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In liquid argon time projection chambers exposed to neutrino beams and running on
or near surface levels, cosmic muons, and other cosmic particles are incident on the
detectors while a single neutrino-induced event is being recorded. In practice, this means
that data from surface liquid argon time projection chambers will be dominated by cosmic
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particles, both as a source of event triggers and as the majority of the particle count in
true neutrino-triggered events. In this work, we demonstrate a novel application of deep
learning techniques to remove these background particles by applying deep learning
on full detector images from the SBND detector, the near detector in the Fermilab
Short-Baseline Neutrino Program. We use this technique to identify, on a pixel-by-pixel
level, whether recorded activity originated from cosmic particles or neutrino interactions.

Keywords: deep learning, neutrino physics, SBN program, SBND, UNet, liquid Ar detectors

1. INTRODUCTION

Liquid argon time projection chambers (LArTPCs) are high
resolution, calorimetric imaging particle detectors. Due to
their excellent calorimetric properties and particle identification
capabilities (Acciarri et al, 2017b), combined with their
scalability to kiloton masses (Abi et al., 2018a), LArTPCs have
been selected for a variety of experiments to detect neutrinos
in the MeV to GeV energy range. Several 100-1,000 ton-scale
LArTPCs have collected substantial amounts of neutrino data
[ICARUS at LNGS (Rubbia et al., 2011) and MicroBooNE at
Fermilab (Acciarri et al., 2017a)], or been operated in charged
particle test beams [ProtoDUNE-SP (Abi et al., 2017) and
ProtoDUNE-DP (Abi et al., 2018c) at CERN]. Others are
commissioning (ICARUS at Fermilab, Antonello et al., 2015a) or
under construction (SBND at Fermilab, Antonello et al., 2015a).
Coming later this decade, the Deep Underground Neutrino
Experiment, DUNE (Abi et al., 2018b), will be a 10*-ton-scale
LArTPC neutrino detector built 1.5 km underground in the
Homestake Mine in South Dakota.

LArTPCs operating near the Earth’s surface [such as SBND,
MicroBooNE, and ICARUS comprising the Short-Baseline
Neutrino (SBN) program at Fermilab] are susceptible to
backgrounds induced by cosmic interactions, which occur at
much higher rates than neutrino interactions. In this paper,
we present novel techniques for the tagging of cosmic-induced,
neutrino-induced, and background-noise pixels, at a single pixel
level, using deep convolutional neural networks applied directly
to simulated data from the SBND LArTPC detector.

We first present, in section 2, a description of the liquid
argon time projection chamber technology, particularly in the
context of the SBND experiment where this study is performed.
In section 3, we summarize the origin of the problem we solve
with convolutional neural networks, including a description of
how LArTPC images are created from the raw data for this
study. Section 4 summarizes the related work on this challenge,
and section 5 describes the details of the dataset used in this
study. Sections 6 and 7 describe the design and training of
the convolutional neural network, respectively, and section 8
presents a basic analysis based on the trained network.

2. THE SBND LIQUID ARGON TIME
PROJECTION CHAMBER

The LArTPC is a high resolution, high granularity, scalable
particle detector. Many detailed descriptions of LArTPCs are

available (Anderson et al., 2012; Antonello et al., 2015b; Acciarri
etal.,, 2017a) but we will summarize the key features here. In this
discussion, we will focus on the near detector of the SBN Program
at Fermilab, the Short Baseline Near Detector or SBND, since it is
the origin of the dataset used here.

A LArTPC s an instrumented volume of purified liquid argon
under an approximately uniform electric field. At one side is
the source of the electric field, the cathode. At the other side,
the anode, are readout channels to detect charge. In SBND, the
readout channels are wire-based.

When charged particles traverse the active argon region,
they ionize the argon atoms and leave a trail of argon
ions and freed electrons. The freed electrons drift under the
influence of the electric field toward the sense wires, where
they are detected either via induction or directly collected on
the sense wires. Each wire is digitized continuously, and the
time of charge arrival indicates how far the charge drifted.
A very thorough description of the mechanisms and signal
processing for wire-based TPCs can be found in Adams et al.
(2018a,b).

