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The ability of deep neural networks to form powerful emergent representations of complex
statistical patterns in data is as remarkable as imperfectly understood. For deep ReLU
networks, these are encoded in the mixed discrete–continuous structure of linear weight
matrices and non-linear binary activations. Our article develops a new technique for
instrumenting such networks to efficiently record activation statistics, such as information
content (entropy) and similarity of patterns, in real-world training runs. We then study the
evolution of activation patterns during training for networks of different architecture using
different training and initialization strategies. As a result, we see characteristic- and general-
related as well as architecture-related behavioral patterns: in particular, most architectures
form bottom-up structure, with the exception of highly tuned state-of-the-art architectures
and methods (PyramidNet and FixUp), where layers appear to converge more
simultaneously. We also observe intermediate dips in entropy in conventional CNNs
that are not visible in residual networks. A reference implementation is provided under
a free license1.
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1 INTRODUCTION

The increased attention that deep neural networks have received in the literature over the past decade
is arguably due to the stark contrast between their technical simplicity and their high practical
performance for complex statistical pattern modeling tasks. The actual computational structure
responsible for their remarkable performance is an emergent property of the training dynamics
rather than pre-engineered (as in many classical machine learning approaches). Early works on deep
networks have already visualized the emerged structures (Zeiler and Fergus, 2014), and despite many
remarkable observations (such as Frankle et al. (2020); Frankle and Carbin (2019); Achille et al.
(2019); Gur-Ari et al. (2018), to name only a few), the literature still lacks a complete picture of how
these structures emerge during training.

In contrast to purely linear classifiers, deep networks have a much higher expressive power,
resulting from non-linear activation functions between linear maps. One such non-linearity, the
ReLU activation (Nair and Hinton, 2010), is of particular interest for research on training dynamics.
While ReLU-based networks have provided state-of-the-art results in many applications in the
literature (He et al., 2015), and the computational structure of the ReLU non-linearity is very simple.
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As the non-linearity only has two states (zero or pass-through,
“inactive” and “activated”), the expressive power of a fully trained
network hinges upon the acquired ability to select suitable
activations for different inputs.

In this work, we utilize the discrete decisions made inside
ReLU networks to analyze the evolution of the expressivity of
deep networks during training. In more detail, by measuring the
distribution of activation patterns seen in the whole training data
set, our article makes the following three main contributions:

First, on the technical side (Section 2), we propose to
instrument hash tables on the GPU to trace all occurring
activation patterns in a data set and their statistics efficiently
in realistic training scenarios. To the best of our knowledge, for
the first time, this allows us to analyze complex scenarios such as
the evolution of a deep residual network over the complete
training process.

Second, on the experimental side (Section 3), we use this
technique to inspect how architectural choices (CNN, CNN with
expanding over-parametrization, ResNet, and PyramidNet),
optimization methods (learning-rate schedules and FixUP),
and hyperparameters (the network width) influence this
evolution. All experiments were conducted on the CIFAR-10
data set (Krizhevsky, 2009), for efficiency and consistency. Third,
our analysis provides answers to the following questions:

How much information about the initialization is retained
during training?

We observe a general (although not complete) change of the
activation patterns found in the initialization after only a few
training steps. In contrast, ResNets maintain activation patterns
in some layers from the initialization throughout the whole
training process.

Regarding the convergence of activation patterns in a
network, where and when does structure form first?

In all our experiments, the non-linear structure converges
bottom-up (lower layers stabilize first). Noteworthy, both
PyramidNet and ResNet with FixUp initialization, which
provide the best results in our setup, show either a much
more uniform convergence throughout all layers or a faster
convergence in some network parts.

How does the functional expressivity evolve during
training?

The distribution of activation patterns found in the data set in
every deep network layer allows us to determine how much
percent of the maximal possible expressivity a network uses
for its decisions. For instance, if the distribution is heavy-
tailed, the network uses much of its expressivity. If only a few
activation patterns occur, the whole network could be
approximated more easily using only one linear classifier.

Generally, we found that the expressivity increases with deeper
layers in the initialization point. During training, the expressivity
changes based on architectural choices:

• Residual networks remain in a high-expressivity state.
• Networks without residual connections lose that
expressivity during training and slowly recover during
further training (peaking again later in training).

Layer-wise, we also found architecture-based differences:
ResNets converge to final layers of higher expressivity, while
networks without residual connections converge to final layers of
lower expressivity.

Does the distribution of activation patterns confirm
observations known from the literature regarding the early
phase of training? Through the lens of our framework, we can
confirm the literature findings regarding the early phase of
training and in accordance with the recent work on the early
phase of training (Frankle et al., 2020); we also see a distinct
behavior in the training dynamics during the first few
optimization steps.

The remaining part of our article is structured as follows: In
Section 2, we introduce our framework and provide the PyTorch
(Paszke et al., 2019) code to retrieve the activation distributions
efficiently and present novel measures that use these activation
distributions. In Section 3, we use these measures to answer the
questions given previously given typical training setups on the
CIFAR-10 data set. Finally, we discuss our results and their
relevance in the context of the related work in Section 4 and
give a high-level explanation of the findings.

2 MATERIALS AND METHODS

We aim to analyze the structural changes that occur during the
training of deep networks with ReLU activations or general
simple piecewise linear activations. To accomplish this, we
examine, after each gradient descent step, all ever-occurring
activation patterns of a network inside the whole training data set.

