
Rule Extraction From Binary Neural
NetworksWith Convolutional Rules for
Model Validation
Sophie Burkhardt1*†, Jannis Brugger1, Nicolas Wagner1†, Zahra Ahmadi1, Kristian Kersting2

and Stefan Kramer1

1Institute of Computer Science, Johannes Gutenberg University of Mainz, Mainz, Germany, 2Centre for Cognitive Science, and
Hessian Center for Artificial Intelligence, Department of Computer Science, TU Darmstadt, Darmstadt, Germany

Classification approaches that allow to extract logical rules such as decision trees are often
considered to be more interpretable than neural networks. Also, logical rules are
comparatively easy to verify with any possible input. This is an important part in
systems that aim to ensure correct operation of a given model. However, for high-
dimensional input data such as images, the individual symbols, i.e. pixels, are not
easily interpretable. Therefore, rule-based approaches are not typically used for this
kind of high-dimensional data. We introduce the concept of first-order convolutional
rules, which are logical rules that can be extracted using a convolutional neural
network (CNN), and whose complexity depends on the size of the convolutional filter
and not on the dimensionality of the input. Our approach is based on rule extraction from
binary neural networks with stochastic local search. We show how to extract rules that are
not necessarily short, but characteristic of the input, and easy to visualize. Our experiments
show that the proposed approach is able to model the functionality of the neural network
while at the same time producing interpretable logical rules. Thus, we demonstrate the
potential of rule-based approaches for images which allows to combine advantages of
neural networks and rule learning.

Keywords: k-term DNF, stochastic local search, convolutional neural networks, logical rules, rule extraction,
interpretability

1 INTRODUCTION
1Neural Networks (NNs) are commonly seen as black boxes, which makes their application in some
areas still problematic (e.g., in safety-relevant applications or applications in which DL is only
intended to support a human user). Logical statements are however easier to process by humans than
the main building blocks of NNs (e.g., nonlinearities, matrix multiplications, or convolutions). In
general, learning of logical rules cannot be done using gradient-based algorithms as they are not
differentiable. Even if we find rules that exactly describe a neural network, they might still be too

Edited by:
Fabrizio Riguzzi,

University of Ferrara, Italy

Reviewed by:
Yingnian Wu,

University of California, Los Angeles,
United States

Sebastian Ventura,
University of Cordoba, Spain

Riccardo Guidotti,
University of Pisa, Italy

*Correspondence:
Sophie Burkhardt

burkhardt@cs.uni-kl.de

†Present address:
Sophie Burkhardt,

Department of Computer Science, TU
Kaiserslautern, Kaiserslautern,

Germany; Nicolas Wagner,
Department of Computer Science, TU

Darmstadt, Darmstadt, Germany

Specialty section:
This article was submitted to

Machine Learning and Artificial
Intelligence,

a section of the journal
Frontiers in Artificial Intelligence

Received: 15 December 2020
Accepted: 10 June 2021
Published: 21 July 2021

Citation:
Burkhardt S, Brugger J, Wagner N,
Ahmadi Z, Kersting K and Kramer S
(2021) Rule Extraction From Binary
Neural Networks With Convolutional

Rules for Model Validation.
Front. Artif. Intell. 4:642263.

doi: 10.3389/frai.2021.642263

1This paper is an extension of three workshop papers that were presented at the DeCoDeML workshops at ECML/PKDD 2019
and 2020: Sophie Burkhardt, Nicolas Wagner, Johannes Fürnkranz, Stefan Kramer: Extracting Rules with Adaptable
Complexity from Neural Networks using K-Term DNF Optimization; Nicolas Wagner, Sophie Burkhardt, Stefan Kramer:
A Deep Convolutional DNF Learner; Sophie Burkhardt, Jannis Brugger, Zahra Ahmadi and Stefan Kramer: A Deep
Convolutional DNF Learner.

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 6422631

ORIGINAL RESEARCH
published: 21 July 2021

doi: 10.3389/frai.2021.642263

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.642263&domain=pdf&date_stamp=2021-07-21
https://www.frontiersin.org/articles/10.3389/frai.2021.642263/full
https://www.frontiersin.org/articles/10.3389/frai.2021.642263/full
https://www.frontiersin.org/articles/10.3389/frai.2021.642263/full
http://creativecommons.org/licenses/by/4.0/
mailto:burkhardt@cs.uni-kl.de
https://doi.org/10.3389/frai.2021.642263
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.642263

complex to be understandable. In this paper we propose
convolutional rules for which the complexity is not related to
the dimensionality of the input but only to the dimensionality of
the convolutional filters. Thereby we aim to combine advantages
from two fields: We make use of the NN’s ability to handle high-
dimensional data and we allow for model validation, not just
through visualization and subjective assessment, but through
rigorous logical rules.

It is a wide-spread belief that shorter rules are usually better
than longer rules, a principle known as Occam’s razor. This
common assumption was recently challenged again by Stecher
et al. (2016), who revive the notion of so-called characteristic rules
instead. As they show, shorter rules are often discriminative rules
that help to differentiate different output classes, but are not
necessarily descriptive of the data. In this work, we can confirm
this observation and show how characteristic rules are produced
for high-dimensional input data such as images.

Specifically, based on recent developments in deep learning with
binary neural networks (BNNs) (Hubara et al., 2016), we propose an
algorithm for decompositional rule extraction (Andrews et al., 1995),
called Deep Convolutional DNF Learner (DCDL). A BNN takes
binary input and only produces binary outputs in all hidden layers as
well as the output layer. Some BNNs also restrict weights to be
binary, however, this is not necessary for our approach. We then
approximate each layer using rules and combine these rules into one
rule to approximate the whole network. As our empirical results
show, this allows for better approximation than with an approach
that considers the neural network to be a black box—a so-called
pedagogical rule extraction approach.

Moreover, we show how the convolutional rules are used to
visualize what the network has learned, a feature not available for
other types of logical rules that would not lead to any meaningful
visualization.

As parallel developments Narodytska et al. (2020); Jia and
Rinard (2020) show, the use of binary neural networks for model
validation is a promising research direction, because SAT-solvers
can be employed more efficiently in these networks than
Satisfiability Modulo Theory (SMT) solvers that are usually
applied on non-binary networks. Thus, our work can be seen
as complementary to theirs, and we focus more on the
visualization of the rules and the approximation of the
convolutional filters here although the final goal of eventually
applying SAT-solvers or related techniques in order to verify
model functionality is the same.

To sum up, our contributions are as follows:

• We formally define first-order convolutional rules (Section
3.1) to describe a neural network using rules that are less
complex than the original input.

• We show that the decompositional rule extraction approach
performs better than the approach that considers the
network as a black box in terms of approximating the
functionality of the neural network.

• We show how the convolutional rules produce
characteristic visualizations of what the neural network
has learned (although we want to emphasize that our
goal is not to explain individual classifications).

• To our knowledge, for the first time we show how logical
rules can be used on high-dimensional data such as images
and still yield interpretable results.

