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Impressionistic coding of sociolinguistic variables like English (ING), the alternation

between pronunciations like talkin’ and talking, has been a central part of the analytic

workflow in studies of language variation and change for over a half-century. Techniques

for automating the measurement and coding for a wide range of sociolinguistic data

have been on the rise over recent decades but procedures for coding some features,

especially those without clearly defined acoustic correlates like (ING), have lagged

behind others, such as vowels and sibilants. This paper explores computational methods

for automatically coding variable (ING) in speech recordings, examining the use of

automatic speech recognition procedures related to forced alignment (using the Montreal

Forced Aligner) as well as supervised machine learning algorithms (linear and radial

support vector machines, and random forests). Considering the automated coding of

pronunciation variables like (ING) raises broader questions for sociolinguistic methods,

such as how much different human analysts agree in their impressionistic codes

for such variables and what data might act as the “gold standard” for training and

testing of automated procedures. This paper explores several of these considerations

in automated, and manual, coding of sociolinguistic variables and provides baseline

performance data for automated and manual coding methods. We consider multiple

ways of assessing algorithms’ performance, including agreement with human coders,

as well as the impact on the outcome of an analysis of (ING) that includes linguistic

and social factors. Our results show promise for automated coding methods but also

highlight that variability in results should be expected even with careful human coded

data. All data for our study come from the public Corpus of Regional African American

Language and code and derivative datasets (including our hand-coded data) are available

with the paper.
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INTRODUCTION

Since the earliest days of variationist sociolinguistic research
(e.g., Labov, 1963, 1966; Wolfram, 1969; Trudgill, 1974),
variable pronunciations in speech collected from communities
of speakers have been the basis for much research into the
principles and processes of language variation and change. A
key methodology in this tradition involves the impressionistic
coding of sociolinguistic variables (Wolfram, 1993) – such
as determining whether a post-vocalic /r/ was vocalized or
rhotic (e.g., guard as [ga:d] vs. [gard]) or a word final -ing in
words like talking was produced as -in or -ing – and making
quantitative comparisons within and across speakers in the use
of these variables. This work has led to key observations about
the orderly heterogeneity of language (Weinreich et al., 1968),
the systematicity underlying the social and linguistic bases for
language variation and change. One bottleneck in sociolinguistic
research, especially as opportunities increase to study larger and
larger collections of spoken language, has been the immense work
that goes into coding sociolinguistic variables. While research
on some variable phenomena, like vowels and sibilants (e.g.,
Labov et al., 1972; Stuart-Smith, 2007; see Kendall and Fridland,
2021), has been advanced by acoustic phonetic analysis, many
pronunciation features of interest to sociolinguists, like coronal
stop deletion (e.g., Guy, 1980; Hazen, 2011), variable rhoticity or
r-lessness (e.g., Labov, 1966), final stop devoicing (Farrington,
2018, 2019), and velar nasal fronting or variable (ING) (e.g.,
Tagliamonte, 2004; Hazen, 2008), the variable under focus in this
paper, have continued to rely on careful impressionistic coding
by analysts.

Techniques for automating the measurement and coding of
sociolinguistic data have been on the rise for the past couple
of decades, and parallel developments in automation for other
areas of the phonetic sciences (such as the phonetic transcription
of large corpora; see e.g., Van Bael et al., 2007). Sociophonetic
analyses of vowels, in particular, have seen major methodological
advances via popular software like the Forced Alignment and
Vowel Extraction suite (FAVE; Rosenfelder et al., 2014, see e.g.
Labov et al., 2013 for a large-scale example of its use), and efforts
have been ongoing to automate other sociophonetic workflows
(Sonderegger et al., in progress). These methods have almost
entirely replaced the impressionistic coding for such features,
which was a mainstay of early sociolinguistic research (e.g.,
Labov, 1963, 1966; Trudgill, 1974). The success of these methods
for particular features, and the degree of appropriateness of
acoustic analysis (as opposed to impressionistic coding) more
generally, has hinged on the field’s ability to identify acoustic
dimensions that relate reliably to the auditory impressions
of listeners. Features like vowels and sibilants have relatively
straightforward acoustic cues, and for features like these, the
field has moved over time to view acoustic measures as more
useful than the impressionistic coding of analysts (though
we further discuss the implications of such a move, which
removes the consideration of auditory importance, in the
section Determining the Realization of Pronunciation Variables).
This paper focuses on the case of sociolinguistic variables
that do not have straightforward acoustic cues, like variable

(ING), which have remained the domain of impressionistic,
categorical coding.

Corpus phonetic approaches (Liberman, 2019; Kendall and
Fridland, 2021: chapter 8) have been growing in popularity and a
turn to “bigger data” somewhat necessitates an ability to code data
in more cost- and time-efficient ways. Thus, the application of
automated approaches to the coding of sociolinguistic variables
that typically require manual categorical coding represents an
important area for methodological improvement. Some work
has engaged in this problem, especially in the phonetic sciences
broadly (e.g., Van Bael et al., 2007; Schuppler et al., 2011),
although relative to the automatic measurement of features
like vowels, as just discussed, efforts for the coding of many
sociolinguistic variables are not as advanced. To our knowledge,
studies thus far have explored automated techniques for coding
the deletion of /n/, /r/, and /t/, as well as schwa deletion and
insertion, in Dutch (Kessens et al., 1998; Wester et al., 2001) and,
for English, /l/ darkness (Yuan and Liberman, 2009, 2011a), post-
vocalic r-lessness (McLarty et al., 2019; Villarreal et al., 2020),
features of /t,d/ (Bailey, 2016; Villarreal et al., 2020), and, the
focus of this paper, variable (ING) (Yuan and Liberman, 2011b),
but such work is in its relative infancy and these prior studies, as
well as the current paper, set the stage for further advancement.

Two broad approaches have been proposed for the automatic
coding of categorical pronunciation features. The first, as
proposed and implemented by Kessens et al. (1998), Wester
et al. (2001), and Yuan and Liberman (2009, 2011a,b) involves
forced alignment systems, which, utilizing automatic speech
recognition (ASR) techniques, are typically used to transform
an orthographic representation of speech to a time-aligned
phone-level representation. While forced alignment was not
designed initially with the goal of determining which of
different pronunciation variants was produced by a speaker,
its underlying algorithms provide key mechanisms for such
purposes. The second broad approach is the use of machine
learning classification procedures, which are designed to learn
patterns in data and associate those patterns with classes of
objects or outcomes. In purely computational terms, the coding
of many pronunciation variables is a rather straightforward
classification task for machine learning. Given some acoustic
information along with a set of “gold standard” data for
which the correct classification is known, a supervised machine
learning algorithm can extract patterns of association in the
acoustic data to determine likely groupings that align with the
categories. These classifying models can then be applied to new
data to make predictions about the category membership of
those instances.

Hand-coded data by trained analysts has often been viewed as
the “gold standard” on which machine learning methods should
be trained and subsequently the standards by which proficiency
of different models is determined. Yet, surprisingly, the field
knows little about how human analysts compare to one another
in the first place. A major issue in the automated coding of
sociolinguistic variables is that, given the continuous nature of
production and the context-dependent nature of perception, the
ground truth of whether a given token was realized as one variant
or the other is often not straightforward, even for human analysts.
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With a few notable exceptions (e.g., Kessens et al., 1998; Hall-
Lew and Fix, 2012), very little work has actually empirically
tested the extent to which different human analysts agree in
their coding. Further, the approaches by Yuan and Liberman
(2009) and McLarty et al. (2019) have raised the possibility that
the need for human coded data training data can be avoided
altogether, by taking advantage of other phonological patterns
available in language data from outside the variable context. This
raises questions about the necessity of human coded training data
vs. ways of harnessing properties of other “variable-adjacent” data
for training purposes and the resulting performance of models.

Our paper is motivated by the fact that a wide range of
machine learning algorithms are now available that excel at
tasks relevant to automatic coding of speech features. Yet,
for the successful computational automation of the coding of
sociolinguistic variables, several important questions remain
outstanding before any widespread adoption can take place.
For instance, for any particular situation, what is the most
appropriate, or most successful, automated approach of the
many available? Further, for supervised approaches, what are
the most appropriate training data to lead to successful
performance? What hand-labeled data are sufficient as the “gold
standard” training data? And, perhaps most importantly, on
what basis should the algorithm’s performance be assessed?What
counts as “successful,” and by what metric? A growing set of
techniques have been developed that would seem appropriate for
automatically coding variables, and thus far different approaches
have been used and with different types of training data,
but, rarely has the performance of different approaches been
compared to one another for the same dataset. Our paper directly
takes up these questions.

We investigate a set of manual and automated sociolinguistic
variable coding procedures, considering the performance (inter-
analyst agreement for human coders and accuracy and signal
detection performance metrics for automated procedures) and
outcomes (resultant statistical patterns in variationist analyses)
of human coded data and computationally coded data. We
implement a series of automated coding procedures following up
on techniques and suggestions in recent literature and investigate
the influence of different approaches to training data on the
outcomes of the procedures.

Our investigation focuses on the English sociolinguistic
variable (ING), the alternation of forms like talking with talkin’.
(ING) has been a central variable of interest in sociolinguistics
and has fueled a wide range of theoretical and methodological
advances over the past half-century. (ING) has remained a
feature coded by hand in sociolinguistic research and represents
an important test case for automatic variable coding because
it does not have well-documented acoustic parameters that
correspond with its perceived realization. That said, it is also
one of the few sociolinguistic variables that has previously been
addressed through automated coding techniques, with Yuan
and Liberman’s (2011b) study showing promise for the use
of forced alignment-based automatic coding methods. For our
investigation, we use data from the public Corpus of Regional
African American Language (CORAAL; Kendall and Farrington,
2020a). CORAAL provides a large amount of spontaneous

speech material for the development and testing of analytic
methods and provides data that we can share with this paper.
Additional datasets derived from CORAAL (including our
hand-coded data) as well as processing scripts are available as
Supplementary Material to this paper.

