. RMSE measures the differences between observed
and predicted values, and therefore accounts for how off the
prediction is from reality. As such, RMSE is a measure of howwell
the model can predict actual E. coli counts. Kendall’s τ is a rank-
basedmeasurement that does not account for absolute differences
but instead ranks the observed data in order from highest to
lowest value and determines how closely the predictions from the
model match this ranking (Rosset et al., 2007). Thus, τ is useful
for identifying models that can predict when E. coli levels are
likely to be higher or lower (i.e., relative concentration) (Rosset
et al., 2007). The coefficient of determination (R2) reflects the
proportion of variation in the outcome that is predictable by the
model. In this context, our findings suggest that the neural net
model is unable to predict actual E. coli concentrations but can
correctly rank samples based on E. coli concentration (e.g.,
identify when levels are likely to be elevated). As such, neural
nets may be appropriate for use in applied settings where the
relative concentration but not the absolute count of E. coli is of
interest (e.g., water source-specific models that are interested in
deviation from baseline E. coli levels, which could indicate a
potential contamination event). Indeed, a previous study that
used neural nets to predict pathogen presence in Florida
irrigation water was able to achieve classification accuracies
(i.e., classify samples as having a high or low probability of
contamination) of up to 75% (Polat et al., 2019). Conversely,
neural nets may not be appropriate for predicting if a waterway

complied with a water quality standard based on a binary E. coli
cut-off. These results illustrate the importance of carefully
considering how a model will be applied (e.g., are count
predictions needed or are rank predictions needed, is
interpretability or predictive accuracy more important) when
selecting 1) the algorithm used for model fitting, and 2) the
performance measure used for model tuning and assessing model
performance (e.g., RMSE, τ, R2).

The impact of performance measure choice on model
interpretation and ranking is particularly clear when we
examine the log-linear models developed here. The predictive
accuracy of the log-linear models varied substantially. None of the
variation in E. coli levels in the test data was predictable using the
worst performing log-linear model (based on conductivity; RMSE
� 0.90; τ � 0.05; R2 � 0.0), while the best-performing log-linear
model (based on turbidity) was able to predict 32% of the
variation in the test data (RMSE � 0.74; τ � 0.44; R2 � 0.32;
Table S2). The performance of the turbidity model developed
here is comparable to turbidity-based log-linear models
developed to predict E. coli levels at Ohio swimming beaches
(R2 � 38% in (Francy and Darner, 2006); R2 ranged between 19
and 56% in (Francy et al., 2013)). However, the RMSE of the
turbidity model developed here was substantially worse than all
full models except the wKNN and KNNmodels. Conversely, the τ
and R2 values of the turbidity model were comparable to or better
than 11 of the full models (Supplementary Table S2). The only

FIGURE 3 |Graph ofR2, whichmeasures the variance in E. coli levels that is predictable using the givenmodel, vs. Kendall’s tau, whichmeasures themodel’s ability
to predict relative E. coli concentration. The dashed line represents the R2 for the featureless regression model; an R2 to the left of this line indicates that the model was
unable to predict variability in E. coli levels. To facilitate readability, nested models are displayed in a separate facet from the full and log-linear models. Better performing
models are in the top right of each facet, while poor performers are in the bottom left.
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models to have substantially better τ and R2 values than the
turbidity model were models built using an ensemble algorithm
(e.g., Boosted kNCub, regRF, RF, xgBoost; Supplementary Table
S2). This suggests that the ability of the turbidity log-linear model
to categorize the test data based on relative E. coli concentration
(e.g., into samples with high or low predicted E. coli levels) was
comparable to most full models. However, unlike the full models,
the turbidity log-linear model could not predict actual E. coli
concentrations in the test data samples. In fact, the density plots
in Figure 4 graphically show how the top-ranked full model was
substantially better at predicting E. coli counts compared to the
top-ranked nested model and the turbidity log-linear model.
Conversely, the split quantiles plots show that all three models
were able to predict the relative concentration of E. coli in the test
data samples (Figure 4). Overall, these findings reiterate the
importance of determining how models will be applied in the
field when designing a study. For example, if the aim is to develop
an interpretable model to supplement ongoing monitoring
efforts, a log-linear model based on turbidity could be useful
for determining when E. coli concentration most likely deviates
from baseline levels (e.g., are expected to be higher or lower). Such
a model would be most useful if a baseline level of E. coli had been
established for a given water source. However, separate models

would need to be developed to establish this baseline for each
water source, and the development of source-specific models
could present an economic hurdle to small growers. As such, an
ensemble model, like the full Boosted kNCub or XgBoost models
developed here, would be more appropriate if 1) a generalized
model (i.e., not specific to an individual water source): is needed,
or 2) the model output needs to be an actual E. coli count.