The intuition behind doing so is as follows: For simplicity,
imagine a simple single layer inside a deep network that performs
a linear affine transformation succeeded by ReLU activation,
x1max (Mx + b, 0). At any point in training, the layer
(including the ReLU activation) can be described as a selection
function

x1(x1Mxx + bx),
that maps any layer input x to a fixed, but possibly distinct linear
affine transformation (Mx, bx) that acts on that input. This view
allows us to get a qualitative understanding of the expressivity of
that layer, as the total number of activation patterns used
represents the number of linear transformations used to
transform the incoming data. Thus, by counting the occurring
activation patterns in the whole data set, we get a qualitative
understanding of how “linear” the layer is.

The above intuition shows the qualitative feedback we get
from measuring the set of activation patterns. In the following
section, we define all measures used in this work; some that
additionally take the distribution of activation patterns or two
activation pattern sets at arbitrary training stages into account.

2.1 Notation
We analyze deep networks with piecewise linear activation
functions σ(·) and L layers, denoted by F : Rd1 → RdL .
Abstractly speaking, our analysis does restrict the type
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layers that can be used inside the deep networks, as we are only
interested in the activation patterns in between all other layers.
Thus, we can view all intermediate non-activation layers as
black-box functions fi : R

di → Rdi+1 . We decompose the whole
network into layer blocks that do not contain any activation
functions,

Fld fl+σ+fl−1+σ+ . . .+σ+f1( ) x( ), (1)

where+denotes the composition operator, x denotes a data point
of the data set, and the functions fi denote the black-box layers
inside the network that do not contain any non-linear activation
function. Note that this notation implies F � FL. We define the
activation pattern on layer l of input x as

a(l) x( )d δ>0+Fl( ) x( )d 1, if x> 0
0, else

{ (2)

We define the count of an activation pattern a on layer l under
the input data set Ω to be the number of its occurrences over the
whole training set,

c(l)(a)d x
∣∣∣∣∣∣∣ a(l) x( ) � a, x ∈ Ω{ }

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣. (3)

The total number of possible activation patterns on a
particular layer l is Nld2dl . Let (a1, a2, . . . , aNl) be an
arbitrary but fixed ordering of all possible activation
patterns on layer l. Then, we define the occurrence vector
of all activation patterns on layer l under the input data set
Ω as

c(l)d c(l) a1( ), c(l) a2( ), . . . , c(l) aNl( )( ) ∈ NNl
0 . (4)

Last, we stretch the notation for c(l) at a particular network
state after s training steps using c(l,s), which is the occurrence
vector at training step s on layer l. For the vector c, we denote the
ith component using the notation ci.

2.2 Measures
Using the notation of Section 2.1, we define the following
measures on the discrete space of activation pattern counts:

Cardinality of the Activation Pattern Set: We start by
defining the total (distinct) pattern count, defined as

total c( )d∑
i

δ>0 ci( ). (5)

As motivated before, the cardinality of the pattern set gives a
broad view of how many distinct functions transform the
incoming data. The measure is similar in spirit to the
“number of regions” presented by Hanin and Rolnick,
(2019b), but in contrast, our version takes the actual data
distribution into account.

Activation Pattern Changes: Other work that focused on the
early phase of neural network training measured the sign changes
and magnitude changes of weights and their gradients (Frankle
et al., 2020). Our framework does not take weights into account;
instead, we measure the relative pattern changes that occur in
between two training steps,

changes(c(s), c(s+1))d∑iδ>0(c(s)i ) · (1 − δ>0(c(s+1)i )) − (1 − δ>0(c(s)i )) · δ>0(c(s+1)i )
total(c) .

(6)

Inmore detail, wemeasure howmany patterns are present at step
s + 1 but have not been present in the preceding step s and vice versa.

Furthermore, we analyze the distribution of activation
patterns using two measures.

Most frequent pattern count: We measure the frequency of
the most frequent pattern,

maxFreq(c)dmaxici∑ici
, (7)

to gain a basic understanding of the proportion of a “default” case.
Activation Pattern Entropy: The most frequent pattern

count, however, gives only a small insight into the typical
inner workings of a network in case the activation patterns
are equally distributed. Thus, we also define the activation
pattern entropy as

H c( )d −∑
i

ci
Nl

· log2
ci
Nl

. (8)

This measure also gives a more detailed indication of how many
functions the network uses to describe the data setup until a given
layer, similar to the activation pattern set’s cardinality. Thus, if the
mean activation entropy over all layers is very low, the whole
network can be approximated with only a few linear maps. If the
number is high, the network uses more of its non-linear capabilities.
The difference to the cardinality measure is that entropy also tells us
how equally the observed activation patterns are distributed.

Relative Activation Entropy: The activation pattern entropy does
not yet give a comparable measure for different layers. For instance, a
linear layer that uses d filters can use at most 2d activation patterns,
limiting the value for the activation pattern entropy to a maximum of
d. However, the minimum activation pattern entropy is always 0 (if
only one activation pattern occurs for every input). Consequently, one
layer with few filters but equally distributed activation patterns can still
yield smaller activation pattern entropy than another layer with many
filters but a much skewed distribution.

To achieve comparability between layers and networks, we
normalize the activation pattern entropy using the maximal
activation pattern entropy of d. Additionally, the number of
data points limits the number of activation patterns that can
occur. For a layer with an output size of w · h pixels and a training
data set consisting of n examples, the number of activation
pattern evaluations is n · w · h. This also limits the entropy to
a maximum value of log2 (n · w · h). Therefore, the maximal
activation entropy for a layer with output dimension of w · h · d
for a data set of n training examples is min(d, log2(n · w · h)).