The rest of the paper is organized as follows. In the
section Background, we provide further background on (ING)
and on the manual and automatic coding of pronunciation
features in current sociolinguistic work. We then provide
more information about our data in the section CORAAL
and its (ING) Data. The section Manual Coding of (ING)
in the CORAAL Data describes our hand-coding procedures
and the results of inter-analyst agreement assessments, which
provide important baseline information for manual coding of
sociolinguistic variables generally and the characteristics of our
training and test data for assessing automatic coding procedures.
The section Coding via Forced Alignment presents a forced
alignment-based approach to automatically coding (ING) and
its results. The section Coding via Machine Learning presents a
series of machine learning approaches to automatic coding for
(ING) and their results. Finally, the Discussion and Conclusion
offers some concluding observations.

BACKGROUND

English Variable (ING)
The variants of variable (ING) are primarily described in
sociolinguistic work in terms of the realization of the final
nasal segment, as alveolar [n] or velar [η]. Occasionally work
has also considered variation in the vowel realization or other
consonantal realizations, such as oral releases [ηg] (see e.g.,
Kendall and Thomas, 2019), however following the majority
of work we treat variable (ING) as falling into two primary
pronunciation variants, which we describe as -ing and -in.
While variation in (ING) is realized phonologically and occurs
across different morphological forms (i.e., both within individual
morphemes (-ing) and within larger word forms (e.g., something,
during), the variable has its roots in the morphology of Old
English, arising from competition between the historical present
participle morpheme -ende and the historical verbal noun form
-ung (Houston, 1985; Tagliamonte, 2004). Importantly for our
present purposes, monosyllabic words (e.g., thing, king) are not
variable and therefore not considered a part of the variable (ING).
A number of papers provide extensive discussions of (ING) and
its history; readers are encouraged to refer to Hazen (2008) or
Kendall and Thomas (2019) for more general background.

A range of linguistic factors are known to influence (ING)
realizations, including the grammatical category of the (ING)
word, with verbal words (e.g., talking, walking) more likely to
occur with -in than nouns and adjectives (e.g., building, amusing)
(Labov, 1989; Tagliamonte, 2004; Hazen, 2008). Phonological
context (proceeding and following environment) effects have
been found in some studies but not others (Labov, 2001; Kendall
and Thomas, 2019). Word frequency (Forrest, 2017), and other
word characteristics (e.g., is the word “learned” or “everyday”;
Tagliamonte, 2004), have also been found to play a role in (ING)
realizations, although relatively few studies have examined such
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questions in depth. Additionally, lexical stress patterns, coupled
with word length, also play a role in patterns for (ING), so two
syllable words have been found to be much more likely to be
realized with -in than longer words (Kendall, 2013).

Social factors are also known to play a role in patterns
of (ING) realization. Many studies find greater use of -in
by male speakers than female speakers (Labov, 1966; Kendall
and Thomas, 2019), and social stratification is the norm, with
speakers in lower social class groups using much higher rates
of -in than speakers in high social class groups (Labov, 1966;
Trudgill, 1974; Tagliamonte, 2004). Stylistic factors, such as
formality and identity construction, are also known to play a role
in (ING) realizations (e.g., Trudgill, 1974; Eckert, 2008; Kendall,
2013), although such within-speaker factors are outside the scope
of the present investigation. While (ING) variation is ubiquitous
across English varieties, speakers of African American Language
(AAL), the variety sampled in our data, generally have high rates
of -in use (Labov, 1966).

Determining the Realization of
Pronunciation Variables
As described in our introduction, the growth of sociophonetics
as a research area has represented an embrace of instrumental
techniques for the analysis of pronunciation variation, but
impressionistic coding by trained analysts remains the norm for
certain variables. Sometimes impressionistic coding is done with
“acoustic guidance” (e.g., by consulting spectrograms of tokens
during coding) but the principal technique ultimately involves a
human analyst making a categorical, auditory judgment about
the variable, such as whether an instance of (ING) should be
coded as -in or -ing. This manual, impressionistic analysis has
remained a robust and valuable approach for analyzing variation
and many consistent patterns have been identified through such
data. This paper does not argue against such data, though here we
make a couple of observations about their limits.

First, manual analysis of sociolinguistic variables is slow and
necessarily small-scale. Transitions to bigger data and large-scale
analysis in sociolinguistics are hampered by a reliance on hand-
coded data. For instance, Wolfram’s (1969) study of AAL in
Detroit, MI – still representing one of the largest sociolinguistic
community studies undertaken – quantitatively analyzed just 60
of the 728 individuals interviewed in the community (Shuy et al.,
1968).

Further, despite some detailed investigations into inter-
analyst patterns in related areas of phonetic transcription (e.g.,
Shriberg and Lof, 1991; Cucchiarini, 1993, 1996), there have
been limited investigations of inter-analyst agreement in the
coding of sociolinguistic variables (as well as in the acoustic
measurement of sociophonetic variables; however cf. Duckworth
et al., 2011). The limited studies indicate that inter-analyst
agreement rates are often not high, sometimes with aspects
of analysts’ backgrounds playing a role in their impressionistic
determinations for a variable, despite their amount of experience
or training. For example, Yaeger-Dror et al. (2009) conducted
a study of trained analysts’ perceptions of post-vocalic /r/
realizations and found that the analysts’ own dialect background

influenced their judgments. And, Hall-Lew and Fix (2012) found
that different professional linguists applied different thresholds
for categorizing /l/ vocalization. Further, and not surprisingly,
tokens that were acoustically in-between category norms were the
most disagreed upon.

It is valuable to recognize that the task of impressionistic,
auditory coding is in fact a kind of (often poorly-controlled)
perception task, with an N of one or perhaps a few, albeit with
participants (coders) that tend to be highly trained rather than
naïve to the variable. Thus, we offer that it is not surprising that
analysts’ codes are affected by factors known to affect linguistic
perception more broadly, like perceptual sensitivity, language
background, or the token’s context and perceiver’s expectations,
and that analysts’ training seeks to (but does not always) eliminate
such biases. For example, in studies of (ING), it has been
demonstrated that naïve listeners who were asked to classify -
in/-ing variation reported hearing -inmore often in grammatical
contexts where it is probabilistically more expected in English
(Vaughn and Kendall, 2018), and that -in/-ing categorization
is also affected by listeners’ language background (Yuan and
Liberman, 2011b).

This raises a question that is often glossed over in
sociolinguistics. On the one hand, instrumental methods that
measure acoustics can be easy to implement, and do not
introduce the kind of bias inherent in relying on individual
listeners’ judgments, but, they gloss over the relevance of
the acoustic details to listeners’ auditory perception, which is
arguably an important component of language in use (see Kendall
and Vaughn, 2020). On the other hand, hand-coding methods
that rely on coders’ auditory perception reflect the reality of
the perceptual system’s biases, but are harder and slower to
implement, and also to replicate. Thus, it is more difficult
than it seems to develop and validate automated methods of
impressionistic coding:What standards dowe, as a field, think are
important in assessing whether the system has “done a good job”?
That they perform consistently (in comparison to what, human
coders)? That they perform in a similar way to human coders
(have a harder time with the kind of tokens that humans do)?
That they would result in similar macro-level patterns across the
speakers sampled (that social and linguistic factors would pattern
in an expected way)? We consider these and other points in our
assessments throughout this paper.

Automated Approaches to Coding
Pronunciation Variables
That manual analysis is limiting for the growth of sociolinguistic
studies is not a new observation and, as mentioned earlier, a
handful of studies have applied computational techniques to
the domains of traditional by-hand analyses. Across approaches,
the basic premise is that a computational model of some kind
(whether a machine learning classifier or as a part of a larger
ASR workflow within a forced alignment system) learns to
differentiate categories based on some source materials (training
data) and then that model can be applied to new instances of the
feature of interest (test data).
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We focus our consideration on the use of automated coding
for specifically sociolinguistic purposes, but we note that this
domain of work falls within a larger area of research on the
automation and validation of phonetic transcription and speech
technologies like forced alignment. Much of this work has not
been picked up by sociolinguistic researchers. However, it offers
much to the advancement of sociolinguistic methods for both
manual analyses (e.g., considerations of agreement in phonetic
transcription; Shriberg and Lof, 1991; Cucchiarini, 1996) and
automated approaches (e.g., considerations of how automated
phonetic transcription systems perform in comparison to human
analysts; Wester et al., 2001; Kessens et al., 2003; Binnenpoorte,
2006; Van Bael et al., 2007).

Using forced alignment as a tool for coding variables was one
of the first applications of computational methods for automated
sociolinguistic variable coding. These approaches rely on the
forced alignment’s system to differentiate categorical phonetic
forms from acoustic information available in the signal. Yuan
and Liberman, the creators of one of the first widely used forced
alignment tools, Penn Phonetics Lab Forced Aligner (P2FA; Yuan
and Liberman, 2008), trained their forced alignment algorithm to
differentiate light /l/ and dark /l/ realizations in recordings of oral
arguments from the Supreme Court of the United States (Yuan
and Liberman, 2009, 2011a). In this study they took advantage
of English phonological processes, whereby light and dark /l/
realizations are unambiguous in word initial (light /l/) and word
final (dark /l/) position. They then trained their system on a
phonological mapping of two phones: L1, light /l/ based on word
initial position, and L2, dark /l/ based on word final position.
After training on canonical dark and light /l/, the model was then
applied to ambiguous tokens (word medial /l/) to assign one of
the two labels, L1 or L2, to individual tokens. This innovated
a creative solution to one of the hardest issues in automated
coding, which is establishing the training data, here based on
non-variable canonical representations of the phones.