Accurate Predictions for Top-Ranked Models were
Driven by Turbidity and Weather
Among the nested models, models built using physicochemical
and weather predictors consistently outperformed models built
using geospatial predictors (Supplementary Table S2; Figure 2;
Supplementary Figure S2). Indeed, by creating a convex hull
graph that groups nestedmodels by predictor type, the substantial
differences in model performance due to predictor type are
evident (Supplementary Figure S2). For example, all nested
models built using only geospatial predictors or stream traits
(e.g., stream bottom substrate) clustered in the bottom right of
Supplementary Figures S2 (high RMSE, low τ indicating poor
performance). For eight of the nine algorithms used to build the
nested models, the full models had substantially lower RMSE
values than the nested models, while nested models built using

FIGURE 4 | Density plots and split quantiles plots showing the performance of the top-ranked full, nested, and log-linear models. The density plot shows the ability
of each model to predict E. coli counts in the test data, while the split quantiles plots show the ability of eachmodel to predict when E. coli levels are likely to be high or low
(i.e., relative E. coli concentration). The split quantiles plot is generated by sorting the test data from (i) lowest to highest predicted E. coli concentration, and (ii) lowest to
highest observed E. coli concentration. The test data is then divided into quintiles based on the percentile the predicted value (color-coding; see legend) and
observed values (x-axis goes from quintile with lowest observed E. coli levels on the left to highest on the right) fell into. In a good model, all samples that are predicted to
have a low E. coli concentration (red) would be in the far left column, while samples that are predicted to have a high E. coli concentration (blue) would be in the far right
column.
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physicochemical water quality and/or weather features, on
average, had substantially lower RMSE values than the
geospatial nested models (Supplementary Table S2; Figure 2).
However, since none of the nested models had an RMSE lower
than the featureless regression, this indicates that all feature types
(physiochemical, weather, geospatial, and stream traits) were
needed to develop models that could accurately predict E. coli
counts. That being said, many of the nested models had
substantially higher τ and R2 values than the featureless
regression, indicating that they were able to accurately predict
relative E. coli concentration (i.e., if it was higher or lower). The
pattern observed for RMSE holds true for the τ and R2 values,
with physicochemical water quality models and weather models
outperforming geospatial models. In fact, for several of the
algorithms used for building the nested models, τ and R2

values for the physiochemical and/or weather models were
higher than τ and R2 values for the full models, indicating that
thesemodels were better able to predict relative E. coli concentration
than the full model. Based on permutation variable importance, the
top-ranked full models’ ability to predict E. coli levels in both the
training and test data was driven by air temperature, rainfall, and
turbidity (Figure 5; Supplementary Figures S4, S5). Similarly, the
top-ranked nested models’ ability to predict E. coli levels in the

training and test data was driven by air temperature, rainfall, and
turbidity, and by air temperature, solar radiation, and turbidity,
respectively (Figure 5; Supplementary Figures S6–S8). Overall,
these findings reiterate that appropriate features to use when
training models for predicting E. coli levels in agricultural water
source is dependent on how the model will be applied (i.e., if E. coli
counts or relative concentration is needed). However, we can also
conclude that regardless of how the model will be applied,
physicochemical water quality and weather factors should be
included as features and that geospatial features should not be
used alone for model development. However, water quality is
known to vary spatially (e.g., between produce-growing
regions). Since this study was only conducted in one region,
separate region-specific models or a single multi-region model
may be needed.

The identification of associations between microbial water
quality, and physicochemical water quality, and weather features
are consistent with the scientific literature (Francy et al., 2013;
Bradshaw et al., 2016; Lawrence, 2012; Rao et al., 2015; Nagels
et al., 2002; Liang et al., 2015). More specifically, the strong
association between turbidity and E. coli levels, and rainfall and
E. coli levels has been reported by studies conducted in multiple
water types (e.g., streams, canals, recreational water, irrigation

FIGURE 5 | Permutation variable importance (PVI) of the 30 factors that were most strongly associated with predicting E. coli levels in the test and training data
using full, boosted, k-nearest neighbor Cubist model. The black dot shows median importance, while the line shows the upper and lower 5% and 95% quantiles of PVI
values from the 150 permutations performed. Avg. Sol Rad � Average Solar Radiation; Elev � Elevation; FP � Floodplain; SPDES � Wastewater Discharge Site; Soil
A � Hydrologic Soil Type-A.
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water, water in cattle troughs), regions (e.g., Northeast, Southeast,
Southwest), and years, indicating that these relationships are
reproducible even under varying conditions and when
different study designs are used (Weller et al., 2020c; Brady
et al., 2009; Brady and Plona, 2009; Francy and Darner, 2006;
Lawrence, 2012; Smith et al., 2008; Davies-Colley et al., 2018;
Olyphant et al., 2003; Money et al., 2009; Coulliette et al., 2009).
For example, a study that sampled the Chattahoochee River, a
recreational waterway in Georgia, United States of America,
found that 78% of the variability in E. coli levels could be
explained by a model that included log10 turbidity, flow event
(i.e., base vs. stormflow), and season (Lawrence, 2012). In fact, the
Georgia study found that for each log10 increase in turbidity
E. coli levels increased by approx. 0.3 and approx. 0.8 log10 MPN/
100-ml under baseflow and stormflow conditions, respectively
(Lawrence, 2012). Similarly, in the study reported here,
accumulated local effects plots indicate the presence of a
strong, positive association between E. coli levels, and air
temperature, rainfall, and turbidity (Figure 6). The fact that
the E. coli-rainfall and E. coli-turbidity relationships are
reproducible across studies, regions, and water types makes
sense when viewed through the lens of bacterial fate and
transport. Both rainfall and turbidity are associated with
conditions that facilitate bacterial movement into and within

