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In this paper we evaluate two unsupervised approaches to denoise Magnetic Resonance
Images (MRI) in the complex image space using the raw information that k-space holds.
The first method is based on Stein’s Unbiased Risk Estimator, while the second approach
is based on a blindspot network, which limits the network’s receptive field. Both methods
are tested on two different datasets, one containing real kneeMRI and the other consists of
synthetic brain MRI. These datasets contain information about the complex image space
which will be used for denoising purposes. Both networks are compared against a state-
of-the-art algorithm, Non-Local Means (NLM) using quantitative and qualitative measures.
For most given metrics and qualitative measures, both networks outperformed NLM, and
they prove to be reliable denoising methods.
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1 INTRODUCTION

Magnetic Resonance Imaging, MRI, is one of the most widely used imaging techniques, as it provides
detailed information about organs and tissues in a completely non-invasive way. InMRI, data needed
to generate images is directly sampled from the spatial frequency domain; however, the quality of this
data can be deteriorated by several thermal noise sources and artifacts. Noise in MRI is of major
consequence as it can mislead and result in inaccurate diagnoses of patients. In addition to visually
corrupting the recovered images, noise is also an obstacle when conducting quantitative imaging on
the MRI. The utility of MRI decreases if a region or specific tissue suffers from a low signal to noise
ratio. Thus, there is a necessity for an efficient MRI reconstruction process, where denoising methods
are applied to noisy images in order to improve both qualitative and quantitative measures of MRI.

Additionally, in the case of in vivoMRI, noise is implicit to the acquisition process. When taking
an MRI of a living subject, there are multiple noise factors. All other factors withheld, the MR
machine has an innate noise component when acquiring an image due to a thermal factor. Another
source of thermal noise is inversely proportional to the amount of time that the subject stays inside
the MR machine, and while in the machine the subjects movements also contribute to the thermal
noise. Finally, the patient’s body temperature and the thermal factor from theMRmachine is another
key element, specially since a long exposure inside the MRmachine could lead to an increase in body
temperature, web (2017).

Thus, when training a MRI denoiser, no ground truth is available for the training procedure.
Likewise, due to previously discussed movement of the subject, two independent samples for
denoising strategies as used by Lehtinen et al. (2018) cannot be reasonably obtained. Thus either
synthetic data needs be generated for supervised learning or unsupervised and self-supervised
strategies must be employed. As such, we evaluate self-supervised solutions to MRI denoising. Deep
self-supervised image denoisers have been seeing recent success for general image denoising tasks,
and provide robust denoisers without requiring access to denoised images. Self-supervised denoisers
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generally under-perform supervised techniques, but arise
naturally in cases like MRI, where pure supervised learning is
infeasible.

While deep learning has seen success in many areas, there is a
lack of methods focused on denoising MRI. Additionally, many
traditional techniques denoise MRI in the magnitude space,
dismissing the innate spatial frequency information the MRI
contain. Most of the MRI denoising methods available use a
supervised approach where they use the original MRI as ground
truth. We wanted to explore an unsupervised approach using the
complex image space, where no ground truth data is needed.
Therefore, we will compare two unsupervised denoising
approaches that denoise MRI in the spatial frequency space,
competing with the more classical and widely used denoising
methods.

2 MATERIALS AND METHODS

2.1 Related Work
Previous attempts on MRI denoising can be categorized in three
different ways: traditional methods, supervised learning, and
unsupervised learning.

2.1.1 Traditional Methods
Traditional MRI denoising techniques are generally based on
filtering, transformations, or statistical methods such as Mohan
et al. (2014). Three of the most widely-usedmethods currently are
bilateral filtering by Tomasi and Manduchi (1998), non-local
means by Buades et al. (2005), and BM3D by Dabov et al. (2007).