In a second study – the most direct analog to the focus of
the present paper – Yuan and Liberman (2011b) used a similar
technique to analyze (ING) realizations in two corpora, adding
a supervised learning step where their acoustic models were
trained on human-labeled forms of -in and -ing for (ING) words
from the Buckeye Corpus (Pitt et al., 2007). They then tested
categorization on a new set of unseen data balanced for -in and
-ing forms. Comparing their system’s overall agreement against
eight native English speakers’ and 10 native Mandarin speakers’
agreement across 200 tokens, they found that their approach
reliably categorized -in and -ing with agreement rates comparable
to agreement between native English-speaking coders (an average
of 85% agreement).

Bailey (2016) extended this kind of work, testing the FAVE-
Align (Rosenfelder et al., 2014) system on three variables, t/d-
deletion, th-fronting, and h-dropping. Diverging from Yuan and
Liberman’s work, this study did not explicitly train a new acoustic
model on the variable pronunciations or speakers, and instead
aligned its British English speech with an American English
acoustic model (a typical practice in forced alignment), adding
alternative pronunciations for the variables to the dictionary
for alignment. The system’s outcomes agreed rather well with

manual variable codes for h-dropping (∼85%) and th-fronting
(∼81%) and less well for t/d-deletion (∼71%) especially in cases
of t/d presence where inter-analyst agreement was also lower.
Despite the less customized training and testing, Bailey’s work
again demonstrates that forced alignment categorization has
overall high levels of agreement with human analysts across
variables. However, Bailey also observed that FAVE-Align was
sensitive to factors that human analysts were not, with FAVE
accuracy decreasing as speech rate increased, while human
analysts remained unaffected (though this may be the result of
an acoustic model trained on a different variety).

McLarty et al. (2019) used similar reasoning to Yuan
and Liberman (2009) to consider whether post-vocalic /r/
realizations could be automatically coded from a model trained
on canonical, i.e., non-variable, “adjacent” contexts. Their study
used CORAAL, the same public dataset as used in the present
study, adopting amore standard approach to supervisedmachine
learning, the use of support vector machine (SVM) models.
In this study, McLarty et al. (2019) extracted mel-frequency
cepstral coefficients (MFCCs, more on these below) at three time
points across three phonological categories: vowels, pre-vocalic
/r/ (which is non-variable but acoustically different from post-
vocalic /r/), and post-vocalic /r/. They then trained an SVM on
oral vowels and pre-vocalic /r/ tokens, and tested classification on
post-vocalic /r/ and unseen vowels. The use of the non-variable
phones in training was meant to provide an unambiguous
representation of mappings between acoustic information and
phone categories. They demonstrate overall that the results from
an SVM approach applied to a social analysis of variability in
CORAAL largely align with previous studies of r-lessness in
AAL, suggesting that SVMs and the use of “variable-adjacent”
phones for training may be a fruitful method for automated
data coding.

Most recently, Villarreal et al. (2020) used random forests to
classify post-vocalic /r/ and medial /t/ variables in New Zealand
English. Unlike McLarty et al. (2019) this study relied on hand-
coded tokens as the training data, with 180 acoustic measures for
post-vocalic /r/ tokens and 113 acoustic measures for medial /t/
tokens. In addition to finding a good fit between their models and
their training data for /r/ and for binary classification of /t/, they
show that the output of their classifier predicted the ratings of
trained human listeners for new tokens of post-vocalic /r/, both in
terms of gradient judgment and binary classification (absent vs.
present). In their paper, Villarreal et al. (2020) presented a critical
assessment of McLarty et al.’s (2019) approach to training data,
questioning the premise that the study’s use of oral vowels and
pre-vocalic /r/ tokens provided adequate acoustic information for
a post-vocalic /r/ classifier and arguing against the use of such
extra-variable forms as training data. While their critique raises
valuable points about the need for further testing, their comments
appear to miss the possible value of such an approach: Training
a classifier on pronunciations outside the variable context has
the potential to act as a crucial workaround for the key step in
any automatic coding algorithm, which is the need for ample
and robust training data. Our takeaway from their critique is
that the potential use of different kinds of training data need
to be tested, validated and strengthened, and on a per-variable
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and per-context basis, rather than assuming that one approach is
inherently flawed.

Our investigation focuses on several key questions that build
on these prior foundations in the automated (and manual)
coding of sociolinguistic variables. But, before proceeding, we
note that our study does not consider all of the important issues.
For instance, we consider an unsupervised approach to coding
using a state-of-the-art forced alignment system along with a set
of supervised machine learning classifiers. However, we do not
set up those approaches to compare them fully in an “apples
to apples” way. Rather, we implement each in what we believe
are typical use-case ways, embracing the rich acoustic model
that the aligner is capable of building for our investigation of
forced alignment (in section Coding via Forced Alignment). For
our machine learning classifiers (in section Coding via Machine
Learning), we focus on a set of simpler, mel-frequency cepstral
coefficients (MFCCs) as the acoustic measures, without extensive
parameterization or transformation. The use of MFCCs are
standard in many areas of speech technology including ASR
and are known to provide good representation of the acoustic
signal for such purposes (Davis and Mermelstein, 1980; Huang
et al., 2001). MFCCs represent extracted values (coefficients)
from a mel-frequency cepstrum, which, simply put, is a non-
linear spectrum of a spectrum. For variable (ING), a feature
without standard acoustic measures, we believe that MFCCs are
a useful acoustic representation, but we also acknowledge that
further testing – into both other potential acoustic measures and
the parameters for the MFCC extraction – would be beneficial.
Additionally, while many of the previous studies emphasize the
role of gradience in assigning values to sociolinguistic variables
through the use of probability estimates of token classification
(Yuan and Liberman, 2011b; McLarty et al., 2019; Villarreal et al.,
2020), we limit our investigations to binary classification of (ING)
to assess the general utility of different automated methods.

CORAAL AND ITS (ING) DATA

The data for this project come from the Washington DC
components of the public Corpus of Regional African
American Language (CORAAL; https://oraal.uoregon.edu/
coraal/; Kendall and Farrington, 2020a). CORAAL is a collection
of sociolinguistic interview recordings, along with time-aligned
orthographic transcription, from a range of community studies
focusing on African American Language (AAL), arranged into
several components (subcorpora). Two of the main components
are from Washington DC and these are the source of data
for the present study. CORAAL:DCA contains sociolinguistic
interviews from Fasold’s (1972) foundational study of AAL
in Washington DC recorded in 1968 (Kendall et al., 2018a).
CORAAL:DCB contains sociolinguistic interviews conducted
during fieldwork led byMinnie Quartey specifically for CORAAL
in 2015–2018 (Kendall et al., 2018b). Both CORAAL components
include extensive demographic information about the speakers,
including their age, gender, and assignment to one of three
socioeconomic classes [SECs: 1 (lowest) to 3 (highest)]. The two
components, recorded about 50 years apart from one another,

reflect some differences in sociolinguistic interview recordings,
in terms of both content and recording technology. They also
can be expected to involve recordings with different acoustic
properties (the DCA interviews were recorded on reel-to-reel
tape and digitized in ∼2013; the DCB interviews were recorded
digitally using modern solid-state recording hardware; see
Kendall and Farrington, 2020b). Our investigation uses both sets
of recordings together, and thus provides baseline performance
information for the classification of tokens from somewhat
heterogenous data. For sake of space, we leave considerations
of differences between the two components for future work. It
should be noted that our paper does not focus on AAL, but all of
the speakers examined identify as Black/African American.

(ING) variation in the CORAAL data was the focus of a
(2019) paper by Forrest and Wolfram, who used a set of speakers
available in an early version of CORAAL to explore this variable.
They focused on speakers in age groups 2–4, with a goal of
achieving balance across demographic categories. While our data
are independent of the tokens impressionistically examined in
that work, their paper provides a preliminary view of the patterns
in CORAAL. They identified socioeconomic differences in the
rates of (ING) variation in both components of CORAAL, with
high rates of -in use among the lowest SEC group (above 93% in
DCB) and decreasing rates among the higher SEC groups, along
with an interaction between gender and SEC for DCA, where
males used much higher rates of -in than females in the lower
SEC groups. Grammatical conditioning has been found for (ING)
in several varieties of English (Tagliamonte, 2004; Hazen, 2008),
where the -in variant is more likely in verbs than in forms like
nouns and adjectives. In DCA and DCB, Forrest and Wolfram
found only weak grammatical effects, although verbs did exhibit
the highest rates of -in in both components, aligning with other
work on (ING). While our data source is the same, we would not
necessarily anticipate identical results to Forrest and Wolfram
(2019) for methodological reasons. In our study, we included
speakers from a wider range of age groups and also extracted
our (ING) tokens to code a random sample from all available
(ING) tokens of the speakers selected (e.g., we did not implement
type/token limits), rather than the sequential, systematic token
inclusion procedures typically used in sociolinguistic analyses.

To examine (ING) in CORAAL, we mined the DCA and
DCB components for data. All speaker turns containing non-
monosyllabic words with word-final “ing” were extracted from
the publicly available R version of the corpus text for DCA
and DCB. Interviewers from DCA, who for the most part were
not African American, and a few tokens from “miscellaneous”
speakers, were removed from the dataset. We also extracted
words from a separate, phone-level aligned version of the
transcripts, generated using the Montreal Forced Aligner (MFA;
McAuliffe et al., 2017); this process is described further in the
section Coding via Forced Alignment. We merged these two
versions of CORAAL to select tokens of (ING) for analysis. In
addition to the variable (ING) words extracted from the corpus,
words with word final [ın] and [ıη] that are not in the variable
context for (ING) (e.g., in, thin, Chaplin, vitamin for [ın] and
monosyllabic -ing words, like thing, bring, cling, wing, for [ıη])
were also extracted for comparison with the variable (ING) cases.
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For each variable (ING) word and each non-variable IN
and ING word, 12 MFCCs were extracted from four temporal
measurement points in each final vowel+nasal portion of the
word, 25, 50, 70, and 90% of the vowel+nasal segments’
combined duration, following prior work citing the importance
of vowel quality in (ING) classification (Yuan and Liberman,
2011b). These were based on the segment alignments from the
MFA forced alignment. The MFCCs were extracted using the
tuneR package in R (Ligges et al., 2018). Words with final
vowel+nasal segments that were ≤50 milliseconds or for which
our MFCC extraction process otherwise failed to obtain MFCCs
were dropped from the dataset. This left a total of 8,255 IN words
and 1,436 ING words in the non-variable MFCC data and 12,041
(ING) words in the variable data. Preliminary tests assessed a
range of different MFCC extraction parameters and their impacts
on the later classification steps of our process but we found
little impact of minor changes to the MFCC parameters. We
do not focus on testing different MFCC time points or window
lengths in this paper but our initial investigations indicated that
four temporal measurement points for the extraction of MFCCs
performed better than tests with two or three time points, even
though fewer time points allowed for the inclusion of shorter
vowel+nasal segments (so led to an increase in the total number
of tokens that could be considered. Data sources and R code
along withmore information about our procedures, including the
specific settings used for e.g., MFCC extraction, are provided as
Supplementary Material).