To summarize, we enable comparability between layers with
different filters and output dimensions by defining the relative
activation pattern entropy as

Hr c( )d H(c)
min d, log2 ∑ici( )( ). (9)

Measuring the Importance of the Initialization and the
Convergence Rate of the Non-Linear Structures: Last, we
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utilize the activation pattern distribution of two training states to
analyze the importance of the initialization or the layer-wise
convergence rate to the final training state. In more detail, we
measure the number of shared activation patterns at two training
states of a network. The idea is to compare if and to what extent
two sets intersect, taking the value 0 if the two sets X and Y do not
intersect and the value 1 if they are equal.

This could be done, for instance, by measuring the Jaccard
index of the two pattern sets (without occurrence count),
JI(X,Y) � X ∩ Y

X ∪ Y. However, the Jaccard index does not fit our
application as it does not take the numbers of the activation
patterns into account. As a counter-example, consider using the
Jaccard index to compare two experimental setups. Assume that
the measurement of both setups results in the same number of
distinct patterns, but one of the two experiments uses twice as
many data points to estimate the change of pattern sets. The
experiment using more data points would result in a lower
Jaccard index. The reason is that the probability of a change is
smaller if multiple data points were changed to let the Jaccard
index notice a change in the pattern set.

To counter this, we use the weighted Jaccard similarity, also
known as the Ruzicka similarity, instead as in:

JW(c, c′)d∑i min(ci, ci′ )∑i max(ci, ci′) ∈ [0, 1], (10)

which takes the value 0 if the two occurrence vectors c and c′ have
no patterns in common and 1 if their occurrences are equal.

Our goal is to gain a better understanding of the patterns of the
initialization and the convergence rate of activation patterns
inside a network. Thus, we define two measures using the
weighted Jaccard similarity: First, we measure JW(cl,·, cl,sinit )
that estimates the number of patterns from initialization that
is still present during any other point in training.

Second, we also measure when the training lets the activation
patterns reach their final activation pattern state, JW(cl,·, cl,sfinal ).
This measure estimates the convergence rate at which the non-
linear part of the network reaches its final structure. We
accomplish this by training the network, saving all
intermediate network states, and comparing every saved state
with the activation patterns of the final network state.

2.3 Efficient Activation Pattern Counting
For practical use, defining a list of all possible activation pattern
counts in a realistic setting is not feasible. For instance, 16 filters
would require to reserve only about 2 GB of memory on the
system, but 32 filters would require 137 TB of memory. The
alternative would be to use a dictionary, as the number of data
points in the data set limits the number of measured activation
patterns. This technique, however, would slow down the
measurement considerably, as we would have to either
implement a dictionary lookup directly on the GPU or copy
the patterns of the processed data to the host machine during
training. Instead of listing all possible patterns, we define hash
lists of fixed size for every layer and fill them according to
Algorithm 1, which queries a hash list of activation pattern
counts efficiently on the GPU. We also include the occupancy of

the hash list in our analysis in Section 3 and use it to discuss the
validity of all other measurements.

3 RESULTS

In the following, we analyze the training of typical convolutional
neural networks through the lens of our framework. The
experiments and observations not only aim to extend the work
of Frankle et al. (2020) and Hanin and Rolnick (2019b) on the
early phase of neural network training but also to give new
insights, enabled by the novel view of observing the structure
of the non-linear part of a deep network only.

In all our experiments, network training is non-invasive; with
every batch-wise training step, we freeze the model and measure
all activation patterns that occur on a per-layer basis when
feeding the network with the complete training data set. We
measure the activation patterns according to formula Eq. 3 for
every step in training. If a network contains batch normalization
layers, we set these layers to training mode (i.e., using the actual
mean and variance of the training batches for normalization) to
mimic the internal structures for all input images that would arise
during training.

3.1 Experimental Setup
In the following, we examine the training process of four different
networks. To maintain comparability, we use the CIFAR-10
(Krizhevsky, 2009) data set for all of our experiments.

As a baseline, we used the ResNet-20 in its v2-CIFAR variant as
described by He et al. (2016b). We analyze the choice of three
architectural features used in the ResNet architecture. First, we
examine the exact effect of the skip (also known as identity)
connections. In more detail, we define ConvNet-20 to have the
same structure as the ResNet-20 but with the skip connections
removed. Second, we define ToyNet-20, a ResNet-20 variant,
without any skip connections and an equal filter count (32
filters) for each convolutional layer in the network. In contrast,
ResNet-20 uses increasing filter counts for every block (16, 32, and
64 filters). Last, for some experiments, we additionally include a
PyramidNet (Han et al., 2017) variant, PyramidNet-20, of ResNet-
20 that uses a linear increase of filters in every successive layer.

All networks have an additional average pooling and a
classification layer at the end. These do not appear in the
following analysis, as these are not preceding an activation
layer—our framework only considers the non-linear structures
given by discrete activation patterns inside a deep network.

Algorithm 1 | countact This function uses a hash table to quickly count the
occurrences of all unique activation patterns.
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As we have used hash lists to measure the complete set of
activation patterns and their frequencies, we also adjust the
occupancy of the hash lists. We adjust the hash list size to use
the maximal capacity of 11.6-GB GPU-RAM to fit the GPU
memory. To maintain a low occupancy for layers that undergo
many distinct patterns and maintain comparable results across all
layers, we balance the hash map sizes across layers adaptively to
have maximal occupancy 15% of the size of the hash list.

The used hyperparameters, the exact model definitions, and
method implementations can be obtained from the provided code
under https://github.com/JGU-VC/activation-pattern-analysis.