We proceed as follows. We start off by touching upon related
work on binary neural networks, rule extraction, and
interpretability in convolutional networks in Section 2. Deep
Convolutional DNF Learner (DCDL), consisting of the
specification of first-order convolutional rules and the SLS
algorithm, is then introduced in Section 3. Our experimental
results on similarity, accuracy, and the visualization are presented
and discussed in Section 4.

2 RELATED WORK

Our work builds upon binary neural networks, rule extraction,
and visualization of convolutional neural networks.

2.1 Binary Neural Networks
Binary Neural Networks (BNNs) are neural networks that restrict
the target of activation functions and weights to binary values
{−1, 1}. The original motivation for BNNs is to reduce the
memory footprint of NNs and accelerate inference (Hubara
et al., 2016). BNNs can be stored more efficiently because
binary values can be stored in 1-bit instead of 32 bits or 64
bits. Also, binary representations can avoid computationally
expensive floating-point operations by using less expensive,
bitwise operations, leading to a speed-up at inference time
(Rastegari et al., 2016).

However, by construction, the activation functions of BNNs
lack differentiability and have less representational power due to
their limitation to binary output values. Research on BNNs
focuses on alleviating these two limitations. A breakthrough
for BNNs was the straight-through estimator (STE) introduced
in Hinton’s lectures (Hinton, 2012). The STE calculates the
gradient of the Heaviside step function H as if it was the
identity function. By using the STE in combination with the
sign function B(x) � 2 ·H(x) − 1 instead of H, Hubara et al.
(2016) demonstrate the general capabilities of BNNs. They
maintain real-valued weights while using binarized weights
only for inference and calculation of gradients. Training
updates are applied to the real-valued weights. They adapt the
STE to better fit B by clipping the identity function at −1 and 1
(Clipped STE). Nevertheless, the sole usage of the (Clipped) STE
does not compensate for the lack of representational power of
BNNs. Therefore, further improvements were proposed
(Rastegari et al., 2016; Lin et al., 2017).

2.2 Rule Extraction
Rule extraction algorithms are commonly divided into
decompositional and pedagogical approaches (Andrews et al.,
1995). Pedagogical (or model-agnostic) approaches view the
neural network as a black box and approximate its global
function using rules, whereas decompositional methods make
use of the individual components of the network in order to
construct the set of rules. Our work follows a decompositional

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 6422632

Burkhardt et al. Rule Extraction With Convolutional Rules

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

approach, allowing a better approximation as compared to the
pedagogical approach that we compare to in our experiments.

State-of-the-art pedagogical approaches include validity
interval analysis (VIA), sampling, and reverse engineering.
VIA (Thrun, 1993, Thrun, 1995) searches for intervals in the
input data within which the NN produces the same output. The
found intervals can be transformed into rules. Approaches using
sampling (Craven and Shavlik, 1995; Schmitz et al., 1999; Taha
and Ghosh, 1999; Sethi et al., 2012) try to let the NN label
especially important instances in order to learn better rules. For
instance, sampling can be beneficial to learn rules on parts of the
unknown label function which are not covered well by the
training instances. The reverse engineering approach by
Augasta and Kathirvalavakumar (2011) prunes the NN before
the rules are extracted. As a result, the extracted rules are more
comprehensible. Setiono and Leow (2000) use a similar technique
to identify the relevant perceptrons of a NN.

Among others, decompositional algorithms use search
techniques to find input combinations that activate a
perceptron (Fu, 1994; Tsukimoto, 2000). Some search
techniques provably run in polynomial time (Tsukimoto,
2000). More recently, Zilke et al. (2016) proposed an
algorithm that extracts decision trees per layer which can be
merged into one rule set for the complete NN. González et al.
(2017) improve on this algorithm by polarizing real-valued
activations and pruning weights through retraining. Both rely
on the C4.5 (Quinlan, 2014) decision tree algorithm for rule
extraction. Kane and Milgram (1993) use a similar idea but
cannot retrain an arbitrary already existing NN. Right from
the beginning, they train NNs having (almost) binary
activations or perceptrons, which are only capable of
representing logical AND, OR, or NOT operations. Rules are
extracted by constructing truth tables per perceptron.

Unfortunately, the existing decompositional rule extraction
algorithms have no principled theoretical foundations in
computational complexity and computational learning theory.
The runtime of the search algorithm developed by Tsukimoto
(Tsukimoto, 2000) is a polynomial of the number of input
variables. However, this holds only if the number of literals
that constitute a term of an extracted logical rule is fixed.

The other presented search algorithms exhibit an exponential
runtime. Additionally, all mentioned search algorithms lack the
possibility to fix the number of terms per extracted logical rule.
Although the more recent decision tree-based approaches (Zilke
et al., 2016) apply techniques to reduce the complexity of the
extracted rules, they cannot predetermine the maximum model
complexity. The only strict limitation is given by the maximum
tree depth, which corresponds to the maximum number of literals
per term of a logical rule. In general, the C4.5 algorithm does not
take complexity restrictions into account while training. Directly
being able to limit complexity, in particular the number of terms
of a disjunctive normal form (DNF) in rule extraction, is desirable
to fine-tune the level of granularity of a requested approximation.

In addition to pedagogical and decompositional approaches,
there are approaches for local explanations, which explain a
particular output, and visualization Ribeiro et al. (2016). Also,
there are approaches that create new models that are assumed to

be more interpretable than the neural network (Odense and
Garcez, 2020). As this is not our goal, we focus on the
decompositional approach in our work.

2.3 Convolutional Networks and
Interpretability
Concerning the interpretability of convolutional neural networks,
existing work can be divided into methods that merely visualize
or analyze the trained convolutional filters (Simonyan et al., 2013;
Zeiler and Fergus, 2014; Mahendran and Vedaldi, 2015; Zhou
et al., 2016) and methods that influence the filters during training
in order to force the CNN to learn more interpretable
representations (Hu et al., 2016; Ross et al., 2017; Stone et al.,
2017). Our work can be situated in between those two
approaches. While we do change the training procedure by
forcing the CNN to use binary inputs and generating binary
outputs, we also visualize and analyze the filters after training by
approximating the network with logical rules.

In order to make convolutional neural networks more
interpretable, Zhang et al. (2018) propose a method to learn
more semantically meaningful filters. This method prevents
filters from matching several different object parts (such as the
head and the leg of a cat) and instead leads to each filter only
detecting one specific object part (e.g., only the head), thus
making the filters more interpretable. In contrast, our
approach allows for different object parts being represented in
one filter, but then uses the approximation with rules to
differentiate between different object parts. One term in a
k-term DNF (see Section 3.1 for the definition of k-term
DNFs) might correspond to one specific object part.

While these approaches are looking at the interpretability of
CNNs, in essence they all resort to local explanations and
visualizations of network outputs. Rule learning provides a
global approach that is much more precise and exactly
explains how a certain output was generated. Apart from one
recent attempt for propositional rules (Bologna, 2019) we are not
aware of any other work that learns logical rules from CNNs. In
this work, we argue that predicate logic is more suitable for logical
rule extraction from CNNs.