MANUAL CODING OF (ING) IN THE
CORAAL DATA

Before considering the ability of automated, computational
approaches to code instances of (ING), it is important to
assess the nature of such data from the perspective of human
coders. As discussed earlier (in the section Determining
the Realization of Pronunciation Variables), very little work
in sociolinguistics has published accounts of inter-analyst
agreement in the coding of variables (cf. Hall-Lew and Fix,
2012). Understanding the degree to which human coders
agree about codes for (ING) is important before we can
assess the performance of machine coding of the variable.
Further, human annotations for gold standard training and
test data are a major component of most machine learning
classification approaches, so understanding the properties of
the human coded data is important for the other steps of our
research project.

For the human coded data, 50 tokens were randomly
subsampled per speaker from the larger dataset, for 24
speakers. All of the speakers are African American and
were selected to include the major demographic categories
included in CORAAL’s sampling – speaker gender, age, and
socioeconomic status – but with an emphasis on the lower
SEC groups. Tables 1A,B display the breakdown of speakers.
In addition to the 1,200 tokens sampled from these 24
speakers, 100 tokens were randomly subsampled from the
main interviewer in the DCB corpus, an African American

TABLE 1A | Speakers included in Dataset B from CORAAL:DCA.

Socioeconomic group 1 Socioeconomic group 2 and 3

Age group 1

(<19)

DCA_se1_ag1_f_04 (95.8%)

DCA_se1_ag1_m_07 (95.8%)

DCA_se2_ag1_f_02 (69.8%)

DCA_se2_ag1_m_05 (37.5%)

Age group 2

(20–29)

- DCA_se3_ag2_f_02* (6.0%)

Age group 3

(30–50)

DCA_se1_ag3_f_02* (34.7%)

DCA_se1_ag3_m_01* (89.1%)

DCA_se2_ag3_m_01* (87.8%)

Age group 4

(>51)

- -

In parentheses is the percentage use of -in by the speaker based on their 50 tokens in

Dataset B.

*Also included in Forrest and Wolfram (2019) analysis.

TABLE 1B | Speakers included in Dataset A (in gray italic font) and Dataset B

(plain font) from CORAAL:DCB.

Socioeconomic group 1 Socioeconomic group 2

Age group 1

(<19)

DCB_se1_ag1_f_03 (77.1%)

DCB_se1_ag1_m_02 (89.1%)

DCB_se2_ag1_f_01 (83.3%)

DCB_se2_ag1_m_01 (83.7%)

Age group 2

(20 to 29)

DCB_se1_ag2_f_02* (84.6%)

DCB_se1_ag2_m_01* (100%)

DCB_se2_ag2_f_02* (10.0%)

DCB_se2_ag2_m_01* (87.2%)

Age group 3

(30 to 50)

DCB_se1_ag3_f_03 (93.9%)

DCB_se1_ag3_m_02* (88.0%)

DCB_se2_ag3_f_02 (62.0%)

DCB_se2_ag3_m_02* (60.4%)

Age group 4

(>51)

DCB_se1_ag4_f_01 (97.9%)

DCB_se1_ag4_m_01 (84.0%)

DCB_se2_ag4_f_05 (83.3%)

DCB_se2_ag4_m_01 (94.7%)

Plus DCB_int_01 (female interviewer, mid 30s; -in: 58.7%).

In parentheses is the percentage use of -in by the speaker based on their 50 tokens in

Dataset A or B.

*Also included in Forrest and Wolfram (2019) analysis.

female in her 30s. This interviewer is by far the speaker
with the most recorded speech in CORAAL and we thought
including a sample of (ING) data from her speech would
be useful.

For two of the speakers, DCB_se1_ag2_f_02 and
DCB_se1_ag2_m_01 (both in the lowest socioeconomic
group and in the 20–29 age group), all seven authors coded each
of the tokens. We hereafter refer to this as Dataset A, and we
use it to assess inter-analyst agreement patterns for a(n albeit
small) dataset coded by more than just a few analysts. For the
other 22 speakers and the interviewer, three analysts coded each
token. We hereafter refer to this as Dataset B. Thus, for Dataset
A we have seven independent ratings for 100 of the (ING) cases
and, for Dataset B, three independent ratings for the other
1,200 tokens.

In addition to the hand-coded tokens just described, an
additional set of 900 tokens, hereafter Dataset C, were randomly
selected from CORAAL:DCA and CORAAL:DCB with no
sampling criteria other than that these tokens did not come from
interviewers in DCA (who, again, were generally not speakers of
AAL) and that did not overlap with the 1,300 tokens sampled
for the Datasets A and B. Dataset C includes tokens from
113 speakers, with an average of 8.0 tokens per speaker and a
standard deviation of 8.4 (a maximum of 69 for the main DCB
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interviewer, who is the person with themost speech in the corpus,
to a minimum of 1 token each for 11 speakers, who generally
are speakers who contribute only small amounts of speech to
the corpus). This final set of tokens was coded by two of the
authors and is used in some of our analyses as an additional
test dataset. We note that as a random sample of the entirety of
CORAAL:DCA and DCB, Dataset C is useful for examining the
overall patterns that might occur across the complete dataset. It
also allows us to test samples of speech from speakers who are
not present in any of the data we use for training models. We
also note, however, that Dataset C is somewhat artificial as an
example of a sociolinguistic dataset, since most sociolinguistic
studies will sample speakers in more systematic ways and will
not, for example, develop a dataset with such imbalanced tokens
across speakers. Nonetheless, we believe that Dataset C provides
us additional value as a test case for our automated techniques.

In order to code the tokens, the human analysts worked from
spreadsheets of excerpts from orthographic transcriptions, with
each excerpt line containing one specified (ING) word. Each line
contained a direct link to the audio for the token’s utterance via
the online interface to the corpus (http://lingtools.uoregon.edu/
coraal/explorer/browse.php). Analysts were instructed to listen
to the token in context, and code the (ING) tokens auditorily
according to the following categories: “G” if the form was clearly
-ing, “G?” for cases where the analyst believed it was -ing but
wanted to register a lack of confidence, “N” if the formwas clearly
-in, and “N?” for -in but without confidence. Finally, analysts
were instructed to use “DC,” for don’t count, if for some reason the
token did not appear to be a good candidate for analysis. There
are several reasons a token could be a don’t count form, ranging
from instances where our initial extraction selected tokens that
simply were not good for analysis (e.g., the speech overlapped
with other simultaneous speech in the recording or the token
involved some disfluency on the part of the speaker) to cases
where the form was determined to be too unclear to code. Since
the (ING) tokens were selected from the corpus by script, the
coders were instructed to use DC codes as liberally as necessary
and we might expect a higher number of DC cases here than in
typical variationist analyses which pre-select tokens for inclusion
using more deliberate processes. Aside from these reasons for
marking a token as DC, all non-monosyllabic ing-final words
were included as candidates for the (ING) variable. We note
that researchers examining (ING) have implemented different
practices regarding some aspects of the variable, such as whether
lexical exclusions apply (e.g., excluding words like anything and
everything which tend to favor -ing or words like fucking which
tend to favor -in). Our practices follow Hazen (2008) and Kendall
and Thomas (2019) in not applying any such exclusions (see also
sections English Variable (ING) and Automated Approaches to
Coding Pronunciation Variables).

Importantly, we note that all of the authors are trained
linguists with varying degrees of research experience with AAL,
however none are speakers of AAL. Research experience of the
authors ranges from extensive transcription of interviews in
CORAAL to research and publications on AAL more broadly.
This fact may be one potential factor affecting our coding,
as language backgrounds have been observed to influence

perceptual categorization of variants. We note, however, that
this fact – non-AAL speakers coding AAL data – is not
unusual in sociolinguistic studies, so may be representative
of a more widespread limitation of impressionistic coding in
sociolinguistics. The question of language variety background
and inter-analyst agreement in sociolinguistics is outside the
scope of our paper, but warrants further attention.

Dataset A: Inter-analyst Agreement Among
Seven Human Coders
We begin by considering the patterns of agreement in Dataset
A, the 100 tokens coded by all seven analysts. This is admittedly
a small dataset but little sociolinguistic work (or other linguistic
annotation description) has reported coding outcomes by more
than a few analysts, so we begin by assessing what kinds of
agreement coding might yield across all seven analysts.

Of the 100 tokens coded by all of the analysts, 20 tokens
received at least 1 DC (don’t count) code and 9 of the tokens (5
of which overlapped with tokens that also received DC codes)
received at least one low confidence (N? or G?) code. In order to
simplify the treatment here (i.e., for sake of space), we collapse
over the low confidence codes (so N and N? are collapsed to
-in here and G and G? are collapsed to -ing). The breakdown of
these codes for the 100 tokens are displayed in Table 2. The high
number of forms coded as don’t count (20% of the data received
at least one such vote) is likely a function of the instructions to
use DC liberally in order to catch erroneous tokens that were
selected by our automated selection procedure (e.g., cases of
speaker overlap). Six tokens received 3 or 4DC votes, which likely
indicate that those tokens should indeed be discounted from an
analysis, but 10 tokens received only 1 DC vote, which suggests
that our DC criteria could have been clearer to the coders. One
take-away from the DC forms alone is that subjective decisions
about coding involve not only coders’ impressions of what form
they perceive but also what constitutes a “countable” instance of
the variable in the first place.