The bilateral filter presented by Tomasi and Manduchi (1998)
is an edge preserving non-iterative method. When applied to an
image, it uses a low-pass denoising kernel which adjusts to the
original image spatial distribution of pixel-values. This helps
preserve the edges while denoising the image. In the presence
of sharp transitions, the kernel is weighted according to this
transition. This behavior is modeled by a convolution of the
intensity values of the image and a non-linear weighting function.

Non-local means, Buades et al. (2005), or NLM, uses the self
spatial similarities that natural images have. It exploits the
redundancy of the neighborhood pixels to remove the noise.
The simplicity of this filter consists of using those similarities to
find similar patches on the rest of the image to the patch being
denoised. This is known as neighborhood filtering. NLM assigns
confidence weights based on similarity to the original patch and
its distance from the center of the observed patch. The main issue
with NLM is that since it relies on a large space search, it can
create a bottleneck in terms of computation.

BM3D, Dabov et al. (2007), is a robust algorithm that has
several parameters that can be modified in order to achieve the
best denoising. It is an extension of NLM, in the sense that it uses
spatial similarities within the image. It starts by searching for
patches with similar intensities to the patch that is being
denoised. A 3D matrix containing the size of the patch and
the aggregated patches is built. Then, a 3D transform is applied.
So as to remove high frequency noises, the transform space is
filtered and thresholded. Finally, a denoised 3D block is yielded

by doing the inverse transformation. To recover the original
array, weights are assigned to every patch. These weights are
based on the variance and distance of the patch.

2.1.2 Supervised Learning
One of the most well-known approaches for supervised
denoising, DnCNN, is presented by Zhang et al. (2017). Their
method uses feed-forward Convolutional Neural Networks,
CNN. In order to improve both algorithm speed and
performance, they use residual modules and batch
normalization. This makes their network unique. Also, it does
not need to know the level of noise. So, it can perform blind
Gaussian denoising.

Bermudez et al. (2018) implemented an autoencoder with
skip connections. To test their method, they added Gaussian
noise to a T1-weighted brain MRI dataset from healthy
subjects. Benou et al. (2017) worked on spatio-temporal
denoising of brain MRI using ensembles of deep neural
networks. Each network is trained on a different variations
of SNR. By doing this, they generate different hypothesis and
then select the most likely one to generate a clean output curve
using a classification network. This method presented better
denoising results than those presented by Gal et al. (2010),
where they use a dynamic NLM method, and they were also
better than the results presented by Vincent et al. (2010),
where they use stacked denoising autoencoders. An interesting
approach is presented by Jiang et al. (2018). They use a multi-
channel DnCNN to denoise Rician noise in magnitude MRI
instead of Gaussian noise. They test their network for both
known and unknown levels of noise, which allows them to
create a more general model. Finally, Tripathi and Bag (2020)
present a CNN with residual learning to denoise synthetic
brain MRI. They use five different clean synthetic magnitude
datasets and add Rician noise to it. They also perform blind
denoising, where the network is tested with a different level of
noise than it was trained with. Their blind denoising test yields
interesting results, since they prove that, when the network is
trained with higher levels of noise and tested on lower levels of
noise, the network yields better results than when training and
testing with low noise.

2.1.3 Unsupervised Learning
For unsupervised image denoising a novel method is presented by
Xu et al. (2020), where they introduce a method that uses
corrupted test images as their ground truth “clean” images. To
train their network they use synthetic images consisting of small
alterations to the corrupted test image. They add more noise to
the test image, and they prove that if they introduce a small
amount of noise to the test image as an alteration, their network is
still capable of denoising the corrupt image and produce a clean
output. Given their training methodology, which trains an image-
specific network for each image to be denoised, their approach is
not well suited for MRI denoising, given the volume of images
contained in an MRI. Therefore, the denoising process would be
too time-consuming.