3 DEEP CONVOLUTIONAL DNF LEARNER

Our approach draws inspiration from recent work on binary
neural networks, which are able to perform almost on par with
non-binary networks in many cases (Lin et al., 2017; Liu et al.,
2018). These networks are built of components that can provably
be transformed into logical rules. However, for this work we only
used the Clipped STE as it appeared sufficient for smaller datasets
and networks that were used in our experiments. For the CIFAR
dataset there could be an advantage to adding scaling. Further
improvements of the binary network architecture are therefore
possible, also batch normalization might improve performance in
some cases, but this was not our main focus.

The basic building blocks of any NN are variants of
perceptrons. To ensure that a perceptron can be represented

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 6422633

Burkhardt et al. Rule Extraction With Convolutional Rules

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

by a logical expression, we need to restrict the input as well as the
output to binary values. This allows to transform perceptrons into
truth tables. For hidden layers, we have to ensure that the output
is binary leading to binary input for subsequent layers. For the
input layer, we need to establish a binarization mechanism for
categorical and a discretization mechanism for continuous
features. The binarization of a categorical feature with n
possible values is done in a canonical way by expanding it
into n binary features. For the discretization of continuous
features we use dithering. In particular, we use the Floyd-
Steinberg algorithm2 to dither the gray scale images to black
and white images and dither the individual channels of RGB
images. We tested Floyd-Steinberg, Atkinson, Jarvis-Judice-
Ninke, Stucki, Burkes, Sierra-2-4a, and Stevenson-Arce
dithering,3 which are based on error diffusion, and found no
statistically significant differences in the performance of the
neural network using a corrected resampled t-test (Nadeau
and Bengio, 2003).

A standard perceptron using the heaviside-function satisfies
the requirement of binary outputs, but is not differentiable
(unless using the delta-distribution). However, the straight-
through estimator (Bengio et al., 2013) calculates gradients by
replacing the heaviside-function with the identity function and
thus allows to backpropagate the gradients.

To be able to regularize complexity, we employ an adaptation
of the stochastic local search (SLS) algorithm (Rückert and
Kramer, 2003) to extract logical expressions with k terms in
disjunctive normal form (k-termDNF). SLS can be parameterized
with the number of terms to learn and thereby limit the
maximum complexity. As the SLS algorithm is run after an
NN has been trained, we do not limit the complexity at
training time. Hinton et al. (2015) have already shown that
this can be advantageous.

Convolutional Neural Networks (CNNs) are important
architectures for deep neural networks (Mnih et al., 2013;
Gehring et al., 2017; Poplin et al., 2018). Although
convolutional layers can be seen as perceptrons with shared
weights, logical expressions representing such layers need to be
invariant to translation, too. However, logical expressions are in
general fixed to particular features. To overcome this issue, we
introduce a new class of logical expressions, which we call
convolutional logical rules. Those rules are described in relative
positions and are not based on the absolute position of a feature.
For inference, convolutional logical rules are moved through data
in the same manner as convolutional filters. This ensures
interpretability and lowers the dimensionality of extracted rules.

Pooling layers are often used in conjunction with
convolutional layers, and max-pooling layers guarantee binary
outputs given binary inputs. Fortunately, binary max-pooling can
easily be represented by logical expressions in which all input
features are connected by a logical OR. The algorithms for
training and testing DCDL are summarized in Algorithms 1, 2.

Algorithm 1

1: procedure TRAIN DCDL (number of layers L).
2: ϕ←∅
3: for layer l � 1, . . . , L do.
4: if Convolutional layer then.
5: ψ←∅
6: for Convolutional filter f do.
7: ψf←rule learner on input and output of NN for
this filter.
8: ψ←ψ ∪ψf
9: ϕ← ϕ∪(l,ψ)
10: else if Max pooling then.
11: No training required.
12: else if Dense then.
13: ψ←rule learner on input and output of NN.
14: ϕ← ϕ∪ (l,ψ)

return ϕ

Algorithm 2

1: procedure Test DCDL (input data, trained rule learner
models ϕ).
2: input←input data.
3: for ψ ∈ ϕ do.
4: if Convolutional layer then.
5: λ←∅
6: for rule ψi ∈ ψ do.
7: λi←evaluate rule ψi on input.
8: λ←λ∪λi
9: else if Max pooling then.
10: for Output neuron do.
11: Combine values in each pool with or-operation.
12: else if Dense then.
13: λ←evaluate ψ on input.
14: input←λ

return prediction of DCDL λ

3.1 Introduction of First-Order
Convolutional Rules
This section provides the formal underpinnings and the
introduction of the convolutional rules. We start with
propositional k-DNF formulas and then move on to use first-
order logic to take advantage of variable assignments (variables
representing relative pixel positions) as we shift the filter across
the image.

A k-term DNF combines Boolean variables {x0, x1, . . . , xn−1}
as k disjunctions of conjunctions

∨
i�0

k−1 ∧
j�0

mi

xi,j, (1)

where xi,j ∈ {x0,¬x0, x1,¬x1, . . . , xn−1,¬xn−1} and
mi ∈ {0, 1, . . . , n − 1}. An example with k � 3 and 3 input
variables could look like (x1 ∧ x2) ∨ (x3) ∨ (¬x1 ∧ ¬x2).

2Implemented in https://python-pillow.org/.
3Based on https://github.com/hbldh/hitherdither, we also used the given error
diffusion matrix.

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 6422634

Burkhardt et al. Rule Extraction With Convolutional Rules

https://python-pillow.org/
https://github.com/hbldh/hitherdither
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

In general, a rule is described in relation to a fixed set of
input variables. Unfortunately, for image data this is not
sufficient. The success of CNNs in image classification
arguably stems from the translation invariance of filters.
Thus, we propose that logical rules for image classification
need to be invariant to translation as well. In the following we
assume all pixels are binary.

Using propositional logic, the definition of convolutional
logical rules is relatively complex. For a first-order
convolutional logical rule definition the rule itself is
straightforward and the complexity is shifted to the
definition of the predicates and the environment with
respect to which the predicates are evaluated. Due to the
variability of the environment that is inherent in first-order
logic, we can naturally account for the translation
invariance of the rule. In other words, the rule stays the
same, only the mapping of the variables to the concrete
values in the Universe is changed as we move the rule over
the image. Propositional logic on the other hand does not
have variables and is thus not amenable to the translational
invariance.

A k-term first-order convolutional logical rule (FCLR) is
defined as follows: We define our model M as the tuple
(F ,P) consisting of a set of functions F and a set of
predicates P (Huth and Ryan, 2004). For a non-empty set
U, the Universe of concrete values, each predicate P ∈ P is a
subset PM4Ua of tuples over U, where a is the number of
arguments of predicate P. The Universe U of concrete values
is defined as the set of concrete pixels in the image
p1, . . . , pn ∈ {0, 1}.