Fifty-eight tokens were coded as -in by all seven analysts. An
additional 21 tokens were coded by six of the seven analysts as
-in (with 12 coded with one -ing and the other 9 coded by one
analyst as DC). Only three tokens were coded by all analysts as
-ing, which we take as evidence of the low rate of use of -ing
by these two working class speakers rather than as something
inherent about coding -ing cases as opposed to -in cases. Most
of the other possible outcomes occurred in this small amount of
data, with, for instance, one token being coded by four analysts as
-ing and three analysts as -in. Overall, a measure of inter-analyst
agreement using Fleiss’ Kappa for multiple raters (Conger, 1980)
yields a k = 0.39 with significantly better agreement than chance
for each of the three categories (-in: k = 0.38, -ing: k = 0.52;
DC: k = 0.22). However, the agreement values still fall only in
the “fair” to “moderate” agreement range according to many
assessments of inter-analyst agreement (Landis and Koch, 1977).
Removing the DC cases, a clear source of disagreement among
the analysts for the tokens in Dataset A, improves the agreement
rates substantially to k = 0.54. This small sample coded by
many analysts demonstrates that we need to expect some amount
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TABLE 2 | (ING) codes for the 100 tokens in Dataset A coded by seven analysts (=how many analysts coded the tokens using a particular code?).

0 analysts 1 2 3 4 5 6 7 analysts

-in 3 1 2 3 4 8 21 58

-ing 76 13 5 0 1 1 1 3

DC 80 10 4 3 3 0 0 0

TABLE 3 | (ING) codes for 1,135 tokens in Dataset B coded by three analysts (not including tokens with DC codes).

Codes: N-N-N N-N-N? N-N?-N? G?-N-N G-N-N G-N-N? G-G?-N G-G-N G-G-G? G-G-G

N: 697 3 1 2 107 2 5 39 8 271

%: 61.4% 0.3% 0.1% 0.2% 9.4% 0.2% 0.4% 3.4% 0.7% 23.9%

Agree -in: 701 (61.8%) Disagree: 155 (13.7%) Agree -ing: 279 (24.6%)

of disagreement as normal in manually coded pronunciation
variables like (ING).

As reported in Table 1 earlier, the two speakers included
in Dataset A were heavy users of -in. Removing all tokens
which received any DC votes and taking a majority-rules view
of the realization – where we take the majority of analysts’
codes as the category for a token – only six tokens would be
assigned as -ing across the two speakers and all were produced
by the female speaker, DCB_se1_ag2_f_02 (-in rate = 84.6%).
The male speaker, DCB_se1_ag2_m_01, had categorical use of
-in. In retrospect, it would have been more useful to include
speakers who were more variable in Dataset A, but we did not,
of course, know their rates of use before selecting the speakers
for inclusion.

Dataset B: Inter-analyst Agreement Among
Three Human Coders
For further consideration we move to assess the codes generated
by three analysts for the other 22 speakers and the interviewer.
To do this, we first removed all tokens that were coded
as DC by any of the analysts. This removed 65 tokens
from the 1,200 tokens coded by three analysts, leaving 1,135
tokens. The breakdown of codes is presented in Table 3. An
assessment of the inter-analyst agreement using Fleiss’ Kappa
yields k = 0.77 for the data including the low confidence
ratings (N, N?, G?, and G) and k = 0.79 if the confidence
codes are collapsed (i.e. just assessing -in vs. -ing). These
are high levels of agreement, in the “substantial agreement”
range by common rules of thumb. In simpler terms, and
collapsing the confidence marks, the coders agree (all three
assign the same major code) for 980 tokens (86.3% of the
1,135 tokens).

Taking a majority-rules view of the coded data – i.e., any
tokens with two or more G or G? codes count as -ing and two
or more N or N? codes count as -in – suggests that, overall,
the speakers produced 812 (71.5%) of the tokens as -in and 323
(28.5%) as -ing. These values provide both a useful benchmark
for the potential results of automated approaches to coding
CORAAL’s (ING) data. They also provide a useful starting place
for training data for such a coding system. We use Dataset B

TABLE 4 | (ING) codes for 900 tokens in Dataset C coded by two analysts.

Codes: N-N (Agree -in) N-G (Disagree) G-G (Agree -ing)

N: 569 104 227

%: 63.2% 11.6% 25.2%

extensively for training and testing automatic coding routines in
the section Coding via Machine Learning.

Dataset C: Inter-analyst Agreement Among
Two Coders
As an additional dataset for assessing the performance of
automated coding methods, two analysts coded (ING) for the
additional set of 900 tokens from CORAAL. These two raters
obtain 88.4% agreement for this second set, with a Cohen’s k
= 0.73. The breakdown of these tokens is presented in Table 4,
showing overall rates of -in (63.2%) and -ing (25.2%), with 11.6%
of the tokens as ambiguous, having been coded as -in by one
analyst and -ing by the other. While these tokens are sampled
more randomly than the sample in Dataset B, comprising a
wider assortment of speakers across all of the CORAAL:DCA and
CORAAL:DCB, these rates are taken as comparable to the 71.5%
-in/28.5% -ing rates in Dataset B. Dataset C is used as test data
in our assessments of automated coding routines in the section
Coding via Machine Learning.

CODING VIA FORCED ALIGNMENT

As a first step toward automatically coding variable (ING)
in CORAAL, we submitted CORAAL:DCA and DCB (v.
2018.10.08) to forced alignment, using the Montreal Forced
Aligner (MFA; version 1.0). This alignment was done usingMFA’s
train and align option, which creates an acoustic model based
entirely on the dataset itself. For the pronunciation dictionary,
we provided the Montreal Forced Aligner (MFA) with an
edited version of the Carnegie Mellon University pronunciation
dictionary that, crucially, included two pronunciation options
for each (ING) word (e.g., bringing was represented in the
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TABLE 5 | Human codes for Dataset B along with MFA’s pronunciation assessment.

Human codes: N-N-N G-N-N G-G-N G-G-G Totals

MFA = -in 633 (90.3%) 94 (84.7%) 27 (61.4%) 69 (24.7%) 823 (72.5%)

MFA = -ing 68 (9.7%) 17 (15.3%) 17 (38.6%) 210 (75.3%) 312 (27.5%)

Totals 701 111 44 279

Shading indicates cells where human codes and MFA agree.

pronunciation dictionary supplied to MFA with both B R
IH1 NG IH0N and B R IH1 NG IH0 NG as potential
pronunciations). These entries were added to the dictionary
using a script, which is included in the Supplemental Material.
Speaker adapted triphone training was used in the train and
align option in MFA, where speaker differences and context
on either side of the phone are taken into account for
acoustic models.

Before proceeding, we note that the use of a large, high
variability training data set (number of speakers, acoustic quality,
etc.) is expected to provide a more robust acoustic model for
alignment (McAuliffe et al., 2017). That is, MFA was trained on
all of the acoustic information available in DCA and DCB and
allowed to assign phone labels to all (ING) words, with no data
held out for separate testing. This differs from the training and
testing approaches we take up in the section Coding via Machine
Learning, but follows typical practice for use of modern aligners
like MFA (However, unlike many uses of aligners, and e.g., the
approach used by Bailey (2016) to code variables, our MFA
acoustic models were trained specifically on CORAAL data and
in a way that allowed the model to learn different pronunciations
for (ING)). We do this to emulate the standard workflow that
we would expect of sociolinguistic studies using forced alignment
techniques; since there is no need for hand-coding training data
in this unsupervised method, there is not the samemotivation for
testing the forced alignment system on a held out subset of the
data as is the case when using hand-coded training data in our
supervised classification techniques. Therefore, we emphasize
that we expect MFA to do quite well, since the test dataset is
subsumed by the training dataset.

As a first assessment of the codes obtained from the MFA
alignment, we consider its performance compared to the human
analysts’ judgments for Dataset B, with the codes from the three
analysts collapsed over confidence ratings (i.e., G and G?→G, N
and N?→N). This is shown in Table 5.

Overall, the MFA outputs yield some similarity to the human
coders but in some key places differ substantially. In terms
of disagreement, MFA indicated a pronunciation of -in for 69
(24.7%) of the cases all three human analysts agreed were -ing
and -ing for 68 (9.7%) cases where all three humans coded -in.
This diverges from the humans for 12.1% (137/1,135) of the
tokens. This difference is on par with the disagreements identified
among the human coders for both Datasets B (13.7%) and C
(11.6%). Further, the overall rates of MFA’s assessment of the
pronunciations of (ING) are quite similar to those of the human
coders, with MFA assigning 72.5% of the (ING) cases as -in to the
human coders 71.5%.

An additional way to assess the relative output of the forced
alignment’s phone labels in comparison to human coders is to
ask how the outcome of a variationist-style statistical analysis
might compare between the two approaches. While the evidence
indicates that about 12% of the individual tokens mismatched
between MFA and human coders, are the overall patterns similar,
especially for factors that sociolinguists tend to be interested
in? We focus here on the social determinants of (ING), each
speaker’s gender, age, and SEC, along with two linguistic factors,
the grammatical category of the (ING) word and the length of the
word in syllables. For grammatical category, we limit our focus
to a binary comparison which we refer to as verb-like (V-like)
vs. noun-like (N-like) forms. These were generated based on a
part-of-speech tagged version of the CORAAL being developed
(Arnson et al. in progress). V-like includes all of the verbal POS
tags along with the pronouns something and nothing and the
words (mother)fucking, which tend to pattern like verbs in having
higher rates of -in. N-like includes nouns and adjectives along
with prepositions (e.g., during) and the pronouns everything and
anything, which are known to have lower rates of -in. Word
length (in syllables) was generated for each word using a script
available from Kendall (2013).