The SBND detector is a dual drift TPC, with a central, shared
cathode and two anodes, one at each side of the detector (see
Figure 1). The vertical wire planes each have 1,664 wires (plane
2 in images in this work), and each of the induction planes
(angled at +60°, planes 0 and 1 in this work) have 1,984 wires
(Acciarri et al., 2020). Each TPC is ~5 m long, 4 m high, and
2 m in the drift direction—for a total width of ~4 m. The
entire TPC is located within a cryogenic system, as seen in
Figure 2.

SBND is also surrounded, nearly entirely, by a solid
scintillator-based cosmic-ray muon tracking (CRT) system. The
CRT observes the passing of cosmic muons and provides their
time of arrival, in principle allowing a veto of some cosmic ray
interactions that have no neutrino interactions. Additionally, the
interior of the LArTPC detector has a photon detection system
to collect the prompt scintillation light that is also generated by
charged particles traversing the argon. Both the CRT and photon
collection systems could be useful for disentangling cosmic-only
and cosmic-with-neutrino events (as described in section 3), but
in this work we focus exclusively on analysis of TPC data in the
form of 2D images.

SBND is located in the Booster Neutrino Beam at Fermilab,
and will observe neutrino interactions in an energy range from a
few hundred MeV to several GeV. The SBND detector is under
construction at the time of this writing, and results here use
simulations based on the design of the detector.
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FIGURE 1 | An illustration of the SBND TPC used in this work. In this image, a neutrino interacts in the left TPC, and the outgoing particles cross the central cathode
into the right TPC. The top-down projection images (vertical wire planes) are shown, which are combined into one image as seen in Figure 4.
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FIGURE 2 | Engineering diagram of the SBND LArTPC and its surrounding
subsystems. Here, the TPC is shown lifted above the cryostat for clarity.

3. PROBLEM DESCRIPTION

We seek in this work to remove background activity generated
by cosmic particle interactions in the SBND dataset, and in this
section we will describe in more detail how the SBND LArTPC
operates and why cosmic interactions are problematic.

During typical operation, a LArTPC digitizes the entire
detector for a period of time, usually equal to or larger than the

time needed for an ionization electron to drift from the cathode
to the anode following a “trigger.” A trigger can be caused by any
event that would be of interest, such as the arrival of the neutrino
beam, the activation of the scintillation detection system above a
certain threshold, or a combination of signals from the external
CRT system. One digitization of the detector, comprised of the
images of each plane for the same time window as well as all
auxiliary subsystems, is referred to as an “event.” For a typical
LArTPC neutrino detector, the maximum drift time is 1-3 ms.

The Booster Neutrino Beam delivers neutrinos to SBND up
to 5 times per second, with a neutrino arrival window at the
detector that is small (microseconds) compared to the TPC drift
time (milliseconds). The histogram in Figure 3 shows the energy
of interacting neutrinos simulated in SBND (more details on the
simulation are in section 5). The neutrino energies range from
tens of MeV to several GeV. When a neutrino interacts with
an argon nucleus, it produces an outgoing lepton. For charged
current (CC) interactions the outgoing lepton is an electron
or muon for an incident electron neutrino or muon neutrino,
respectively. For neutral current (NC) interactions the final state
lepton is a neutrino, which exits the detector undetected. Both
kinds of interactions could also produce other particles such as
pions, protons, and neutrons. In liquid argon, at energies relevant
to this work (see Figure 3), these particles can travel up to several
meters (for energetic muons) or as little as several millimeters (for
low energy protons).

During the few millisecond drift time of the ionization
electrons, multiple incident cosmic rays will also traverse the
TPC. Therefore, a typical event captured in coincidence with the
neutrino beam has many cosmic particles visualized in the data,
as seen in Figure 4.