freshwater systems (Nagels et al., 2002; Muirhead et al., 2004;
Jamieson et al.,; Drummond et al., 2014). As such, it is not
surprising that past studies that developed models to predict
pathogen presence in agricultural water (Polat et al., 2019;
Weller et al., 2020a) or E. coli concentrations in recreational
water (e.g., (Francy and Darner, 2006; Brady et al., 2009; Brady
and Plona, 2009)), found that models built using turbidity and/
or rainfall outperformed models built using other factors. For
example, Polat et al. (Polat et al., 2019) found that models that
included turbidity as a feature were between 6 and 15% more
accurate at predicting Salmonella presence in Florida irrigation
ponds than models built using other predictors. Similarly, a
study that used multivariable regression to predict E. coli level at
Ohio beaches found that only rainfall and turbidity were
retained in the final, best-performing model (Francy and
Darner, 2006). Overall, the findings of this and other studies
suggest that future data collection efforts (to generate data that
can be used to train predictive E. coli models) should focus on
physicochemical water quality and weather as opposed to
geospatial factors.

While the scientific literature supports focusing future
research efforts on collecting physicochemical water quality
and weather data for models aimed at predicting E. coli
presence or levels in the water, this recommendation is also

FIGURE 6 | Accumulated local effects plots showing the effect of the four factors with the highest PVI when predictions were made on the training (shown in red)
and test (shown in blue) data using the full boosted, k-nearest neighbor Cubist model. All predictors were centered and scaled before training eachmodel. As a result, the
units on the x-axis are the number of standard deviations above or below themean for the given factor (e.g., in the rainfall plot 0 and two indicate the mean rainfall 0–1 day
before sample are collection [BSC], and 2 standard deviations above this mean, respectively).
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supported by economic and computational feasibility. It is
relatively easy and inexpensive for growers to obtain and
download weather data from nearby extension-run weather
stations since many growers already use these websites (e.g.,
NEWA [newa.cornell.edu], WeatherSTEM [www.weatherstem.
com]) since this data is freely available. It can also be relatively
inexpensive to collect turbidity and other physicochemical water
quality data depending on the required precision of these
measurements. Conversely, geospatial data requires either that:
1) the grower has access to software and training that allows them
to extract geospatial data from government databases and
calculate relevant statistics for each water source on their farm
(e.g., the proportion of upstream watershed under natural cover),
2) an external group, such as consultants or universities working
with industry perform this task, or 3) an external group develops
a software program to perform this task. All three options would
require substantial computational power, time, training, and
capital.

CONCLUSION

This study demonstrates that predictive models can be used to
predict both relative (i.e., high vs. low) and absolute (i.e., counts)
levels of E. coli in agricultural water in New York. More
specifically, the findings reported here confirm previous
studies’ conclusions that machine learning models may be
useful for predicting when, where, and at what level fecal
contamination (and associated food safety hazards) is likely to
be in agricultural water sources (Polat et al., 2019; Weller et al.,
2020a). This study also identifies specific algorithm-feature
combinations (i.e., forest algorithms, and physicochemical
water quality and weather features) that should be the foci of
future efforts to develop deployable models that can guide on-
farm decision-making. This study also highlights that the
approach used to develop these field-ready models (i.e., the
algorithm, performance measure, and predictors used) should
be in how the model will be applied. For example, while ensemble
methods can predict E. coli counts, interpretable (i.e., non-black-
box methods like the baseline log-linear models) cannot.
Conversely, these interpretable models were able to predict
when E. coli levels are above or below a baseline. Overall, this
proof-of-concept study provides foundational data that can be
used to guide the design of future projects focused on developing
field-ready models for predicting E. coli levels in agricultural and
possibly other (e.g., recreational) waterways. Moreover, this paper
highlights that accurate models can be developed using weather
(e.g., rain, temperature) and physicochemical water quality (e.g.,
turbidity) features. Future efforts may want to focus on models
built using these (as opposed to geospatial) features. In adapting
these findings to guide the development of deployablemodels, it is
important to note that several studies suggest that E. coli levels

was an inconsistent predictor of pathogen presence in surface
water (Harwood et al., 2005; McEgan et al., 2013; Pachepsky
et al., 2015; Antaki et al., 2016; Weller et al., 2020c). Instead,
E. coli models, like those developed here, may be useful for
assessing fecal contamination status and for ensuring
compliance with regulations but should not be used to
determine if specific pathogens of concern (e.g., Salmonella,
Listeria) are present.
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