3.2 Observations in the Early Phase of
Training
Previous works have already identified the early phase of training
to have training dynamics distinct from the rest of the training
process (Section 4.1 on the related work). In the following, we
validate the observations from the literature on the early phase of
training: these include rapid sign changes, converging gradient
magnitudes, the alignment of momentum that indicates a more
linear rather than non-linear learning phase, and the finding that
corrupts data (bad batches) might cause irrevocable damage.
Additionally, we analyze how much of the structure of neural
networks given by its random initialization is maintained
throughout training.

Our first experiment tracks the activation pattern distributions
during the first 3,000 iterations of the training process on
CIFAR-10 using the ResNet-20, ConvNet-20, and ToyNet-20
architectures. (In each case, we use the same hyperparameters

optimized for ResNet-20 that achieve a test accuracy of about 91%
without additional data). In each training step and layer, we
evaluate the total number of patterns, the number of pattern
changes, the weight of the most frequent pattern, the activation
entropy, and the weighted Jaccard similarity to the pattern
occurrences at the initialization of the network. We show the
results for eachmeasure in Figure 1, using the whole training data
set for evaluation.

In Figure 1A, we observe that the absolute number of patterns
per layer differs by several orders ofmagnitude for each architecture.
While the number of patterns ranges from maximally 22 million
patterns in the first convolutional block to about two million
patterns in the last block of the ToyNet in the initialization state
of the network, the number of distinct patterns drops significantly
after the first step to maximally three million patterns. The number
of patterns remains constant in the last convolutional block. The
ConvNet-20 and ResNet-20 models behave differently: the first
blocks in both models have the fewest distinct activation patterns,
and the middle blocks have the most activation patterns in the later
stages of training. Bymeasuring the total (distinct) pattern count, we
validate the work of Hanin and Rolnick (2019b), who have shown
that ReLU activations are rather sparsely distributed. We validate
their observation that the number of “activation regions” (or
activation patterns in our notation) first drops after initialization
and increases slowly with training again.

Figure 1B shows how many pattern changes occur at each
layer for each training step. In accordance with related work that
analyzed sign changes of weights (Frankle et al., 2020), most
pattern changes occur during the first few steps in all our
experiments.

FIGURE 1 | Early training phase of ToyNet-20, ConvNet-20, and ResNet-20 (first 3,000 iterations) on CIFAR-10. The top row represents the last convolutional layer
before the linear classification layer. The bottom row corresponds to the first convolutional layer in each image. The images, from left to right, show: (A) the size of the
activation pattern set, relative to the maximum size seen during training; (B) the change of size of this pattern set, truncated for better visibility; (C) the relative frequency of
the most frequent activation pattern; (D) the activation entropy; and (E) the weighted Jaccard similarity comparing the current activation patterns to those directly
after network initialization.
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Interestingly, during training, pattern changes may strike from
the lower to the top layers simultaneously. As new patterns first
appear and then the same amount of patterns disappear again or
vice versa, this might be evidence for unfavorable batches for
training. We observed that these strikes appear in all networks.
For ToyNet, we see that most activation patterns disappear from
the pattern sets in the first training steps. The ResNet, in contrast,
shows a more stable distribution over pattern set changes. We
believe this potentially gives a hint why ResNet architectures are
easier to train. We will see later why ResNets might not require
many structural changes.

Figure 1C shows the weight of the most frequent pattern per
layer and training step, observed in the whole data set. A high-
density pattern indicates a non-uniform distribution of activation
patterns. The most frequent patterns arise for the ToyNet variant,
for example, only in the first hundred training iterations or the
first activation layer. In contrast, the ResNet network has the
fewest high-density patterns in the first few hundred steps during
training but maintains higher densities for the first few layers
during the whole 3,000 steps. Remarkably, for the ConvNet
variant, some layers have patterns that account for up to 25%
of all observations, indicating possibly unnecessary structures
inside the network. However, we observe these high-density
patterns only intermediately—after a few hundred training
iterations—the most observed patterns in all layers, except for
the first layer, only account for less than 2% of all pattern
evaluations. They even account for less than 0.001% of all
pattern evaluations in deeper layers, giving potential new
insights for online pruning methods that take combinatorial
frequencies of activations into account.

Next, we analyze if and to what extent the activation patterns of
the initialization help with the training. The goal is to determine
what kind of architectural features utilizes the initialization structure
instead of using it only as a starting point and changing its nature
completely. Thus, we consider the weighted Jaccard similarity
between the pattern occurrence of the initialization c(l,0) and the
current training step as shown in Figure 1E. In the first few steps, the
similarity to the initialization is unsurprisingly the highest. It then
drops to 0% in the worst case and 16% in the best case. The ToyNet-
20 model has the fewest overlap of activation patterns to the
initialization as a general statement among the other two
analyzed models. For this architecture, the similarity first drops
to about 1–5%, and during training, both numbers increase to
4–10%. This indicates a rediscovery of some patterns that have
already been presented at the initialization. Despite having a similar
architecture, ConvNet-20 and ResNet-20 behave differently than the
ToyNet-20 model. The most significant overlap of the “current”
pattern set with that of the initialization appears in the bottom layers
containing only 16 filters. This is probably because those patterns are
more universal (edge or color detectors) and thus easier to sample
(Zeiler and Fergus, 2014). The ResNet-20 shows amore considerable
overlap of the patterns during training to the set of the initialization
state than ConvNet-20, especially in the lowest block.

3.3 Architecture-Specific Entropy Curves
Our second experiment, shown in Figure 2, analyzes the
evolution of the activation entropy throughout the training

process. This experiment aims to relate the respective layers in
each architecture to the expressivity emerging at a particular
moment in training time. The relative activation pattern entropy
rates the expressivity of an activation layer. A low expressivity
layer (i.e., having low activation pattern entropy) could be more
easily approximated by one single linear layer. In contrast, a high
expressivity layer (i.e., having high activation pattern entropy)
behaves more like a hash table in the sense that it has sufficient
expressive power to memorize the output for many input data.