Table 6 displays the results for logistic regression models of
the (ING) patterns in Dataset B. Model I assesses the majority-
rules view of the human coded data, where each (ING) is assigned
-in or -ing based on two or more coders’ agreement, with the
dependent variable as -in. Model II assesses the MFA output for
the same tokens, again with -in as the dependent variable. The
models include random intercepts for speaker and word and test
main effects (no random slopes or interactions were tested) for
the three social factors and two linguistic factors just mentioned.
Word length is included as a continuous predictor; the other
factors are categorical and included using simple (dummy coded)
contrasts. For socioeconomic status, the reference level is set to
SE1, the lowest SEC group. For age group the reference level
is set to the oldest speakers, age group 4 (speakers who are
51+ years old). We note that age is modeled as a categorical
predictor, using the age group categories provided in CORAAL.
(ING) is typically found to be a stable variable in sociolinguistic
community studies, not undergoing change. However, (ING) is
often found to show age-grading, with middle-aged speakers
showing less use of -in in comparison to young and old speakers
(due in part to linguistic marketplace factors) (see e.g., Wagner,
2012). While a full analysis of (ING) in CORAAL is beyond the
scope of this paper, the expectation of such age-graded patterns
motivates our inclusion of age as a factor and the inclusion of
age through CORAAL’s categorical age groups provides a simple
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TABLE 6 | Logistic mixed-effect regression models for (ING) in Dataset B (1,135 tokens).

Model I: human coders (N = 1,135 tokens) Model II: forced alignment output (N = 1,135 tokens)

Est. Std. Err. p Est. Std. Err. p

(Intercept) 4.78 1.32 0.0003*** 2.24 0.82 0.0060**

Corpus (DCB, vs. DCA) 0.68 0.69 0.3278 −0.44 0.38 0.2416

Gender (male, vs. female) 1.29 0.63 0.0391* 0.88 0.34 0.0089**

AgeGrp (AG1, vs. AG4) −1.29 1.01 0.2017 −0.23 0.53 0.6566

AgeGrp (AG2, vs. AG4) −3.73 1.25 0.0028** −1.80 0.66 0.0060**

AgeGrp (AG3, vs. AG4) −1.88 0.98 0.0553. −0.73 0.51 0.1526

SEC (SE2 or 3, vs. SE1) −1.28 0.67 0.0568. −0.37 0.36 0.3079

GramCat (N-like, vs. V-like) −1.14 0.37 0.0019** −1.08 0.31 0.0005***

Word Len (# Sylls) −0.68 0.29 0.0189* −0.03 0.25 0.9103

***p < 0.001, **p < 0.01, *p < 0.05, .p < 0.1.

means to uncover non-linear age differences in the data that
might be missed through a simple linear treatment of age as a
continuous predictor.

There are some notable differences between the human
coded and forced alignment coded data, but also a number
of similarities. Models do not identify a significant difference
between the two CORAAL components. Both models identify
the expected difference between verb-like words and noun-like
words, with noun-like words significantly disfavoring -in. Both
models also indicate that age group 2, speakers between the
ages of 20–29, are significantly less likely to produce -in than
the oldest group of speakers. Neither model finds the other
two age groups significantly different from the oldest speakers,
although the age group 3 speakers (between 30 and 50) come
close to a p-value of 0.05 in Model I. Neither model identified
significance for SEC differences among the speakers, although
the human coded data in Model I approach significance. Both
models are also similar in identifying a significantly greater use
of -in by male speakers. The statistical outcomes suggest that
the two approaches to coding were somewhat similar in their
sensitivity to social patterns in these data (While we don’t focus
on the substance of these patterns here, they are roughly in line
with sociolinguistic expectations, e.g., with greater use of -in by
males than females and the appearance of age-grading patterns
for (ING)). One striking contrary point, however, is that the word
length effect is only significant in the human coded data. The fact
that the forced alignment data do not capture this statistically
significant pattern in the human coded data may suggest a major
difference in how human coders treat, and hear, variable (ING)
in comparison to the automated alignment algorithm (see also
Yuan and Liberman, 2011b; Bailey, 2016).

CODING VIA MACHINE LEARNING

We turn now to consider machine learning based approaches
more directly, where the coding algorithm can be trained
specifically around the features of interest. While a host of
potential machine classifiers are available, we focus on the
two cases that have seen recent use for sociolinguistic variable

coding, support vector machines (SVMs) and random forest
(RF) classifiers.

SVMs are a supervised machine learning algorithm that have
seen widespread use in classification (Boser et al., 1992), as
well as recent work in sociolinguistics (McLarty et al., 2019).
The basic mechanism of the SVM approach involves a model
identifying a hyperplane in a multidimensional feature space
that best separates categories based on those features. One key
piece of the SVM architecture is the ability to apply different
kernel functions, which allow for different kinds of separating
hyperplanes between classification categories. There are other
parameters that are customized for SVM algorithms, namely the
“cost” of constraints violation parameterC and, for radial kernels,
gamma, which determines how much influence the model places
on each training example. There is no single best method for how
to parameterize an SVM classifier, with most guidance suggesting
an empirical approach, determining the best parameters (so-
called “tuning”) based on performance for the data and the
problem at hand. We used the e1071 package for R (Meyer et al.,
2019) interface to the C++ libsvm implementation (Chang and
Lin, 2001) for all SVMmodels.

RFs are an approach that have seen growing use in
sociolinguistics more generally, e.g., for the analysis of
sociolinguistic data (Tagliamonte and Baayen, 2012). As
mentioned earlier, Villarreal et al. (2020) applied RFs for their
automatic coding of sociolinguistic post-vocalic /r/ and medial
/t/ data. RFs are a procedure that expand upon classification
and regression trees, a common recursive partitioning method,
generating many individual trees on a dataset to generate a
partitioning solution that is generalizable beyond a specific set
of data. RFs have fewer parameters to customize than SVMs,
but still benefit from model tuning. A number of random forest
implementations are available. We used the randomForest
package in R (Liaw and Wiener, 2002).

Altogether, we build, tune, and test three types of machine
learning classifiers, an SVMwith a linear kernel (hereafter “linear
SVM”), an SVM with a radial kernel (“radial SVM”), and a
random forest (“RF”). For each, we use two kinds of training data.
In the first case, in the section (ING) Classification, Using Human
Coded Training and Test Data, we proceed through a somewhat
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typical supervised machine learning case, where we use subsets
of the human coded data in Dataset B to train the classifiers. In
the second case, the section (ING) Classification, Using Variable-
Adjacent Productions as Training Data, we explore the kind
of approach proposed by Yuan and Liberman (2009, 2011a)
and McLarty et al. (2019), where “variable-adjacent” phonetic
material, from outside the variable context, is used as training
data. In both cases, we use human coded data for testing
the models.

(ING) Classification, Using Human Coded
Training and Test Data
We start by assessing the success of the three classifiers trained
on the hand-coded data. To do this, we use a 10-fold cross
validation approach, using the 1,135 tokens in Dataset B, which
were manually coded by three analysts, in a series of training and
testing assessments.

First, Dataset B was trimmed to exclude tokens that did not
occur in our MFCC extracted data (most often because they
were too short for our MFCC extraction, although in some cases
tokens could not be matched due to multiple potential candidates
in the same utterance). This removed a large number of tokens
(29.2% of the data), leaving 803 tokens. Of these, 501 (62.4%)
were coded as -in and 302 (37.6%) were coded as -ing based on
the majority-rules codes for three raters. For -in, 429 (85.6%) of
the cases were agreed upon by all three coders, with the remaining
72 cases (14.4%) having agreement by two of the three coders. For
-ing, 268 (88.7%) of the cases were agreed upon by all three coders
with the remaining 34 tokens (11.3%) having agreement by two
of the coders.

Parameters were chosen for the three classifiers by a model
tuning step, which conducted a grid-search over candidate
settings. After determining parameters based on the entire
dataset, the data were randomly divided into 10 “folds,” each
containing 10% of the tokens, and then each of the three
classifiers was trained, using the 48 MFCCs (12 MFCCs for each
of four measurement points), for 9 of these folds (90% of the
available hand-coded (ING) tokens), using the majority-rules
category (-in or -ing) as the correct outcome. Each classifier was
then tested on the held out 10% of tokens, assessing the model’s
predictions against the majority-rules coding for those tokens.
We repeat this over 10 iterations so that each 10% fold of the
data is used as a test case with the other 90% as the training
data. Cross-fold validation such as this helps to assess how stable
the classifier is to its training and test data. For each iteration,
we measure the model’s accuracy along with other performance
metrics, for both the training data (how well was the model able
to fit the training data?) and the testing data (how well was the
model able to predict the outcomes for previously unseen data?).
We also report the overall percent predicted as -in by the models,
which helps to show the extent to which each model is over- or
under-predicting -in vs. -ing. Finally, we calculate standard signal
detectionmeasures, precision, recall, F1 score, and area under the
ROC curve (AUC). These measures provide more insight than
accuracy alone, and, are especially valuable since the data are not
balanced across -in and -ing realizations. That is, since 62.4% of

the tokens in the (trimmed) Dataset B were coded as -in by the
human coders, a classifier that always chose -inwould be accurate
62.4% of the time. Signal detectionmeasures providemore robust
performance measures for cases like these. Our reporting of
many performance metrics is also meant to provide baseline
information for future work on automated coding procedures.
Accuracy information from the individual runs of the 10-fold
cross validation procedure are displayed in Figure 1 and other
performance metrics from across the 10 runs are summarized
in Table 7.

Overall, the classifiers fit the training data with accuracies of
83.0% (linear SVM), 93.6% (radial SVM), and 81.8% (RF) on
average. The models’ predictive accuracy, their ability to match
the human codes for the testing data on each run, is also decent,
matching the gold standard codes 78.2% (linear SVM), 86.1%
(radial SVM), and 82.1% (RF) on average. We note that these
numbers are slightly lower than the agreement between the
forced alignment algorithm and the human raters, although the
radial SVM’s performance is close, only diverging from humans’
judgments 13.9% of the time.