A first-order convolutional logical rule with one term is now
defined as

ϕconv :� ∃x1, . . . , xa : Pconv(x1, . . . , xa), (2)

where Pconv ∈ P is the convolutional predicate and a is the size of
the convolutional filter or the number of elements in the filter
matrix. The convolutional predicate is defined as

Pconv :� {(u1, . . . , ua)∣∣∣∣ui are consecutive pixels in accordance
with the convolutional filter}. (3)

In order to evaluate our convolutional rule, we now need to
specify the environment l (the look-up table) (Huth and Ryan,
2004) with respect to which our model satisfies (or not) the
convolutional rule, i.e. M|�lϕ. The environment depends on the
position at which we evaluate our convolutional rule. Evaluating
the rule at position t means that the variables x1, . . . , xa are
mapped to the corresponding pixels in the input image,
lt[x1 → pt], lt[x2 → pt+1], . . ., where p1, . . . , pn are the input
image pixels (for 2D images, the indices have to be adjusted to
account for the change to the next line, for simplicity, here the
indices correspond only to 1D input). Thus, we are able to
evaluate the convolutional rule in Eq. 2 at each position of
the image.

Similar to the k-terms in DNF, we have k convolutional
predicates, one for each of the k terms. Therefore, we can
expand Eq. 2 to

ϕconv :� ∃x1, . . . , xa : P(1)
conv(x1, . . . , xa)∨ . . .∨ P(k)

conv(x1, . . . , xa).
(4)

This concludes the definition of first-order
convolutional rules.

3.1.1 Example
The logical rules found by SLSmay be displayed graphically, if the
input for SLS is image data. For each image position t the variables
of the convolutional predicates are mapped to the appropriate
pixels using environment lt . Thereby, each term of the k-term
DNF can be visualized as an image. The whole convolutional rule
can be output as a series of k gray scale images by displaying
positive literals as white, negative literals as black and literals that
do not influence the truth value as gray. Figure 1 shows an
example of such a visualization with a rule that has two
convolutional predicates and a filter size of 3 × 3.

3.2 Stochastic Local Search
We implemented the SLS rule learner4 and extended it for the
purpose of pedagogical rule extraction (Algorithm 3). Since we
apply SLS to predictive tasks, we adjust SLS to return the
candidate that achieved the lowest score on the validation set
(line 8). Scores used for the decision rule are still calculated on the
training set. Calculation of scores is computationally expensive
and SLS needs to evaluate the decision rule in every iteration.
Therefore, we calculate scores batchwise. We introduce an
adaptation that is theoretically motivated. One can always
correct a term that falsely covers an instance by adding one
literal, but the same does not hold in the case of an uncovered
instance. We account for this by adjusting SLS to remove all
literals in a term that differ from an instance (line 22).

Any SLS algorithm starts by evaluating a random solution
candidate. It then selects the next candidate from a neighborhood

FIGURE 1 | Graphical representation of the logical formula
P(1)
conv(x)∨P(2)

conv(x), where P(1)
conv(x) :� {(x1 , . . . , xm)|x6∧ − x8 is true} and

P(2)
conv :� {(x1 , . . . , xm)|x9 is true}. The first convolutional predicate is displayed

on the (A), the second one on the (B). Variables which have to be true in
order for the predicate to evaluate to true are marked white. Variables which
have to be false in order for the predicate to evaluate to true are marked black.
Variables that have no influence on the evaluation are marked gray.

4https://github.com/kramerlab/DCDL

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 6422635

Burkhardt et al. Rule Extraction With Convolutional Rules

https://github.com/kramerlab/DCDL
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

of the former candidate. This procedure is repeated until a
solution is found. If no solution is found and no improvement
is found for 600 steps, we restart the search with a different
random formula. (These restarts did not seem to have an impact
in the experiments we performed but may be significant in
settings with larger step sizes or other datasets.) Therefore,
one has to define a candidate space, a scoring function to
evaluate a candidate solution, a neighborhood of a candidate
solution, as well as a decision rule for selecting the next candidate
out of a neighborhood. In SLS, the candidate space consists of all
applicable k-term DNFs. The scoring function is defined as the
number of misclassified instances by a given k-term DNF. The
neighborhood of a candidate is given by all k-term DNFs that
differ in one literal to the candidate. The next candidate is selected
in accordance with a randomly drawn misclassified training
instance (line 12). If the instance has a positive training label,
with probability pg1 a random term is modified (line 14),
otherwise the term which differs least from the misclassified
instance. With the probability pg2 the modification is done by
deleting a random literal (line 20). In the case of a negative
training label (line 25), any term that covers the considered
instance is chosen. In contrast to before, a literal not in
accordance with the misclassified instance is added with a
probability of ps. Otherwise, a literal whose addition decreases
the score over the training set most is appended. In the end, SLS
returns the candidate that achieves the lowest score on the
validation set.

Algorithm 3

1: procedure SLSearch
(k,maxIteration, pg1, pg2, ps, batchSize, training Stop, validation Set)
2: formula←a randomly generated k-term DNF formula
3: optimalFormula←formula
4: iteration←0
5: minScore←∞
6: while iteration<maxIteration and min Score> 0 do
7: iteration←iteration + 1
8: newScore←score(validationSet)
9: if newScore<minScore then
10: minScore←newScore
11: optimalFormula←formula
12: missed Instance←random misclassified instance
13: if missedInstancehas positive label then
14: with probability pg1
15: term←a term uniformly drawn from formula
16: otherwise
17: term←the term in formula that differs in the
smallest
18: number of literals from missedInstance
19: with probability pg2
20: literals←a literal uniformly drawn from term
21: otherwise
22: literals←all literals in term that differ from
23: missedInstance
24: formula←formula with literals removed from term
25: else if missedInstancehas negative label then
26: term←a term in formulathat coversmissed Instance

27: with probability ps
28: literal←a literal uniformly drawn from all
possibilities
29: otherwise
30: batch←uniformly pick batch Size many training
instances
31: literal←a literal whose addition to term reduces
32: score(batch)the most
33: formula←formulawith literal added to term

return optimalFormula

4 EXPERIMENTAL EVALUATION

The code for the following tests can be found on github.5 The
parameters pg1, pg2 and ps are set to 0.5 for maximal randomness.
For the SLS algorithm, we set k � 40. In our experiments, we did
not see any improvement for higher values of k. More details
about the experiment parameters are given in Tables 6–8 in the
Supplementary Appendix. We perform one-against-all testing
so that the ground-truth-labels, which encode the classes of the
data as one-hot vectors, are mapped to two classes. One class
contains all images with the searched label, the other class
contains all other labels. To prevent the neural network from
predicting only the majority label, we balanced the labels in the
training and test datasets such that one class comprises half of the
dataset and the rest of the classes are randomly sampled so that
each class is equally represented. We use three commonly used
datasets with their predefined train-test splits: MNIST,
FASHION-MNIST, and CIFAR10. For each dataset we used
5,000 samples as a holdout set for early stopping of the
network and the rest for training. Each dataset has a
designated test set with 10,000 samples. The dataset statistics
are summarized in Table 1. More detailed information on the
datasets can be found in Supplementary Appendix A.