One of the most effective models used for unsupervised
denoising is presented by Soltanayev and Chun (2018) and it
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is based on Stein’s unbiased risk estimator, SURE. The SURE
estimator, presented by Stein (1981) is an unbiased MSE
estimator. The only problem with the SURE estimator is that
it can only be expressed in an analytical form. When this is not
available, Ramani et al. (2008) proposed a Monte-Carlo-based
SURE, MC-SURE. The work presented by Soltanayev and Chun
(2018) overcomes previous shortcomings and combines the
Monte-Carlo approximation and makes it available for deep
neural network models. Since it can be used with no need of
noiseless ground truth data, deep neural networks can be trained
for denoising purposes in an unsupervised manner.

The model Noise2Noise (N2N) by Lehtinen et al. (2018), saw
success in denoising images by learning to predict one noisy
image from another by training on independent pairs of noisy
images. The result is a model that predicts the expected value of
the noisy distribution for each pixel. For many real noise models,
Gaussian, Poisson, etc, this expected value is clean signal.

Building upon this, Noise2Void (N2V) by Krull et al. (2018)
developed a strategy which removes the need for two independent
samples, and instead learns to denoise an image in a fully self-
supervised way. In place of a second independent sample, N2V
learns to denoise from the receptive field of a single pixel,
excluding itself.

Using this strategy, Noise2Self developed a general framework
for this type of denoising problem for higher dimensional spaces,
and Laine et al. (2019) denoted this form of network as a
“blindspot” network and provide several improvements.

Despite all the progress in unsupervised denoising in other
areas, there is not that much work done in unsupervised MRI
denoising. One example is by Eun et al. (2020), where they
introduce a cycle generative adversarial network, CycleGAN to
denoise compressed sensing MRI. Thus, we wanted to further
explore this path, given the potential that unsupervised learning
showed in other fields and the lack of clean ground truth data
when working with MRI.

2.2 Background
2.2.1 K-Space
InMRI terminology, k-space is the 2D or 3D Fourier transform of
the MRI measured. When measuring an MRI, the complex values
are sampled using a pulse sequence, such as radio-frequency and
gradient pulses. At the end of the scan the data is mathematically
processed to produce a final image. Therefore k-space holds raw
data before reconstruction. K-space can be seen as an array of
numbers representing spatial frequencies in the MRI.

To transition between k-space and the complex image space, we
apply an inverse fast Fourier transform, and vice versa. Even
though they are visually different, the information contained in
both spaces is the exactly the same. In k-space, the axes represent
spatial frequencies instead of positions. The points plotted in this
space do not correspond one on one to the pixels on the image in
time domain. Every point in k-space contains information about
phase and spatial frequency for every pixel in the time as seen in
Figure 1.

In MRI, the thermal noise that deteriorates the k-space is
Gaussian. This Gaussian noise model can be defined as y � x + n,
where x is the original MRI signal and n is Gaussian noise. Even

after applying the inverse fast Fourier transform, the noise
remains Gaussian. If we converted the complex MRI to
magnitude MRI, then the noise would be Rician. This is why,
we want to explore Gaussian denoising of complex-value data and
avoid dealing with Rician noise in the magnitude space.

2.2.2 SURE Estimator
When training a network, a gradient-based optimization
algorithm is used such as the stochastic gradient descent
(SGD) Bottou (1999), momentum, or the Adam optimization
algorithm Kingma and Ba (2015) to optimize the loss. In our case,
we use the Mean Squared Error, MSE web (2020a), to calculate
the amount of noise present in the image.