We include Figure 1 as an illustration of the performance
of the three classifiers, and to underscore the utility of the 10-
fold cross validation method. As visible in the figure, across
the iterations we see general stability in the models’ fits and
performance for the training data (the lines for the training data
are relatively flat). And the average amount of actual -in use is
stable across each of the training datasets. This is not surprising
given the amount of training data; shifts between which specific
10% folds are excluded do not lead to large changes in the overall
proportion of -in. Further, the overall good fit, over 93% for the
radial SVM, for the training data is somewhat expected. These
techniques should be able to model accurately the data provided
for training. The more important question is their performance
on the testing data.

The testing data, with many fewer tokens (10% of Dataset B, as
opposed to the 90% in the training data), are more erratic in the
actual rates of -in (ranging from 53.8 to 68.8%) across the folds.
Predictably, the models appear sensitive to this with, generally,
correspondingly variable predictions across the testing folds. The
accuracy on test folds varies quite a bit, however, with the worst
accuracy at 70.0% for Fold 8 of the linear SVM and the best
accuracy, of 90.0%, at Fold 4 for the RF and Folds 5 and 7 for the
radial SVM. While the accuracies are at times rather good, the
models generally over-predict -in in both the training and test
data (as seen in the higher lines for the models’ -in prediction
rates in comparison to the actual rates).

As an additional test of the models’ performance, we trained
eachmodel (a linear SVM, a radial SVM, and an RF) on the entire
set of data in Dataset B and then tested these models on the two-
analyst Dataset C data. 580 of the 900 tokens of Dataset C were
mapped to the extracted MFCC data; the unmapped tokens were
removed. 516 of the remaining (ING) tokens had agreement by
the two coders (311 -in, 205 -ing) and we focus on these tokens.
The models yield slightly lower performance than they did on
Dataset B, over-predicting -in at a higher rate than for Dataset
B. This difference in performance makes some sense given that
Dataset C contains a wider range of speakers, many of whom
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FIGURE 1 | Classifier performance on Dataset B.

TABLE 7 | Classification performance for models on Datasets B and C.

Dataset B test performance (mean (and std. dev.)

across 10 tests; training on 90%, testing on 10%)

Actual -in rates (mean and std.dev): 62.4% (5.2)

Dataset C performance (training on 100% Dataset B,

testing on Dataset C)

Actual -in rates: 60.3%

Pred. -in rate Accuracy Precision Recall F1 score AUC Pred. -in rate Accuracy Precision Recall F1 score AUC

Linear SVM 64.5% (5.3) 78.2% (5.6) 0.84 (0.05) 0.81 (0.06) 3.25 (0.23) 0.76 (0.06) 70.7% 78.7% 0.91 0.78 3.10 0.75

Radial SVM 66.6% (4.8) 86.1% (2.8) 0.92 (0.04) 0.86 (0.05) 3.46 (0.20) 0.84 (0.04) 69.0% 79.3% 0.90 0.79 3.15 0.76

RF 69.9% (5.6) 82.1% (3.9) 0.92 (0.03) 0.82 (0.06) 3.28 (0.24) 0.79 (0.05) 72.5% 77.7% 0.92 0.76 3.05 0.74

were not included in themodels’ training, Dataset B. Nonetheless,
the models still obtain accuracies in the high 70% range.

Themodels all perform relatively similarly, although the radial
SVM performs slightly better than the linear SVM and RFmodels
by all measures of performance. The RF model does better than
the linear SVM for Dataset B, but not quite as good as the linear
SVM for Dataset C. As noted above, all models appear to over-
predict -in rates, with the RF models doing this the most. Across
the board, models’ precision is slightly better than their recall.

As a final assessment, we consider the outcomes of logistic
regression on the Dataset C tokens. Table 8 provides the output
of models similar to (i.e., with the same modeling structures as)
those presented in Table 6 but here presenting simple mixed-
effect models for the 516 tokens of Dataset C which had MFCC
measures and agreement among the two human coders. The only
structural difference between the models for Dataset C and B
is that for Dataset C the SEC factor was included in the model
with three levels (1 lowest (reference level) to 3 highest), as

annotated in CORAAL (Dataset C with a wider range of speakers
includes a more complete sampling across all three SEC groups,
whereas Dataset B only included limited data from SEC 3).
Model III presents a model fit to the human coded Dataset C
tokens, with the dependent variable being whether the humans
coded the token as -in. Model IV presents a model fit to the
same data with the dependent variable being whether the radial
SVM classifier classified the token as -in. We present only this
classifier’s outcomes for space and chose it because it performed
slightly better than the other two classifiers.

Model III, for the human coded data, indicates that gender
and socioeconomic status are significant factors in -in realization
for Dataset C. Males use -in at significantly greater rates and the
highest SEC group uses -in at significantly lower rates than the
lowest SEC group, which is the reference level. Model III does not
indicate differences among the age groups, but, as Model I did for
Dataset B, does show the expected effect for the linguistic factor,
word length. The model does not find a statistically significant
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TABLE 8 | Logistic mixed-effect regression models for (ING) in Dataset C (516 tokens).

Model III: human coders (N = 516 tokens) Model IV: radial SVM predictions (N = 516 tokens)

Est. Std. Err. p Est. Std. Err. p

(Intercept) 5.86 1.40 < 0.0001*** 4.01 1.00 0.0001***

Corpus (DCB, vs. DCA) 0.25 0.61 0.6846 −0.45 0.45 0.3110

Gender (male, vs.female) 1.17 0.55 0.0326* 1.90 0.41 0.0000***

AgeGrp (AG1, vs. AG4) −0.10 0.82 0.9024 −2.01 0.64 0.0017**

AgeGrp (AG2, vs. AG4) −1.38 0.86 0.1058 −1.42 0.64 0.0271*

AgeGrp (AG3, vs. AG4) −1.16 0.78 0.1358 −1.25 0.57 0.0283*

SEC (SE2, vs. SE1) −1.09 0.64 0.0888. −0.36 0.46 0.4380

SEC (SE3, vs. SE1) −3.67 0.77 < 0.0001*** −1.04 0.48 0.0301*

GramCat (N-like, vs. V-like) −0.93 0.49 0.0573. −0.68 0.38 0.0792.

Word Len (# Sylls) −1.39 0.42 0.0010*** −0.66 0.30 0.0286*

***p < 0.001, **p < 0.01, *p < 0.05, .p < 0.1.

difference for grammatical category, although the data trend in
the expected direction. Model IV, for the radial SVM coded data,
also identifies a significant effect for gender, with greater use of
-in for males. The effects for socioeconomic status are less robust
than for the human coded data, but still in the same direction
with a significant difference between rates for the highest SEC
group in comparison to the lowest. Model IV matches Model III
in obtaining a non-significant trend for grammatical category. A
major contrast between the two models is that in comparison
to the human coded data, the SVM results overemphasize age
differences, suggesting significant differences among the age
groups that were not seen in Model III. Finally, the SVM-coded
data identifies the significant syllable length effect, which the
forced alignment model in section Coding via Forced Alignment
did not appear to be sensitive to. This is an indication that, unlike
the unsupervised forced alignment data, the classifiers trained on
hand-coded data did learn associations related to the perceptions
of human coders.

(ING) Classification, Using Variable-
Adjacent Productions as Training Data
In this section we return to the idea implemented by Yuan
and Liberman (2009, 2011a) and McLarty et al. (2019), where a
variable classifier might be trained on related, non-variable but
“variable-adjacent” phonetic material. As discussed earlier, this
is a novel suggestion with much promise, although, as raised
by Villarreal et al. (2020), one that needs extensive validation
before we know how much we might trust automated coding
procedures that are not trained on data from the same variable
contexts that they are used to classify. Here we use the IN
and ING data – from non-variable word final instances of [ın]
(words like begin and win) and [ıη] (monosyllabic words like
thing and wing) – as training data for (ING) classifiers. The
key question is whether such forms, which are outside of the
variable context and thus should provide stable acoustic evidence
for forms phonetically similar to the variable productions of
(ING), provide data of value for the training of a variable
classifier. If these forms suffice for model training we might
be able to get around the costly, slow, work-intensive step of

hand-coding training data in the first place. We examine this
here, by training a set of classifiers on the non-variable words
and then assessing the classifiers’ accuracy on the hand-coded
(ING) words.

As described in the section CORAAL and its (ING) Data, our
extracted MFCC dataset included 8,255 non-variable IN words
(words like begin, win, and the word in) and 1,436 ING words
(e.g., thing, bring, and spring). There are reasons to expect that
these non-variable words will not form perfect approximations
of the pronunciation of -in and -ing variants of (ING), however
their basic phonological forms are close to the realizations
relevant to variable (ING). Also, and as might be expected,
the words in these classes are of greatly varying frequency
with e.g., 1,054 tokens of thing and 7,860 instances of in. This
could be a problem for their use as training data. Preliminary
testing indicated that using different subsets of the variable-
adjacent forms in our training data led to major differences in
performance. One area that will need further exploration is how
to prune these kinds of datasets for the most appropriate training
examples. For the analysis here, we randomly subsampled 1,436
tokens from the IN words to match the smaller set of (1,436) ING
words. This provided a training dataset of 2,872 words, evenly
balanced for non-variable IN and ING words.