We specifically analyze the mean relative activation entropy
(ActEnt) of 25 training runs of each network architectural
change. The color represents the networks’ depth and ranges
from 2 to 10 convolutional layers per convolutional block. To
analyze the effect of architectural change, such as skip
connections, we repeat the same experiment using ResNet-20,
ConvNet-20 (ResNet-20 without skip connections), and ToyNet-
20 (ResNet-20 without skip connections and constant filter sizes).
Figure 2 shows the mean relative activation entropy (y-axis) for
each architectural change for each layer (x-axis). The columns
represent the three ResNet variants: ResNet-20, ConvNet-20, and
ToyNet-20. Each row corresponds to a specific point in training:
1) the initialization state of the networks, 2) after eight training
iterations, 3) after 40 training iterations, still at the beginning of
the early phase of training, 4) at 50% into training, right before the
learning rate drops due to the multi-step learning rate scheduler,
and 5) after training. The equally colored hose around the graphs
indicates the single standard deviation of the 25 measurements
using different random seeds.

We first examine the initial state of training. For all network
variants, the relative activation pattern entropy increases with
deeper layers. Its value ranges from about 0.5 (half of the maximal
possible expressivity) to about 1 (the maximal expressivity for the
respective layers).

The ToyNet variant has the most evident increase of ActEnt;
the ConvNet runs into saturation at the end of the second block,
which only gets a new increase within the next block. After only a
few steps of training, the ActEnt decreases for all network types,
most for the ToyNet variants and least for the ResNet variants.

At step 40 of training (third row), the ActEnt further drops for
all network types, specifically for ConvNet and ToyNet. The
measurements for those two networks have the most significant
standard deviation, especially deeper networks have a more
extensive spread in their measurements than shallower nets.
From the initialization point to this point in training, a
characteristic structure is increasingly forming for the ResNet
variant. Specifically, the ResNet variant exhibits a defined zigzag
pattern in the entropy value, where layers before skip connections
have lower ActEnt than layers after skip connections. Globally,
the ActEnt is, however, still increasing.

In the final state of training, the standard deviation of
activation entropy decreased again to similar values to those of
the initialization phase. The zigzag pattern of the ResNet variants
has strengthened slowly in the first block, while the last block is
saturated to the maximal possible activation entropy again. The
ConvNet variants and in particular, the ToyNet variants show a
saturating increase of ActEnt in the first block, a slight decrease of
ActEnt in the second block, and a decrease of ActEnt in the last
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block; the first layer of every new block shows a steep increase of
ActEnt.

To conclude, this finding suggests that the ResNet architecture
maintains its expressivity throughout training. In contrast, the
missing skip connection results in the loss of expressivity in the
first few training steps. Successful training, however, regains this
expressivity slowly. The second feature of ResNet, the increasing
number of filters, results in high-expressive final layers. In the
case of ToyNet that does not include increasing filter sizes, the
final layers decrease throughout training. However, this might be
important for the cascaded nature of deep networks, combining
more complex features until, in the final layers combinatorical-
wise, many results have to be covered to get a good performance.
We will discuss this further in Section 4.

3.4 Observations of State-Of-The-Art
Architectures and Methods
Our third experiment (Figure 3) applies two of our measures
to the whole training procedure of several methods that are
known to improve the training of image classification. In
detail, we measure the effect of ReLU (Nair and Hinton,
2010), PReLU (He et al., 2015), cyclic learning rate scheduler

(multiple and one cycle, Smith (2017)) on ResNet-20 and
ConvNet-20, PyramidNet and FixUp (Zhang et al., 2019) on
the measures ActEnt, and the Jaccard similarity of the current
training step to the final network state, JW(c(·,·), c(·,final). The
first measure, ActEnt, gives a rationale of how much of their
non-linear capabilities the networks use per layer. The second
measure, the Jaccard similarity to the final network state,
represents the activation-wise convergence of the networks
on a per-layer basis. We include the layer-wise hash list
occupancy for all setups for the whole training procedure
to validate our measurements. As described by Hanin and
Rolnick (2019b), activation patterns appear only sparsely. To
maintain comparability, we adapted PyramidNet and FixUp
to use 20 layers as well. Note that this results in fewer
activation layers for PyramidNet and thus fewer rows, as
our framework targets activation layers exclusively. For the
setups labeled “stepwise LR,” we use a stepwise learning rate
scheduler, reducing the learning rate after precisely the first
half of the training by a factor of 10, and then again by a factor
of 10 at the start of the last quarter of the training.

First, we describe the general behavior of ActEnt for all
experiment setups. Generally, the ActEnt increases with deeper
networks. In the initialization state of training, ActEnt achieves

FIGURE 2 |Mean relative activation entropy for ResNets and ConvNets of various depth, measured for an ensemble of 25 training runs. The measurements were
taken separately for each layer at different points of the training process: (i) at initialization; (ii) after 40 steps of stochastic gradient descent; (iv) after four epochs; and (iv)
right after the first learning rate drop at epoch 101. The shaded area indicates the variance spanning one standard deviation in each direction. The ResNet variants use
the architecture proposed for CIFAR-10 by He et al. (2016a) and pre-activation shortcuts (He et al., 2016b), with a varying number of convolutional layers at each
feature map size, shown in different colors. The ConvNets use the same basic architecture but without the residual shortcuts.
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FIGURE 3 | Complete training runs for several methods and architectures: ConvNet-20, ResNet-20, PyramidNet-20, FixUp, cyclic, and one-cycle learning rate
schedulers. Each plot shows a measure based on activation pattern distributions throughout the whole training (x-axis) for all activation layers in each network (y-axis).
The first row shows the activation entropy, the second row shows the Jaccard index between the current network state during training and the final network state, and
the third row shows the hash list occupancy used to compute the distributions.
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greater values (as described in Section 3.3) but as described in the
previous section, drops for some layers after only a few steps of
training. The layers that show a reduction in entropy in the early
training phase slowly regenerate entropy as the training proceeds.
With the reduction of the learning rate, the activation entropy in
the last layer gets a new boost and briefly rises again, except for
PyramidNet-20, discussed later in more detail.