4.1 Deep Convolutional DNF
Learner–Similarity
In this section we compare our DCDL approach with SLS against
the vanilla SLS algorithm and the DCDL approach with the
decision tree rules learner against the vanilla decision tree rule
learner. We look at their ability to model the behavior of a
multilayer neural network for the datasets MNIST, FASHION-
MNIST and CIFAR10. An overview of the experimental setup is
given in Figure 2.

First a neural network is trained, which consists of two
convolutional layers followed by a max pooling layer and a
sign layer. The last layer is a dense layer with dropout. As
soon as the neural net is trained, the output of the sign layers
is used as a label for the training of DCDL. The sign layers
transform the outputs to binary values for the rule learner. The
two convolutional layers and the dense layer are each

5https://github.com/kramerlab/DCDL

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 6422636

Burkhardt et al. Rule Extraction With Convolutional Rules

https://github.com/kramerlab/DCDL
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

approximated with Boolean formulas, which are generated by the
rule learner. The dithered images are initially used as input to the
rule learner. After the first rule learner, the input in the following
rule learner runs is the output of the previous formula. The
intermediate results of the NN serve as labels.

The approximation of the convolutional operation is, in
contrast to the dense layer, not straightforward, so we will
explain this process in detail here. Figure 3 shows the process
graphically. In a convolutional layer, the input images are
subsampled, and the samples are processed with the learned
filters. Each sample is mapped to a value. This mapping creates a
new representation of the images. Each filter gives its own
representation. They are stacked as different channels. With
the help of the sign layer, the representations are mapped to
binary values.

The process of subsampling also takes place for the input of the
DCDL approach. These samples are the input for the rule learner.
As labels serves the channel output of the sign layer belonging to

the filter which is being approximated with the help of the rule
learner. Thus, each filter will be approximated by a logical
formula. Using this procedure, DCDL approximates the
operation of the NN with Boolean formulas.

In the vanilla SLS approach, only the input images and the
corresponding label predicted by the NN are provided to the
algorithm. The architecture of the NN and its functionality are
not taken into account. It is evaluated using two different
methods. In the prediction approach, the prediction of the
neural network is used as a label for training. In the true label
approach, the true labels of the images are used for training.

We first focus on the question whether DCDL can better
approximate the prediction of the neural network than the non-
decompositional rule learning approaches. Our results in
Figure 4 show that DCDL outperforms the non-
decompositional rule learning approach on all three datasets
and has the biggest advantage on the most complex dataset,
CIFAR.

TABLE 1 | Statistics of the datasets.

Dataset MNIST FASHION-MNIST CIFAR

Number of elements (training set) 60,000 60,000 50,000
Number of elements (test set) 10,000 10,000 10,000
Number of categories 10 10 10
Size of images 28 × 28 × 1 28 × 28 × 1 32 × 32 × 3

FIGURE 2 | Experimental setup for comparing the neural network, the DCDL with a rule learner and the vanilla rule learner approach. c depends on the dataset and
is the number of color channels. The content of the dotted box is shown in more detail in Figure 3.

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 6422637

Burkhardt et al. Rule Extraction With Convolutional Rules

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

FIGURE 3 | The approximation of a convolutional layer by the SLS algorithm. It is part of the whole experimental setup in Figure 2 as shown by the dotted box.

FIGURE 4 | Similarity of the DCDL (A) and rule learning approaches (B) where for SLS we set k � 40. Difference in similarity between both approaches (C). The
similarity is calculatedwith respect to the prediction of the neural network on the test set. The DCDL approach has higher similarity across all three datasets. The standard
deviation is calculated from 30 runs overall, 3 for each class. The numeric values are given in Table 9 in the Supplementary Appendix.

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 6422638

Burkhardt et al. Rule Extraction With Convolutional Rules

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

To calculate the similarity of the labels predicted by the neural
network with the labels predicted by the rule learner, we calculate

sim � ∑n
i�11[y′i � y″i]

n
(5)

with n as the number of labels, 1 the indicator function, y′i as the
prediction of the investigated approach, and y″i as the label
calculated by the neural network.

4.2 Deep Convolutional DNF
Learner—Accuracy
The above section shows that our method performs well in terms
of similarity with the neural network. However, clearly, similarity
does not necessarily correlate with accuracy. For example, it
would be possible that the rule learner only models the errors
that the network makes, leading to a high similarity but a bad
performance on the actual labels. Therefore, we also compare the
accuracy on the true labels of the predictions for the methods
DCDL, vanilla rule learner (SLS or decision tree), and the neural
network. For the vanilla rule learning algorithm, we differentiate
between the method that was trained on the labels as predicted by
the NN (rule learner prediction) and the method that was trained
on the true labels (rule learner label). Again we use Eq. 5 to
calculate the accuracy, but use the true labels of the test data
instead of the labels predicted by the neural network.

Our results in Figure 5 show the performance on the task of
learning to predict the label and show that the neural network
outperforms the other methods. DCDL and the non-
decompositional rule learning approaches SLS and Decision
Tree perform at a comparable level except for the CIFAR
dataset, where DCDL has a slight advantage over the non-
decompositional rule learning methods as also shown by the
significance values in Table 2. Here, we also evaluated the
statistical significance using a corrected resampled t-test
(Nadeau and Bengio, 2003) with α � 0.05. The null-hypothesis
is that the different groups perform equally. For all datasets, the
rule learning approaches perform worse than the neural network.
This shows that the approximation by our rule learner is not
perfect and we hypothesize that improving the SLS algorithm or
replacing it with a different rule learner could remedy this.

To test this hypothesis we performed the same experiment
with a different rule learner, a decision tree instead of the SLS. The
result is shown in Figure 5with corresponding significance values
in Table 3. The decision tree is able to achieve a higher accuracy
than the SLS algorithm. However, we note that the decision tree
rule learner is a heuristic rule learning approach that relies on
pruning whereas the SLS learner is theoretically well founded and
adjustable in the parameter k. Higher values of the parameter k
allow us to achieve better visualizations. While the rules with the
SLS rule learner are less discriminative and achieve a lower
accuracy, they are able to learn descriptive rules as shown in

FIGURE 5 | Accuracy for different datasets with normal label and inverted label of our DCDL approach, a rule learner, a rule learner with true labels, and the neural
network. As rule learners we compare SLS with k � 40 and decision trees. (A): MNIST, (B) FASHION-MNIST, (C): CIFAR. The standard deviation is calculated from 30
runs overall, 3 for each class. The numeric values are given in Table 10 in the Supplementary Appendix.

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 6422639

Burkhardt et al. Rule Extraction With Convolutional Rules

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

the next section. Overall, Figure 5 shows that DCDL is still
superior to the vanilla rule learners in approximating the NN,
even if the rule learner is changed.

In addition to heuristic rule learners such as decision trees and
approximate but well founded methods like SLS, another line of
research develops exact and theoretically well founded rule
learners (Demirović and Stuckey, 2020; Yu et al., 2020;
Ignatiev et al., 2021). These models do not compare favorably
to SLS in terms of runtime which does not make them a suitable
choice in our model.