1
M

∑M
j�1

�����h(y(j); θ) − x(j)
�����2 (1)

whereM is the number of samples in one batch of data. The main
issue with Eq. 1 is that, since we are working in an unsupervised
environment, we do not have access to x, the ground truth.
Therefore, an estimator for MSE needs to be used. This is done by
the SURE estimator presented in Eq. 2

1
M

∑M
j�1
⎡⎢⎣�����y(j) − h(y(j); θ)�����2 − Kσ2 + 2σ2 ∑K

i�1

zhi(y(j); θ)
zyi

⎤⎥⎦ (2)

noting that no noiseless ground truth data were used in Eq. 2.
The only problem with the SURE estimator is that the last

divergence is intractable. However it can be approximated using
the Monte-Carlo SURE estimator by Ramani et al. (2008).
Therefore the final risk estimator which will be used as a loss
function is

1
M

∑M
j�1
{y(j) − h(y(j); θ)2 − Kσ2 + 2σ2

ϵ (~n(j))t[h(y(j) + ϵ~n(j); θ)
− h(y(j); θ)]}

(3)

where ε is a small fixed positive number and n ∼ (j) is a single
realization from the standard normal distribution for each
training data j.

2.2.3 Blindspot Network
Laine et al. (2019) provide an improved blindspot architecture
and denoising procedure. The blindspot network architecture
combines multiple branches, where each branch restricts its
receptive field to a half-plane which does not contain the
center pixel. Then four branches are combined using 1 × 1
convolutions. This form allows for the receptive field to be
efficiently extended arbitrarily in every direction, while still
excluding the center pixel.

In N2V, the center pixel information is not exploited to
prevent the model from simply learning to output this value.
However, using Bayesian reason to the denoising task, we
have for a particular noisy pixel y and corresponding clean
signal x
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p(x ∣∣∣∣ y,Ωy)∝ p(y ∣∣∣∣ x)p(x ∣∣∣∣Ωy) (4)

where Ωy is the context given by the receptive field of the pixel y.
Thus, using a blindspot architecture to model a Gaussian prior
p(x ∣∣∣∣Ωy), the posterior mean Ex[p(x

∣∣∣∣ y,Ω)] has a closed form
solution for many noise models. This allows for the use of the
previously unexploited center pixel data at test time. In the case of
MRI, with a Gaussian noise model, the posterior mean can be
computed analytically.

2.2.4 Datasets
2.2.4.1 Knee MRI
The Center for Advanced Imaging Innovation and Research (CAI2R),
in theDepartment of Radiology atNewYorkUniversity,NYU, School
of Medicine and NYU Langone Health, released two MRI datasets,
Zbontar et al. (2018), Zbontar et al. (2020), to work on rapid image
acquisition and advanced image reconstruction. The deidentified
datasets consist of scans of knees and brains, which contain raw
k-space data. For this experiment, we decided to use single coil data
only, as it is the most widely used modality and due to its data size
compared to multi coil, which is smaller.

The knee single coil dataset contains 973 training subjects and
199 validation subjects. According to their website, the fully sampled
knee MRIs were obtained on 3 and 1.5 Tesla magnets. The raw
dataset includes coronal proton density-weighted images with and
without fat suppression. As such, NYU fastMRI investigators
provided data but did not participate in analysis or writing of
this report. A listing of NYU fastMRI investigators, subject to
updates, can be found at web (2020b).

Note that all knee MRI contain noise that varies from subject
to subject.

2.2.4.2 Brainweb
In most of today’s image analysis methods, a ground truth is
expected, even if just for validation. In the case of MRI, noise is
implicit to the in vivo acquisition process, and so no true noise
free MR dataset exists. The Brainweb dataset provides an easy
solution for this by creating a Simulated Brain Database (SBD)
Cocosco et al. (1997); web (1998); Kwan et al. (1999); Kwan et al.
(1996); Collins et al. (1998), where an MRI simulator is used to
created realistic MRI data volumes. In addition to providing a
predefined magnitude image dataset, the Brainweb simulator is
exposed to allow for custom simulations.