Remarkably, the cyclic learning rate schedulers, “CyclicLR”
and “OneCycleLR,” dampen the effect of activation entropy drop
in the early phase of training. Nevertheless, the initial decrease of
activation entropy still occurs in the middle layers of the
networks. Both methods also result in lower ActEnt in the last
three layers. For the ResNet-20 setup, where “OneCycleLR” is
probably used most often, the method increases ActEnt in the
first convolutional block the most among all other methods. From
the named methods, “PReLU” dampens the drop of activation
entropy the most in the middle and the third convolutional block
of the networks for ResNet-20. It shows a more significant
reduction in entropy in the first block and for ConvNet-20 as
well in the last convolutional layer. The “PReLU” method also
inverts the zigzag pattern (previously described in Section 3.2)
for ResNet-20 in the middle convolutional block. FixUp, which
(in contrast to the other approaches) works without batch
normalization layers, shows a distinct behavior: except for
only a few layers in the middle, the first and third
convolutional blocks have the smallest value of ActEnt among
other methods throughout training. In contrast, PyramidNet-20,
having a linear increase in filters, has the most gradually
increasing and, over time, most stable entropy curve: its value
increases quickly, starting with a low ActEnt value at the
beginning of training. Only two activation layers (6 and 9)
lose ActEnt over training time. Despite their completely
different behavior compared to the other methods, FixUp and
PyramidNet have high accuracy.

Next, we analyze the methods based on the Jaccard similarity
to the final network state. The measure gives a rationale for the
convergence of the activation patterns. In the default case
(ConvNet-20 with ReLU activation), all layers start with low
similarity compared to the final network state. After just a few
epochs, the activations in the first convolutional block have a
similarity of about 50%. This means that about 50% of all patterns
(weighted by their occurrence count) are already exactly those of
a trained network. Until the first learning rate reduction at epoch
100, the second block reaches a similarity of about 17%. The last
layer does not increase significantly during that phase, starting at
about 5–6%, the layer reaches a similarity of 6–7%. With a
decrease of the learning rate at epoch 100, the similarity
increases within a few steps to about 97% in the first block,
about 60% in the second block, and about 30% in the last block. In
the very last few epochs, all layers converge to a similarity of
100%. The other training setups differ in the following: All
ResNets have a zigzag pattern, just like in the activation
entropy plots. Compared to entropy, however, the high and
low points differ from method to method; while the similarity
of the middle block reaches its maximum for “ResNet-20, BN +
PReLU, stepwise LR” in the layers that directly succeed a skip
connection, the similarity of “ConvNet-20, BN + PReLU, stepwise

LR” is flipped across layers after or before skip connections.
Despite having no skip connections, the plot for the setup named
“ConvNet-20, BN + PReLU, stepwise LR” shows a zigzag pattern
in the similarity, as does the ResNet-20 variant with PReLU. The
training runs that use a cyclic scheduling exhibit a wave-like
pattern over the training period, having a higher value whenever
the learning rate is lower and vice-versa. The single training runs
that use the cycle learning rate scheduler, denoted by
“OneCycleLR”, start to converge very late compared to the
other methods. However, these runs also show the most
uniform convergence across all layers and converge faster than
the other methods. The Jaccard similarity during the whole
training procedure of “PyramidNet20” reveals that the
architecture has the most uniform increase of the Jaccard
similarity, both layer-wise and training time-wise. The first
layer has the more similar pattern sets throughout training
than the final network states’ pattern set. The similarity of the
subsequent layers behaves similarly but with a lower similarity
value. Only the last layer does not converge as quickly as the other
layers. FixUp is probably the most distinct in terms of the
behavior of the Jaccard similarity (as it is also for activation
entropy). FixUp manages to reach some of the final activation
patterns for some layers (5, 6, 7, 10, 12, and 16) much earlier in
training than the other methods. The remaining layers have
approximately the same course as the other default training
setup, “ResNet-20, ReLU, stepwise LR”.

4 DISCUSSION

Stochastic gradient descent (SGD) (Robbins and Monro, 1951)
does not directly optimize the activation patterns themselves—it
still remains unclear why and how the internal structure of neural
networks appears during training. On a small scale, a training step
weight update either changes a data point in such a way that it
crosses a ReLU (Nair and Hinton, 2010) decision boundary
hyperplane, or the weight update only improves the regression
of the decision in the final layer. Which case occurs is somewhat
random and depends on factors such as the learning rate, the used
optimizer, and the exact data distribution, to name a few. In this
section, we will review the results described in the last section and
connect them to the literature, shedding some light on activation
pattern distributions that arise with the choice of architectures
and methods. We will conclude by answering the questions we
asked at the beginning of this work.