In Figure 5 we also evaluate the task of learning the inverse of
the label which makes a difference in the case of the logic-based
approaches. It can be seen as a harder task as the approaches need
to learn what e.g. a one is not, instead of learning what a one is.
Here, DCDL clearly outperforms the non-decompositional rule
learning approach on the MNIST and FASHION-MNIST
datasets and still provides a slight advantage on the CIFAR
dataset, which also can be verified in Table 4. The poor
performance of the classifiers on the CIFAR dataset is most
likely partly caused by the dithering. The network architecture
might also play a role. Overall we conclude from the results that

on more complex tasks, the DCDL has an advantage over the
non-decompositional rule learning methods.

4.3 Visualization of Logical Formulas
We already showed an example for the visualization of a simple
formula in Section 3.1.1. Now, we want to look at the
visualization of more complex formulas that are found by our
algorithm. If the rule search is conducted with a small k, the
visualized rules tend to be discriminative and often highlight only
a single pixel, thus making them hard to interpret. To counter
this, we set k to higher values in order to learn rules that are more
characteristic. However, when visualizing k predicates for high k,
this produces too many images to consider them individually.
Therefore, we add a reduce step that sums the visualization of all
formulas pixel-wize to one image X. Afterward X is scaled to the
range −1 to 1 with .

scaling(x,X) �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− x
min(X), for x < 0

x
max(X), for x ≥ 0

(6)

TABLE 2 | Shown are p-values of the corrected resampled t-test (Nadeau and Bengio, 2003) for MNIST, FASHION-MNIST and CIFAR with SLS normal labels for the
accuracy values plotted in Figure 5. Gray-shaded are the pairs for which the null hypothesis is rejected with significance level α � 0.05 using a corrected resampled t-test
(Nadeau and Bengio, 2003).

Rule learner prediction Rule learner label Neural network

MNIST
DCDL 0.52 0.38 0.00
Rule learner prediction — 0.09 0.00
Rule learner label — — 0.02

FASHION-MNIST
DCDL 0.03 0.10 0.00
Rule learner prediction — 0.81 0.00
Rule learner label — — 0.01

CIFAR
DCDL 0.08 0.04 0.00
Rule learner prediction — 0.90 0.00
Rule learner label — — 0.00

TABLE 3 | Shown are p-values of the corrected resampled t-test (Nadeau and Bengio, 2003) for MNIST, FASHION-MNIST and CIFARwith decision tree normal labels for the
accuracy values plotted in Figure 5. Gray-shaded are the pairs for which the null hypothesis is rejected with significance level α � 0.05 using a corrected resampled t-test
(Nadeau and Bengio, 2003).

Rule learner prediction Rule learner label Neural network

MNIST
DCDL 0.00 0.00 0.01
Rule learner prediction — 0.00 0.00
Rule learner label — — 0.04

FASHION-MNIST
DCDL 0.00 0.06 0.00
Rule learner prediction — 0.24 0.00
Rule learner label — — 0.00

CIFAR
DCDL 0.00 0.00 0.00
Rule learner prediction — 0.06 0.00
Rule learner label — — 0.00

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 64226310

Burkhardt et al. Rule Extraction With Convolutional Rules

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

As Figure 6 shows, this leads to visualizations that look almost
like probability densities or prototypes. The comparison to the
convolutional filters shows that this procedure leads to good

visualizations that are comparable to the convolutional filters.
The influence of different settings of the parameter k and results
for several labels of FASHION-MNIST are shown in Figure 6.

TABLE 4 | Shown are p-values of the corrected resampled t-test (Nadeau and Bengio, 2003) for MNIST, FASHION-MNIST and CIFAR with SLS inverted labels for the
accuracy values plotted in Figure 5Gray-shaded are the pairs for which the null hypothesis is rejected with significance level α � 0.05 using a corrected resampled t-test
(Nadeau and Bengio, 2003).

Rule learner prediction Rule learner label Neural network

MNIST
DCDL 0.00 0.01 0.00
Rule learner prediction — 0.18 0.00
Rule learner label — — 0.00

FASHION-MNIST
DCDL 0.00 0.01 0.00
Rule learner prediction — 0.59 0.00
Rule learner label — — 0.00

CIFAR
DCDL 0.16 0.09 0.00
Rule learner prediction — 0.55 0.00
Rule learner label — — 0.00

FIGURE 6 | A visualization of the rules learned by the SLS algorithm (k � [1, 5, 10, 25,50, 100, 150, 300]), decision tree and the filter used in the NN. Rows 1–3 are
the rules for labels [Zero, Two, Three] of the MNIST dataset. Row 4–6 are the rules for the labels [T-shirt/Top, Sweater, Ankleboot] of the FASHION-MNIST dataset. For
small k, discriminative rules are learned, and for large k characteristic rules. In rows 2 and 5 for k � 300 it can be seen how disjunctions, which were not further optimized
after initialization, overlay the visualization of the optimized disjunctions.

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 64226311

Burkhardt et al. Rule Extraction With Convolutional Rules

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Comparing the visualization of DCDL in Figure 6 with the
visualization of the rules learned by the decision tree shows
that the decision tree, as it presumable learns more
discriminative rules, has visualizations that are,
subjectively, harder to interpret. Therefore, while the
decision tree learns rules with higher accuracy as
discussed in the last section, it is less well suited to the
visualization of the rules. The SLS however, allows to
construct characteristic rules by increasing parameter k
without affecting the accuracy (as shown in Figure 8 in
the Supplementary Appendix).

The architecture of the neural network is shown in
Figure 7. It consists of a convolutional layer followed by a
sign layer and a dense layer. The dense layer converts the
scalar output of the sign layer into a one-hot vector. The
weights of the dense layer were set to [1,0]. The dithered
images are the input for the SLS algorithm and the output of
the sign layer is the label for the SLS algorithm. The
visualization in Figure 6 was done on the MNIST dataset
with a filter size that is equal to the size of the image. Note that
for the case of MNIST, smaller filter sizes do not result in
interpretable visualizations. However, in principle we can
also choose filter sizes much smaller than the image itself if
the images consist of complex scenes where the number itself
is only a small part of the image for example. The selection of
a filter size that leads to an interpretable visualization is left
for future work.

We would like to emphasize that our goal is not to show that
our rules lead to more interpretable visualizations than that of the
filters itself. The comparison shows however, that the
visualization of our rules leads to an image which is closer to
a density rather than a flat pattern. The fact alone that we are able
to visualize logical rules for images in this way, is a novel
contribution in our view. This is in addition to other
advantages that logical rules provide, which are not present in
convolutional filters. To sum up, we showed with the help of a
simple example how the individual predicates as well as the
complete convolutional rule may be visualized.