Using the custom simulator, we acquired raw frequency spatial
data for varied simulator parameters. This includes data
generated for all combinations of no, mild, moderate, and
severe multiple sclerosis (MS) lesions anatomic models with
the six available parameter templates. These six are generated
by combining the AI and ICBM protocols with either T1, T2, or
Proton Density (PD) weighting. For our purposes, we will only be
using T1 and T2. All together this allowed for the generation of 16
brain MR volumes simulated from a realistic parameter set. 12
subjects were used for training and four subjects were used for
testing. Additionally, the custom simulator allows for adding a
noise level; however, as we are treating this data as ground truth,
we did not use this feature. For all Brainweb experiments, we
performed cross-validation to ensure the validity of the results.

Since our blindspot network expects square input, each
individual slice of the MR volumes were zero padded in
k-space to have matching dimensions.

2.3 Training
All models were trained and tested using a single NVIDIA
GeForce GTX Titan X, with 12 GBytes of memory.

2.3.1 SURE Model
The gradient of Eq. 3 can be automatically calculated when
training a deep learning framework. Therefore, we use Eq. 3
as a cost function for a basic U-Net architecture, Ronneberger
et al. (2015), with five convolutional layers on both sides.

To train the SURE estimator in 2D, we use a U-Net of depth
5, convolution kernel size of 3 and 48 initial feature maps.
After each convolutional layer, a LeakyReLU is applied, except
for the last convolutional layer, where no activation function is
used. We train the network in batches of 10 for 300 epochs,
using the Adam optimizer with an initial learning rate of
3 × 10− 4. The data, both training and testing, is center
cropped to 320 × 320 for knee MRI and 192 × 192 for
brain MRI, using all available slices for both.

2.3.2 Blindspot Model
Due to large regions of no-signal in MRI and a shared standard
deviation across all pixels, many techniques exist to estimate the
standard deviation of the noise σ, Sardy et al. (2001). Thus, we use
a blindspot architecture with knowledge of σ, and our prior
becomes p(x ∣∣∣∣Ωy, σ). This modifies Eq. 4 in training to

p(x ∣∣∣∣ y,Ωy)∝ p(y ∣∣∣∣ x) p (x ∣∣∣∣Ωy, σ)
We train a 5-layer deep blindspot network in batches of 5 for 300 epochs.
The convolution kernel has size of 3 and there are 48 initial featuremaps.
No activation function is used. We use Adam optimizer with an initial
learning rate of 3 × 10− 4. The learning rate is reduced if the validation loss
has not decreased after ten epochs. The data, both training and testing, is
center cropped to 320× 320 for kneeMRI and 192× 192 for brainMRI,
using all available slices for both. For amore detailed network architecture
description, please refer to Laine et al. (2019).Weused the same blindspot
network and U-Net architecture as described in Laine et al. (2019).

3 RESULTS

For both datasets, different levels of noise were added to the
original images in order to do a quantitative comparison to NLM.
Since both models rely on Gaussian noise, we will only be adding
Gaussian noise to the images.

For the knee single coil dataset, we started by adding noise with
σ � 1 × 10− 5. Then, we followed with twice the amount of noise
with σ � 2 × 10− 5 to test both algorithms with an elevated amount
of noise. Finally, the average background noise, σ � 8.2 × 10− 6,
was calculated for all images and was used for the last test. The
three levels of noise can be seen in Figure 2. Since the data is
comprised of small values, a scale factor is needed. This factor is
calculated using the maximum value found in the dataset as a
reference. For both networks, a scale factor of 500 was used.
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For the Brainweb dataset, we added three different levels of
noise. To understand how the networks behave with different
levels of noise, we used low level noise with σ � 50, middle noise
with σ � 100 and high level noise with σ � 200. In this case, since
the data has much bigger values, a higher sigma is used. The three
levels of noise can be seen in Figure 3. Note how the data has to be
scaled too, specially for the SURE network, which is highly

sensitive to the input scale. For the Brainweb dataset, we
scaled all input by a factor of 1/25,000. While the blindspot
network presented good results even without the scaling factor, it
performed slightly better with scaling.

In order to evaluate the proposed algorithm, three
quantitative measures were used for the first three tests.
Through all tests, a qualitative measure will be used, based
on our perception of the images.