We then built three classifiers, again, a linear SVM, a radial
SVM, and an RF. Each classifier was trained and tuned using
10-fold cross-validation with training on the categorical IN and
ING data. We then tested each of these trained models against
the 803 three-analyst hand-coded (ING) instances in Dataset
B and the 516 tokens in Dataset C. The outcomes from these
testing runs are presented in Table 9. Performance for these
classifiers is slightly lower than the classifiers trained on human
coded data (in section Coding via Forced Alignment), especially
in their testing performance on Dataset B (comparing left-hand
panels of Tables 7, 9). The reduction of performance on Dataset
B makes sense given that the earlier models were trained and
tested on speech from the same speakers. Testing on Dataset C
for the models trained on the non-variable data actually shows
much less over-prediction of -in and only very small reduction in
performance compared to the classifiers trained on Dataset B. In
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TABLE 9 | Performance of the three classifiers for classification of variable (ING).

Dataset B test performance (training on

non-variable IN and ING data)

Actual -in rates: 62.4%

Dataset C performance (training on

non-variable IN and ING data)

Actual -in rates: 60.3%

Pred. -in rate Accuracy Precision Recall F1 score AUC Pred. -in rate Accuracy Precision Recall F1 score AUC

Linear SVM 64.6% 69.6% 0.77 0.75 2.99 0.67 61.8% 69.8% 0.76 0.74 2.97 0.68

Radial SVM 64.6% 78.8% 0.85 0.82 3.28 0.77 60.3% 75.2% 0.79 0.79 3.18 0.74

RF 70.0% 75.5% 0.86 0.77 3.08 0.72 64.5% 76.4% 0.84 0.78 3.14 0.74

fact, some metrics, such as the F1 Scores for the radial SVM and
RF actually slightly improve; in terms of overall predicted rates of
-in, the models trained on the non-variable tokens get closest to
the actual rates for Dataset C. This result likely comes about for
a couple of related reasons. First, the non-variable training data
included speech from across all of the speakers in the corpus. This
likely helped the models in making predictions for Dataset C,
which contained variable (ING) tokens from across a wide range
of speakers. Dataset B, with tokens selected from only a subset of
speakers, was less useful as training data in this way, even though
the hand-coded data provided clearer evidence for the models
about the mappings between the features (MFCCs) and variants
of (ING). Thus, as we will return to, each of the approaches here
appears to have advantages, as well as disadvantages.

As a final assessment of classifier performance, we once
again conduct logistic regression analyses comparing the human
analysts’ codes to the predictions of the classifier, again focusing
on the radial SVM and on Dataset C (We do not include Dataset
B simply for space). Table 10 presents the model of this radial
SVM output, Model V, along with Model III, of the human coded
data (fromTable 8). The patterns emerging from the radial SVM’s
predictions, as indicated by Model V, are similar to those for the
human coded data for SEC, gender, and the word length effect
(all yielding significant effects), and for grammatical category
(not significant). However, like the SVM trained on the hand-
coded data, the SVM here also identifies significant age group
differences that do not emerge among the human coded data.
Most notably, unlike any of the other models, Model V identifies
a significant difference between the CORAAL components, with
DCB speakers using less -in than DCA speakers.

DISCUSSION AND CONCLUSION

To conclude, each of these assessments has demonstrated that
automatic coding algorithms, through both forced alignment
algorithms and machine learning classifiers, can perform close
to human coders in their ability to categorize the sociolinguistic
variable (ING). Overall, the models tend to over-predict -in
somewhat, but their performance is promising. In addition to
achieving generally reasonable accuracy, precision, and recall,
we would argue that the statistical model assessments of the
sociolinguistic patterns that would be uncovered through any
of these datasets tell roughly similar stories, albeit with small
substantive differences (e.g., the word length effect missing
from the forced alignment coded data, the SVM trained

on variable-adjacent data suggesting a difference between the
CORAAL components).

Given the similar performance of the automated coding
approaches tested in our study, and more generally the
techniques used to implement them, we suggest that the most
appropriate approach for automatic coding of variable features
will depend on the kind of data used, whether there is any hand
coding available, and, crucially, the research questions and design
of the study. Using any particular machine learning approach,
such as SVMs or RFs, should take into account what is gained
or lost in that choice. For example, with data that has acoustic
measures characterized by collinearity, RFs might be preferred
(Villarreal et al., 2020). At the same time, forced alignment-
based classification holds great promise for use cases where an
entire large corpus can be force aligned through a training and
alignment process (as we did for CORAAL). This approach
may be less useful or appropriate if less speech is available for
training the aligner. (Although here we do note that Bailey’s
(2016) investigation yielded good results for variables in British
English data using an aligner trained on American English.)

For (ING) in particular, in terms of the machine learning
approaches, both SVMs and RFs performed relatively similarly,
although across the board the radial SVM performed best,
followed closely by the RFs. Models generally performed well
across all performance measures, although we note that model
precision was uniformly better than recall. The consistent better
performance of the radial SVMs over linear SVMs indicates that
automated coding methods should not be used “off the shelf,”
without careful testing and adjustment for the problem at hand.
It may be that radial SVMs will consistently outperform linear
SVMs on (socio)linguistic data – this would not be surprising –
but individual projects should assess that empirically.

Further, our approach to more customized classifiers worked
slightly better with hand-coded training data than it did with
adjacent, non-variable productions as the training data. Thus,
and not surprisingly, it would seem most prudent to use
validated carefully hand-coded data for model training when
it is available – and we would argue that using such data for
testing is crucial – but our results should be taken as additional
encouraging evidence, building on Yuan and Liberman (2009,
2011a) and McLarty et al. (2019), that using adjacent, non-
variable training data can hold good promise in certain cases.
Of course, some variables will be more appropriate to examine
through this means than others, where it may prove impossible to
identify relevant non-variable analogs. Therefore, we encourage
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TABLE 10 | Logistic mixed-effect regression models for (ING) in Dataset C (516 tokens) (Model III repeated from Table 8).

Model III: human coders (N = 516 tokens) Model V: radial SVM predictions (N = 516 tokens)

Est. Std. Err. p Est. Std. Err. p

(Intercept) 5.86 1.40 < 0.0001*** 3.47 0.75 < 0.0001***

Corpus (DCB, vs. DCA) 0.25 0.61 0.6846 −0.69 0.32 0.0334*

Gender (male, vs.female) 1.17 0.55 0.0326* 0.66 0.27 0.0155*

AgeGrp (AG1, vs. AG4) −0.10 0.82 0.9024 −1.11 0.44 0.0126*

AgeGrp (AG2, vs. AG4) −1.38 0.86 0.1058 −1.30 0.43 0.0026**

AgeGrp (AG3, vs. AG4) −1.16 0.78 0.1358 −0.44 0.37 0.2362

SEC (SE2, vs. SE1) −1.09 0.64 0.0888. 0.01 0.32 0.9704

SEC (SE3, vs. SE1) −3.67 0.77 < 0.0001*** −0.83 0.34 0.0140*

GramCat (N-like, vs. V-like) −0.93 0.49 0.0573. −0.34 0.31 0.2643

Word Len (# Sylls) −1.39 0.42 0.0010*** −0.75 0.25 0.0022**

***p < 0.001, **p < 0.01, *p < 0.05, .p < 0.1.

analysts considering automating coding to carefully consider
the details of their particular use case when determining which
method and which type of training data are most appropriate for
their situation.

One major take-away from our study is that rather than
interpret automated techniques’ performance as measured
against some notion of perfect accuracy, we find that human
coding for the variable also achieves agreement at rates of
only about 88%. We need to ask what it would mean for an
automated system to perform better than this. To return to
questions this paper began with: on what basis should algorithms’
performance be assessed? What counts as successful? And,
by what metric? It would seem that accuracy as measured
against a set of human coded data (especially by a single
coder) is not the right metric (unless one’s goal is to replicate
exactly the coding practices of an individual analyst). Rather,
measures of performance, and success, should recognize that
“gold standard” sociolinguistic data are inherently variable, not
just in the patterns in the data but also in the practices used for
assessment, even in the best of cases. Our comments here parallel
conclusions from work on other aspects of linguistic coding
and annotation, such as phonetic transcription (e.g., Shriberg
and Lof, 1991; Cucchiarini, 1996). Regardless of the specific
problem, success should ultimately be measured in terms of the
adequacy of the resultant data for the purposes at hand. Similar
to Reddy and Stanford’s (2015) discussion of desiderata for a
fully automated vowel measurement system (see also Kendall
and Vaughn, 2020 and Kendall and Fridland, 2021: chapter 8),
we argue that automated techniques should not seek simply to
replace human analysts but rather that they reflect alternative
approaches to coding that have advantages and appropriateness
for some applications and disadvantages and inappropriateness
for others.

Across automated techniques our results largely triangulate
toward a reasonable and not unexpected pattern for (ING)
in CORAAL. But of course differences between the individual
models’ performances and the statistical patterns that emerge
caution against taking an uncritical view of, for instance, a
p-value threshold as the measure of patterns in a dataset.

That said, we believe the variability in human coded data
offers a similar caution. That is, our statistical analyses of
human coded (ING) in CORAAL (in Models I and III) also
present somewhat different views of the patterns in CORAAL.
It would seem that the story they tell in the aggregate
provides a more dependable picture of the patterns for this
sociolinguistic variable in these data than any single one of
the models. This seems to us a useful observation for the
larger sociolinguistic enterprise and not just a point relevant to
automatic coding procedures.

As a final note, we observe that major advances in other
domains of machine learning and artificial intelligence, such
as automatic speech recognition, have come about through
the development of larger and larger “gold standard” training
datasets. We stress the importance and value of carefully hand-
coded datasets, along with the understanding of the variation
inherent in auditory coding. Until automated procedures have
been extensively validated for a wide range of features and
datasets – something that appears to be still rather far off
in the future – a bottleneck in the advancing of automated
procedures will remain the availability of hand-coded training
data. Our study has focused on relatively small training data,
and this seems to us an important area for sociolinguistics at
present, since large, reliable human coded datasets for variables
like (ING) are unlikely to be available in the immediate future.
However, it stands to reason that the performance of these
kinds of automated classification systems will be improvable
with larger training data, which we believe presents a call
for greater data-sharing and organized efforts toward open
science in the field. Thus, readers will find our datasets, as
well as code, included in the Supplementary Material with
this paper.
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