5 CONCLUSION

We investigated how convolutional rules enable the extraction of
interpretable rules for images from binary neural networks. We
showed the successful visualization by means of an example.
Additionally, the similarity to the functionality of the neural
network was measured on three different datasets and found to
be higher for the decompositional approach than the non-
decompositional rule learning approach. We think there is
potential in decompositional approaches for the extraction and
visualization of characteristic rules. Although the logical formulas
are large for human visual inspection on real-world data, their
representation makes deep learning models, in principle,
amenable to formal verification and validation.

In future research, we aim to incorporate further state-of-the-
art components of NNs while preserving the ability of the
network to be transformed into (convolutional) logical rules.
Our work suggests that the combination of binary NNs and
k-DNF is promising combination. To this end, one should
develop a differentiable version of DCDL based on, e.g.,
differentiable sub modular maximization (Tschiatschek et al.,
2018) or differentiable circuit SAT (Powers et al., 2018).
Generally, one should explore DCDL as a new perspective on
neuro-symbolic AI (Garcez and Lamb, 2020).

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: http://yann.lecun.com/exdb/mnist/, https://
github.com/zalandoresearch/fashion-mnist, https://www.cs.
toronto.edu/∼kriz/cifar.html.

AUTHOR CONTRIBUTIONS

The experiments were done by JB. The initial code basis
was due to NW, the writing of the paper was mainly done by

FIGURE 7 | The test setup for approximating convolution operations with logical formulae.

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 64226312

Burkhardt et al. Rule Extraction With Convolutional Rules

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/%7Ekriz/cifar.html
https://www.cs.toronto.edu/%7Ekriz/cifar.html
https://www.cs.toronto.edu/%7Ekriz/cifar.html
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

SB with input from JB and NW. ZA and SK were involved
in the development of ideas, the polishing of the paper,
and discussions throughout. KK gave feedback to the
paper and helped with the writing of the submitted
manuscript.

FUNDING

The work was funded by the RMU Initiative Funding for
Research by the Rhine Main universities (Johannes
Gutenberg University Mainz, Goethe University Frankfurt
and TU Darmstadt) within the project “RMU Network
for Deep Continuous-Discrete Machine Learning
(DeCoDeML)”.

ACKNOWLEDGMENTS

Part of this research was conducted using the supercomputer
Mogon offered by Johannes Gutenberg University Mainz (hpc.
uni-mainz.de), which is a member of the AHRP (Alliance for High
Performance Computing in Rhineland Palatinate, www.ahrp.info)
and the Gauss Alliance e.V. We thank the reviewers for their
valuable and constructive criticism.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frai.2021.642263/
full#supplementary-material

REFERENCES

Andrews, R., Diederich, J., and Tickle, A. B. (1995). Survey and Critique of
Techniques for Extracting Rules from Trained Artificial Neural
Networks. Knowledge-Based Syst. 8, 373–389. doi:10.1016/0950-
7051(96)81920-4

Augasta, M. G., and Kathirvalavakumar, T. (2011). Reverse Engineering the Neural
Networks for Rule Extraction in Classification Problems. Neural Process. Lett.
35, 131–150. doi:10.1007/s11063-011-9207-8

Bengio, Y., Léonard, N., and Courville, A. C. (2013). Estimating or Propagating
Gradients through Stochastic Neurons for Conditional Computation. CoRR
abs/1308.3432

Bologna, G. (2019). A Simple Convolutional Neural Network with Rule Extraction.
Appl. Sci. 9, 2411. doi:10.3390/app9122411

Craven, M. W., and Shavlik, J. W. (1995). “Extracting Tree-Structured
Representations of Trained Networks,” in Proceedings of the 8th
International Conference on Neural Information Processing Systems
(Cambridge, MA, USA: MIT Press), NIPS’95, 24–30.

[Dataset] Demirović, E., and Stuckey, P. J. (2020). Optimal Decision Trees for
Nonlinear Metrics. arXiv.

Garcez, A. d., and Lamb, L. C. (2020). Neurosymbolic Ai: The 3rd Wave. arXiv
preprint arXiv 2012, 05876.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017).
Convolutional Sequence to Sequence Learning. in Proceedings of the 34th
International Conference on Machine Learning. Sydney, NSW, Australia:
ICML 2017, 6–11. August 2017. 1243–1252.

González, C., Loza Mencía, E., and Fürnkranz, J. (2017). Re-training Deep
Neural Networks to Facilitate Boolean Concept Extraction. in International
Conference on Discovery Science. Springer, 127–143. doi:10.1007/978-3-319-
67786-6_10

Hinton, G. (2012). Neural Networks for Machine Learning. Coursera Video
Lectures.

Hinton, G. E., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a Neural
Network. CoRR abs/1503.02531.

Hu, Z., Ma, X., Liu, Z., Hovy, E., and Xing, E. (2016). Harnessing Deep Neural
Networks with Logic Rules. arXiv preprint arXiv 1603, 06318.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).
“Binarized Neural Networks,” in Advances in Neural Information Processing
Systems 29. Editors D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (New York: Curran Associates, Inc.), 4107–4115.

Huth, M., and Ryan, M. (2004). Logic in Computer Science: Modelling and
Reasoning about Systems. USA: Cambridge University Press

Ignatiev, A., Lam, E., Stuckey, P. J., and Marques-Silva, J. (2021). A Scalable Two
Stage Approach to Computing Optimal Decision Sets. arXiv preprint arXiv
2102, 01904.

Jia, K., and Rinard, M. (2020). “Efficient Exact Verification of Binarized Neural
Networks,”. Advances in Neural Information Processing Systems. Editors

H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Curran
Associates, Inc.)), 33, 1782–1795.

Kane, R., and Milgram, M. (1993). “Extraction of Semantic Rules from Trained
Multilayer Neural Networks,” in IEEE International Conference on Neural
Networks (IEEE), 1397–1401.

Krizhevsky, A. (2012). Learning Multiple Layers of Features from Tiny Images.
Toronto: University of Toronto

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based Learning
Applied to Document Recognition. Proc. IEEE 86, 2278–2324. doi:10.1109/
5.726791

LiMin Fu, L. (1994). Rule Generation from Neural Networks. IEEE Trans. Syst.
Man. Cybern. 24, 1114–1124. doi:10.1109/21.299696

Lin, X., Zhao, C., and Pan, W. (2017). “Towards Accurate Binary Convolutional
Neural Network,” in Advances in Neural Information Processing Systems,
345–353.

Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., and Cheng, K.-T. (2018). Bi-real Net:
Enhancing the Performance of 1-bit Cnns with Improved Representational
Capability and Advanced Training Algorithm. Eur. Conf. Computer Vis. 747,
763. doi:10.1007/978-3-030-01267-0_44

Mahendran, A., and Vedaldi, A. (2015). “Understanding Deep Image
Representations by Inverting Them,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 5188–5196.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
et al. (2013). Playing Atari with Deep Reinforcement Learning. CoRR abs/
1312.5602

Nadeau, C., and Bengio, Y. (2003). Inference for the Generalization Error.Machine
Learn. 52, 239–281. doi:10.1023/a:1024068626366

Narodytska, N., Zhang, H., Gupta, A., and Walsh, T. (2020). “In Search for a Sat-
Friendly Binarized Neural Network Architecture,” in International Conference
on Learning Representations

Odense, S., and Garcez, A. (2020). “Layerwise Knowledge Extraction from Deep
Convolutional Networks,” in NeurIPS 2019 Workshop on Knowledge
Representation & Reasoning Meets Machine Learning

Poplin, R., Chang, P.-C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., et al.
(2018). Creating a Universal Snp and Small Indel Variant Caller with Deep
Neural Networks. bioRxiv.