The three quantitative measures used are peak signal-to-
noise-ratio, PSNR, mean-squared error, MSE web (2020a) and
Structural Similarity Index Measure, SSIM Wang et al. (2004).
Both MSE and PSNR are used to compare image compression
quality, while SSIM is used for measuring the similarity
between two images.

MSE represents the cumulative squared error between the
compressed and the original image. The lower the value of MSE,
the lower the error. MSE can be defined as

MSE � ∑M,N[I1(m, n) − I2(m, n)]2
M pN

(5)

where M and N are the number of rows and columns in the
input image.

PSNR computes the peak signal-to-noise ratio between two
images. This ratio is used as a quality measurement between

TABLE 1 | Test results knee single-coil dataset.

σ Noisy MSE SURE MSE Blindspot MSE NLM MSE

8.2 × 10− 6 6.5954 × 10−11 3.6943 × 10− 11 3.9075 × 10− 11 3.9826 × 10− 11

1 × 10−5 9.8777 × 10−11 4.7123 × 10− 11 4.8734 × 10− 11 4.9732 × 10− 11

2 × 10−5 4.2101 × 10−10 9.0616 × 10− 11 8.7264 × 10− 11 9.0004 × 10− 11

σ Noisy PSNR SURE PSNR Blindspot PSNR NLM PSNR

8.2 × 10− 6 28.266 30.866 30.626 30.555
1 × 10−5 26.512 29.846 29.692 29.610
2 × 10−5 20.226 27.196 27.329 27.235

σ Noisy SSIM SURE SSIM Blindspot SSIM NLM SSIM

8.2 × 10− 6 0.7238 0.7795 0.7708 0.7661
1 × 10−5 0.6487 0.7284 0.7215 0.7119
2 × 10−5 0.3628 0.5579 0.5605 0.5653

TABLE 2 | Test results for the Brainweb dataset.

σ Noisy MSE SURE MSE Blindspot MSE NLM MSE

50 2,981.044 1,281.977 1,259.961 1,322.726
100 12,332.774 3,508.540 2,758.001 4,059.259
200 50,639.730 9,150.021 7,245.904 11,578.606

σ Noisy PSNR SURE PSNR Blindspot PSNR NLM PSNR

50 33.524 38.015 38.012 37.781
100 27.361 34.036 35.240 33.166
200 21.227 30.301 31.429 28.753

σ Noisy SSIM SURE SSIM Blindspot SSIM NLM SSIM

50 0.7663 0.8971 0.8977 0.8790
100 0.6314 0.8466 0.9066 0.8014
200 0.4710 0.7829 0.8409 0.6996

FIGURE 1 | Representation of how points translate between k-space and complex image space.
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the original and a compressed or reconstructed image. The
higher the PSNR, the better the quality of the image. PSNR can
be defined as

PSNR � 10log10(MAX2

MSE
) (6)

where MAX is the maximum achievable value in the input image
data type.

SSIM is a method for measuring the similarity between
two images. The SSIM index can be viewed as a quality
measure of one of the images being compared, taking into
account that the other image is regarded as of the
ground truth.

The main difference between SSIM and PSNR or MSE is that
SSIM quantifies the change in structural information, while
PSNR or MSE approach estimate absolute errors. Structural
information, such as luminance and contrast, is based on the

FIGURE 2 | Different levels of noise. (A) Low level σ � 8.2 × 10− 6. (B) Medium level σ � 1 × 10−5. (C) High level σ � 2 × 10− 5.

FIGURE 3 | Different levels of noise. (A) Low level σ � 50. (B) Medium level σ � 100. (C) High level σ � 200.

FIGURE 4 | Example of denoised knee MRI for σ � 8.2 × 10− 6. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for
every method for this particular subject. (A) Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 37.092—(D) Blindspot PSNR � 37.317—(E) NLM
PSNR � 36.350.
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fact that pixels have inter-dependencies, especially when they
are spatially close.