4.1 Related Work
The topics discussed in our work are tightly bound to recent
findings in the literature: From a broader point of view,
optimization has been an active field of research for decades
in the context of neural networks (see Schneider and Kirkpatrick
(2006) for general introduction and Goodfellow et al. (2016);
Montavon et al. (2012) for an introductory text in the context of
neural networks, specifically stochastic gradient descent (SGD)
(Robbins and Monro, 1951)), especially recent works have
pushed state-of-the-art performance by evolving specific niches
of optimization techniques such as faster converging learning rate
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schedules, better network initializations, or activation functions:
Many of these methods that improve the quality of a particular
set of data or a particular architecture originate from intuitive
approaches. For instance, Smith and Topin (2017) and Smith
(2017) found an analogy of LR schedules to simulated
annealing. The research in different activation functions has
also been vast; the most commonly used piecewise linear
activation functions for image classification today are ReLU
(Nair and Hinton, 2010) and PReLU (He et al., 2015).
Architecture-wise, plain convolutional neural networks have
been replaced by ResNet variations (He et al., 2016b; Szegedy
et al., 2016). Also, several research articles have already focused
on why skip connections result in higher quality networks
(Balduzzi et al., 2017; Orhan and Pitkow, 2018). Two slightly
more recent variants of ResNet are PyramidNet (Han et al.,
2017), which uses a gradually increasing number of filters, and
FixUp (Zhang et al., 2019), which optimizes the different weight
types in a network separately and changes the initialization
scheme. Our work compares several of the named architectural
decisions in terms of activation pattern entropy and activation
pattern convergence.

Our work is closely related to the ongoing discussion about the
distinct phases of training (Achille et al., 2019; Frankle et al., 2020;
Leclerc andMadry, 2020). Our work extends this by analyzing the
complete training process and investigatingmultiple architectural
choices such as activations, ResNet variants, and learning rate
schedulers.

Most related to this work in terms of interpreting network
activations to probe learning dynamics are Raghu et al. (2017)
and Gotmare et al. (2019). In these works, the authors propose a
new technique for comparing network representations using
singular value decomposition and canonical correlation analysis
but do not use statistical measures. Other works focusing on the
analysis of the weights of a network are inherently limited, since the
weights exhibit several invariances, such as permutation and scaling,
as Gotmare et al. (2019) note.

In contrast to the named studies, we focus on the discrete
activation patterns rather than the continuous view of values,
weights, gradients, and the similar.

Several recent articles discuss the use of statistics to guide
optimization methods (Lang et al., 2019; Xu et al., 2019) but only
use the training and validation losses to approximate the training
dynamics. In Moldovan et al. (2020), the authors use the so-
called transfer entropy between network nodes to guide
backpropagation. Other works use statistics for feature
extraction (Finnegan and Song, 2017), feature pooling (Wan
et al., 2019), or network compression (Wiedemann et al.,
2019). Related to that is the research on the distribution of
activations, which often treats all neurons as independent
stochastic variables and has proven helpful for derivations of
initialization schemes and methods to help with training (Glorot
and Bengio, 2010; He et al., 2015; Ioffe and Szegedy, 2015;
Salimans and Kingma, 2016).

In contrast to these works, our emphasis lies on the study of
the discrete distribution of layer-wise activation patterns in a deep
neural network, explicitly analyzing their internal non-linear
structures.

The closest related work that also takes activation patterns into
account is probably that of Hanin and Rolnick (2019a) and Hanin
and Rolnick (2019b), where the authors analyze the capabilities of
neural networks in terms of expressivity. They show that neural
networks use much fewer activation patterns during training than
theoretically possible. In contrast to our work, they did not
consider the input distribution but analyzed the whole
theoretical input space. We validate their results in terms of
actual occurring and observed activation patterns during training.
Additionally, we provide observations regarding the dynamics of
training.

4.2 Methodical Considerations and General
Findings
The activation pattern entropy reveals the internal complexity of
a neural network throughout training. This measure indicates
qualitatively how many distinct linear transformations a deep
network uses for inference. If a network uses only a few distinct
linear transformations (activation patterns), this corresponds to a
regression task that just blends between data. On the other hand,
a network that uses many distinct linear transformations comes
close to have such a mapping for every element in the data set.

Our experiments (e.g., Figure 3) reveal the extent of
expressivity throughout training, and they show that this
depends on the architectural choices used for the networks.
For instance, the ResNet architecture and skip connections in
particular, indicate an alternating scheme, using fewer patterns
(i.e., being more linear) in layers that succeed the skip
connections directly and using more patterns in each other
layers. Removing these architectural choices (such as skip
connections) and increasing filter sizes (ToyNet) result in
activation entropy valleys during the early and later training
phases, meaning sudden losses of expressivity. Methods that
reduce training speed (PReLU, 1-cycle learning rate scheduler,
and cyclic learning rate scheduler) may counter this effect again.

4.3 Initialization (and the First Steps of
Training)
The most common method of initializing deep neural networks
that use ReLU activations today is He et al. (2015). Its idea is that a
very precisely scaled Gaussian distribution results in i. i.d.
random activations per neuron, that is, maximally entropic
activation patterns. In theory, the condition of independent
input dimensions may be correct for specifically designed data
sets. However, the independence of input dimensions is not met
by real-world data (for instance, proximate pixels in photographs
correlate) and cannot be correct for deeper layers (as the inputs
have been mixed in the previous layers already). In support of
this, one can name the numerous works that have developed
successful methods for training even without this assumption, for
example, the exponential learning rate scheduler (Li and Arora,
2020), super-convergence (Smith and Topin, 2017), and fixed-
update initialization (Zhang et al., 2019). The strict increase of
activation entropy in the initialization phase (see Section 3.3) can
be seen as a validation that the possibly unfulfilled condition
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“i.i.d.” used to prove He-initialization does not impact the
initialization negatively. Previous works have given many
reasons why the ResNet architecture is beneficial to training
(Balduzzi et al., 2017; Orhan and Pitkow, 2018). Our measures
give a new indicator why this might be the case.