Powers, T., Fakoor, R., Shakeri, S., Sethy, A., Kainth, A., Mohamed, A.-r.,
et al. (2018). Differentiable Greedy Networks. arXiv preprint arXiv 1810,
12464.

Quinlan, J. R. (2014). C4. 5: Programs for Machine Learning. Elsevier.
Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). Xnor-net: Imagenet

Classification Using Binary Convolutional Neural Networks. Eur. Conf.
Comput. Vis., 525–542. doi:10.1007/978-3-319-46493-0_32

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ““why Should I Trust You?”:
Explaining the Predictions of Any Classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (New York, NY, USA: Association for Computing Machinery), 16,
1135–1144.

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 64226313

Burkhardt et al. Rule Extraction With Convolutional Rules

http://hpc.uni-mainz.de
http://hpc.uni-mainz.de
http://www.ahrp.info
https://www.frontiersin.org/articles/10.3389/frai.2021.642263/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2021.642263/full#supplementary-material
https://doi.org/10.1016/0950-7051(96)81920-4
https://doi.org/10.1016/0950-7051(96)81920-4
https://doi.org/10.1007/s11063-011-9207-8
https://doi.org/10.3390/app9122411
https://doi.org/10.1007/978-3-319-67786-6_10
https://doi.org/10.1007/978-3-319-67786-6_10
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/21.299696
https://doi.org/10.1007/978-3-030-01267-0_44
https://doi.org/10.1023/a:1024068626366
https://doi.org/10.1007/978-3-319-46493-0_32
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Ross, A. S., Hughes, M. C., and Doshi-Velez, F. (2017). “Right for the Right Reasons:
Training Differentiable Models by Constraining Their Explanations,” in
Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, 17, 2662–2670. doi:10.24963/ijcai.2017/371

Rückert, U., and Kramer, S. (2003). “Stochastic Local Search in K-Term DNF
Learning,” in Machine Learning, Proceedings of the Twentieth International
Conference (Washington, DC, USA: ICML 2003), August 21-24, 2003), 648–655.

Schmitz, G. P. J., Aldrich, C., and Gouws, F. S. (1999). Ann-dt: an Algorithm for
Extraction of Decision Trees from Artificial Neural Networks. IEEE Trans.
Neural Netw. 10, 1392–1401. doi:10.1109/72.809084

Sethi, K. K., Mishra, D. K., andMishra, B. (2012). “Kdruleex: A Novel Approach for
Enhancing User Comprehensibility Using Rule Extraction,” in 2012 Third
International Conference on Intelligent Systems Modelling and Simulation,
55–60.

Setiono, R., and Leow, W. K. (2000). Fernn: An Algorithm for Fast Extraction of
Rules Fromneural Networks. Appl. Intelligence. 12, 15–25. doi:10.1023/A:
1008307919726

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps. arXiv
preprint arXiv 1312, 6034.

Stecher, J., Janssen, F., and Fürnkranz, J. (2016). “Shorter Rules Are Better, Aren’t
They?,” in Discovery Science. Editors T. Calders, M. Ceci, and D. Malerba
(Cham: Springer International Publishing)), 279–294. doi:10.1007/978-3-319-
46307-0_18

Stone, A., Wang, H., Stark, M., Liu, Y., Scott Phoenix, D., and George, D. (2017).
“Teaching Compositionality to Cnns,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 5058–5067.

Taha, I. A., and Ghosh, J. (1999). Symbolic Interpretation of Artificial Neural
Networks. IEEE Trans. Knowl. Data Eng. 11, 448–463. doi:10.1109/69.774103

Thrun, S. B. (1993). Extracting Provably Correct Rules from Artificial Neural
Networks Tech. Rep. (Bonn: University of Bonn).

Thrun, S. (1995). “Extracting Rules from Artificial Neural Networks with
Distributed Representations,” in Advances in Neural Information Processing
Systems, 505–512.

Tschiatschek, S., Sahin, A., and Krause, A. (2018). “Differentiable Submodular
Maximization,” in Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence (International Joint Conferences on Artificial
Intelligence Organization), IJCAI-18, 2731–2738. doi:10.24963/ijcai.2018/379

Tsukimoto, H. (2000). Extracting Rules from Trained Neural Networks. IEEE
Trans. Neural Netw. 11, 377–389. doi:10.1109/72.839008

[Dataset] Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: A Novel Image
Dataset for Benchmarking Machine Learning Algorithms.

[Dataset] Yu, J., Ignatiev, A., Bodic, P. L., and Stuckey, P. J. (2020). Optimal
Decision Lists Using Sat.

Zeiler, M. D., and Fergus, R. (2014). “Visualizing and Understanding
Convolutional Networks,” in European Conference on Computer Vision
(Springer), 818–833. doi:10.1007/978-3-319-10590-1_53

Zhang, Q., Nian Wu, Y., and Zhu, S.-C. (2018). “Interpretable Convolutional
Neural Networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 8827–8836.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). “Learning
Deep Features for Discriminative Localization,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2921–2929.

Zilke, J. R., Loza Mencía, E., and Janssen, F. (2016). Deepred - Rule Extraction from Deep
Neural Networks. Int. Conf. Discov. Sci., 9956, 457–473. doi:10.1007/978-3-319-
46307-0_29

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Burkhardt, Brugger, Wagner, Ahmadi, Kersting and Kramer. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 64226314

Burkhardt et al. Rule Extraction With Convolutional Rules

https://doi.org/10.24963/ijcai.2017/371
https://doi.org/10.1109/72.809084
https://doi.org/10.1023/A:1008307919726
https://doi.org/10.1023/A:1008307919726
https://doi.org/10.1007/978-3-319-46307-0_18
https://doi.org/10.1007/978-3-319-46307-0_18
https://doi.org/10.1109/69.774103
https://doi.org/10.24963/ijcai.2018/379
https://doi.org/10.1109/72.839008
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1007/978-3-319-46307-0_29
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Rule Extraction From Binary Neural Networks With Convolutional Rules for Model Validation
	1 Introduction
	2 Related Work
	2.1 Binary Neural Networks
	2.2 Rule Extraction
	2.3 Convolutional Networks and Interpretability

	3 Deep Convolutional DNF Learner
	3.1 Introduction of First-Order Convolutional Rules
	3.1.1 Example

	3.2 Stochastic Local Search

	4 Experimental Evaluation
	4.1 Deep Convolutional DNF Learner–Similarity
	4.2 Deep Convolutional DNF Learner—Accuracy
	4.3 Visualization of Logical Formulas

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