The overall index is a multiplicative combination of the three
terms and can be described the following way:

SSIM(x, y) � [l(x, y)]α · [c(x, y)]β · [s(x, y)]c (7)

where

l(x, y) � 2μxμy + C1

μ2x + μ2y + C1
,

c(x, y) � 2σxσy + C2

σ2
x + σ2

y + C2
,

s(x, y) � σxy + C3

σxσy + C3

(8)

FIGURE 5 | Example of denoised knee MRI for σ � 1 × 10− 5. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for every
method for this particular subject. (A)Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 30.800—(D) Blindspot PSNR � 30.953—(E) NLM PSNR �
30.189.

FIGURE 6 | Example of denoised knee MRI for σ � 2 × 10− 5. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for every
method for this particular subject. (A)Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 23.823—(D) Blindspot PSNR � 23.931—(E) NLM PSNR �
24.086.

FIGURE 7 | Example of denoised brain MRI for σ � 50. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for every
method for this particular subject. (A)Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 43.883—(D) Blindspot PSNR � 44.731—(E) NLM PSNR �
43.000.
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where μx , μy , σx , σy and σxy are the local means, standard
deviations, and cross-covariance for images x, y. If α � β � c
� 1, and C3 � C2/2 the index simplifies to:

SSIM(x, y) � (2μxμy + C1)(2σxy + C2)
(μ2x + μ2y + C1)(σ2

x + σ2y + C2) (9)

FIGURE 8 | Example of denoised brain MRI for σ � 100. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for every
method for this particular subject. (A)Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 38.130—(D) Blindspot PSNR � 39.072—(E) NLM PSNR �
37.108.

FIGURE 9 | Example of denoised brain MRI for σ � 200. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for every
method for this particular subject. (A)Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 29.610—(D) Blindspot PSNR � 30.904—(E) NLM PSNR �
26.616.

FIGURE 10 | (A)Original close-up. No noise added. (B)NLM denoised close-up. (C) SURE network denoised close-up. (D)Blindspot denoised close-up. Observe
how all three algorithms do a good job at denoising, but NLM introduces undesired artifacts.
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For all the results that are presented here, an optimal h parameter
for the NLM algorithm was previously found and set to h � 0.71.
The patch size was set to 5 × 5 with a patch distance of 6.

The same tests were done for both the SURE network and
the blindspot network, Table 1, 2 respectively. For each
evaluation metric, the best scoring algorithm is highlighted
in bold.

4 DISCUSSION

As seen in Table 1 for the knee data, the SURE network presents
better results than NLM and blindspot for both σ � 1 × 10− 5 and

σ � 8.2 × 10− 6. In both those cases, MSE is smaller and both
PSNR and SSIM are larger than NLM and blindspot. Note how in
the case of σ � 2 × 10− 5, NLM does better than the SURE
network, but worse than blindspot, except for SSIM. Given
that this is an extreme case, where the amount of noise is
unrealistically elevated, it would be uncommon to find data in
those circumstances.

We can also see that the blindspot network presents better
results than NLM for all levels of noise, except for SSIM for
σ � 2 × 10− 5. Compared to SURE, it presents worse results for
σ � 1 × 10− 5 and σ � 8.2 × 10− 6. Note however, how in the case
of σ � 2 × 10− 5, blindspot outperforms both SURE and NLM
except for NLM SSIM. This presents a divergence in the

FIGURE 11 | (A)Original close-up. No noise added. (B)NLM denoised close-up. (C) SURE network denoised close-up. (D)Blindspot denoised close-up. Observe
how NLM completely removes some of the tissue while both SURE and blindspot, do not remove as much noise, but do a better job at maintaining the tissue’s structure
without inserting any artifacts.

FIGURE 12 | Example 1 of denoised brain MRI without adding any noise. The example image is the middle slice from one of the subjects. (A) Original image, no
noise—(B) SURE denoised image—(C) Blindspot denoised image—(D) NLM denoised image.