In Figure 4, we have measured the Jaccard similarity to the
initialization state over the entire training time. The two models,
ConvNet-20 and ToyNet-20, lose most activation patterns of the
initialization but find some of the patterns again during the
training process. In contrast, the ResNet architecture shows a
less steep decrease, and in some layers, the architecture
manages to maintain some activation patterns of initialization
over extended periods in training. Our analysis, however, does
not cover whether the activation patterns of initialization are
meaningful for the network’s performance, and thus this
remains an open question for future work.

4.4 The Early Phase of Training
The early phase of training has been identified in several works to
be distinct from the rest of training. Goodfellow and Vinyals
(2015) described that gradient magnitudes are substantial during
the first 1̃0 steps of training. In our work, we found that during
that phase, the activation entropy drops in almost all layers
(Figure 2 and Figure 1). A similar reduction of expressivity
and a subsequent recovery phase of activation entropy have also
been previously observed by Hanin and Rolnick (2019b) in terms
of the theoretical total number of activations over the whole input
domain. We validate that this theoretical change in activations is
also present for more realistic setups (architectures and methods)
and the actual data fed into the networks.

Frankle et al. (2020) describes the first 500 steps of training to
undergo a substantial “rapid motion” in weight space. Our
measurements reveal similar observations: the pattern changes,

especially in the middle layers decrease, the most frequent
patterns even out in the lower layers, and the activation
entropy increases again (Figure 1).

In the next training phase, described by Gur-Ari et al. (2018) to
end at training step 700, the Hessian eigenspectrum separates; the
gradient lives in a much smaller subspace than before. Also, in
that phase, the direction of the momentum starts to align (for
VGG-networks). In our study, the magnitude of pattern changes
converges for some layers, and the activation entropy stabilizes.
Also, that phase had the most similar activation patterns to the
initialization state of the tested networks.

After that (starting at about training step 2000 in our setup),
Frankle et al. (2020) characterize training to have a constant
magnitude spectrum of gradients and slow increase of weight
magnitudes. Our measures reflect these observations as the
magnitudes of pattern changes converge in the whole network
to a hitherto minimum value.

The pattern changes also reveal which batches change the
structure the most. We have described sudden strikes of pattern
changes in Figure 1; first, removing many patterns in all layers at
the same time and then adding patterns back in an equal amount.
Achille et al. (2019) have shown that unfavorable data early in
training can corrupt the whole training process resulting in
irreparable damage to the network state. We argue that the
measure of pattern changes can help identify such counter-
productive data points or batches.

4.5 Convergence Speeds of Methods
In Figure 4, we have pre-computed the network training to
observe the convergence rate of activation patterns throughout
training. Our findings indicate that networks converge first in the
lower layers and from there, bottom to top. More specifically, all
but the first layers do not converge slowly. For instance, the

FIGURE 4 | Full training phase (of 200 epochs) of ToyNet-20 (A), ConvNet-20 (B), and ResNet-20 (C). The plots correspond to those in Figure 1, showing the
measures from left to right: total pattern count, patterns changed, weight of most frequent pattern, the activation entropy, and the Jaccard index between the current
network state and the initial network state.
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similarity to the final network state reaches a similarity of about
30%, meaning that the remaining patterns are still not converged.
We assume that especially the activation patterns of deeper layers
are very noisy, as the similarity only converges in the last few
steps. The best behavior in terms of the fastest convergence has
PyramidNet and FixUp. While the former manages that all layers
converge almost at the same pace, the latter ensures that some
layers converge very early in training.

5 CONCLUSION

Non-linearities are the main reason for the high expressivity of
deep networks. As a prominent example, the ReLU non-linearity
uses a simple decision boundary to break the linear flow of
calculations. Surprisingly, although optimization using stochastic
gradient descent does not take that decision boundary directly into
account, the decisions still may change during training due to
overshooting their boundaries upon some gradient descent steps.
This work aims to quantize these discrete changes, reinterpreting
the continuous optimization as a discrete search of emerging
structures. In more detail, this work analyzes where, when, and
how quickly such structures arise during training. Unsurprisingly,
given the magnitude of the problem, our experimental analysis
does not provide an overall model of the implicit algorithm of
discrete optimization. The value and main contribution are to
connect common architectural and training approaches with the
resulting change of discrete optimization.

In order to gain an understanding of the interplay between the
emergent discrete–continuous network structure and continuous
optimization, we analyzed which layers learn first in a network
and found that the answer is much more diverse than just the first
or the last layer. In more detail, our experiments show that
ResNets do not throw the patterns of initialization away
during training, in contrast to similar architectures without
skip connections, which replace the pattern set of the
initialization almost entirely within only few steps of training.
We used our measures to validate other effects observed in the
literature, for instance, Frankle et al. (2020); Leclerc and Madry
(2020); Hanin and Rolnick (2019b); and Achille et al. (2019). We
have shown that a network’s expressivity (or activation pattern

entropy) undergoes an architecture- and trainingmethod-specific
curve during training, often dropping after only the first few
training steps. We have tested this behavior against several
methods, such as PReLU, ResNet skip connections, some
learning rate schedulers, and PyramidNet or FixUp, which
particularly counter that effect and may maintain higher
expressivity throughout training or boost the convergence of
some network parts.

We believe that the provided analysis of the non-linear
convergence of neural networks, their expressivity used for
training, and the importance of initialization could give new
tools to find more efficient training methods or architectures and
potentially enables new avenues toward understanding the
optimization of neural networks in general.
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