FIGURE 13 | Example 2 of denoised brain MRI without adding any noise. The example image is the middle slice from one of the subjects. (A) Original image, no
noise—(B) SURE denoised image—(C) Blindspot denoised image—(D) NLM denoised image.
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results previously seen in the complex image space, where for
the case of high level noise, NLM was overall better than
blindspot and SURE.

For the Brainweb dataset, both networks present better results
in all scoring metrics than NLM. The best overall performing
network is the blindspot network, edging out the SURE network,
except in one case, PSNR for σ � 50, where SURE is slightly better
than blindspot. Again, we believe that in this case both networks
do better thanNLM even in the presence of high amounts of noise
because there is no background noise at all in the original images.
Therefore, the networks only need to remove just the added noise.

Another comparison can be done using qualitative measures,
based on observing the images and comparing all outputs. Using
Figures 4–6 as references, at a first glance, NLM does a better job
at taking noise out, but does it while having a negative effect on
the edges and the tissue pixels. NLM does an excellent job when
removing noise from the background, but does not do as well on
the tissue pixels. This can be a problem, since we want to maintain
the tissue structure as much as possible. The SURE network does
a better job at preserving the tissue while doing a good job when
denoising. In some cases, NLM introduces artifacts that interfere
with the tissue pixels. In terms of edge preservation, again NLM
presents an undesired effect, which makes the edges look worse
than the original image.

For the Brainweb dataset, both networks present better results
in all scoring metrics than NLM. The best overall performing
network is the blindspot network, edging out the SURE network.
We believe that in this case both networks do better than NLM
even in the presence of high amounts of noise because there is no
background noise at all in the original images. Therefore, the
networks only need to remove just the added noise. We can see
this in Figures 7, 8, 9. NLM still presents an undesired effect on
the images which can be costly. If we take a closer look, we can see
some of the tissue details that the NLM is removing completely
and some of the artifacts that it presents. We can clearly see this in
Figures 10, 11.

After seeing how both networks outperform NLM in most
categories, the next step was to work with the original images
from the knee dataset, without adding any extra noise. When
doing this test, no quantitative measure can be used, since there is
no image to compare to. Therefore, only qualitative measures will
be used.

As seen in Figures 12, 13, both networks have mixed
results. Both networks still do a better job at preserving
the edges and tissue, but sometimes struggle to remove
noise from parts of the image without any tissue. This is
happening due to a few circumstances. First of all, when
training the data, there is no ground truth to compare it to.
This can lead to over-training and over-fitting. Second, the
inherent noise that the images have, might not be Gaussian
noise. This is also supported by the previous results that were
obtained for both datasets. Both the SURE and blindspot
network were outperformed only in the presence of high
levels of noise for the knee dataset. In the same conditions of

high level of noise for the Brainweb dataset, both networks
outperformed NLM. Therefore, the background noise from
the knee dataset has a negative effect on the networks, which
might indicate that it is not truly Gaussian. The discrepancy
in the type of noise might also be causing the calculated σ to
be irrelevant and misleading, since σ is used for both
networks. Despite all of this, the networks are competitive
with NLM in most cases.

5 CONCLUSION

We evaluated two unsupervised approaches to denoise Magnetic
Resonance Image, MRI, one approach based on a Stein’s
Unbiased Risk Estimator and another one based on a
Blindspot network. Using the complex image space, innate to
MRI, we tested a real dataset containing knee MRI, and a
synthetic dataset consisting of brain MRI. Both networks were
compared against Non-Local Means using quantitative and
qualitative measures. Both networks outperformed NLM for all
scoring metrics except when in the presence of exceptionally high
levels of noise. One interesting direction that we would like to
explore is 3D denoising using both networks. This is especially
compelling for the blindspot network, since we will have to
explore a 3D receptive field.
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