As discussed, the scintillation light and CRT auxiliary
detectors are useful for rejection of cosmic particles on a whole-
image basis, but they do not have granularity to directly remove
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FIGURE 3 | Neutrino energy of interactions produced for this analysis. Most
neutral current events are produced by muon-type neutrinos, and so the v,
CC and Neutral Current energy spectra are similar. The relative populations
here are for the dataset used in this paper, while in the neutrino beam the
muon neutrino interactions are far more frequent than electron neutrino.

cosmic-ray induced pixels from TPC data. For example, the
photon detectors typically have spatial resolution on the order
of tens of cm, while TPC data has a resolution on the scale
of millimeters. However, the temporal resolution is significantly
better than the TPC. Using this timing information, which can
resolve scintillation flashes coincident with the neutrino beam
arrival, these detectors can easily reject non-neutrino events that
have no scintillation at the right time (the neutrino-beam arrival).

While some cosmic-only events can be rejected with light-only
information, for example by requiring a flash of light coincident
with the neutrino arrival from the beam, this condition is
insufficient to reject every cosmic-only event. In some cases, a
neutrino can interact inside of the cryostat but external to the
TPC, which is sufficient to cause a detectable flash of light in
coincidence with the neutrino arrival. However, no neutrino-
induced depositions will be visible in the TPC data, even though
all of the standard trigger conditions will have been met.

In another case, since each cosmic interaction also produces
scintillation light in the TPC, it is possible for a cosmic particle
to produce a flash of light in coincidence with the neutrino beam
arrival, even if no neutrino interacts in that event. In this case, the
external cosmic ray tagger can identify the cosmic interaction in
time with the beam, but these detectors have imperfect coverage
and will not distinguish all in-going cosmic muons from outgoing
neutrino-produced muons.

Both of these mechanisms cause an event trigger based on a
flash of light during the neutrino-arrival window without any
neutrino-induced activity in the TPC. And even in events that
have a neutrino interaction, the light collection, and cosmic
ray tagging subsystems cannot identify the neutrino interaction
in the TPC data by themselves. Pattern recognition algorithms
applied to TPC data are needed to discern cosmic-induced from
neutrino-induced activity. Traditional approaches convert TPC

wire data into “hits” (regions of charge above noise threshold)
and use geometric relationships to group hits into higher order
2D and 3D multi-hit objects within the TPC images. These
objects are treated as particles in the detector and can be further
grouped with other associated objects before they are classified as
being of cosmic or neutrino origin.

In this work, we take a fundamentally different approach from
traditional pattern recognition in LArTPCs by tagging the raw
TPC data as cosmic-induced or neutrino-induced on a pixel-by-
pixel basis. This tagging, applied early in the analysis of TPC data,
can then seed a variety of downstream analysis approaches and
provide a significant boost to their performance.

3.1. LArTPC Imaging Data

The individual readout “unit” of a LArTPC is the signal along
each wire as a function of elapsed time since the trigger or event
start. We form 2D images (as seen in Figure4) from the 1D
wire signals as follows. Each column of vertical pixels of the
2D image is two individual wires, one from each TPC, with the
1D signals joined at the cathode in the vertical center of the
image. Since the two TPCs drift electrons in opposite directions,
away from the central cathode, the 1D signal in the top TPC
is inverted compared to the bottom (here, “top” and “bottom”
refer to the positions in Figure 4). The signals on each wire are
juxtaposed and ordered by increasing wire location, and in this
way the collection of 1D readout signals forms a high resolution
2D image.

Each constructed image is effectively a compression of 3D
charge locations into a plane that runs perpendicular to every
wire in the plane. For the collection plane, with vertically oriented
wires, this amounts to a top-down view of the 3D data, where the
vertical information is lost in the projection. The other two planes
give a different projection, 60 degrees from vertical, which has
the effect of moving the X positions of each charge deposition,
while maintaining the Y position, as compared to the vertical
projection. Figure 4 shows the 3 wire views from the same 3D
interaction in SBND. The images are intrinsically gray scale but
have been colored with a color map based on the amount of
charge detected per pixel.

The 3D position of a point of charge uniquely determines
its location in all three images, and therefore the 3D locations
of charge depositions are exactly determined from the 2D
images for point-like charge. In practice this inversion task is
combinatorically hard with extended objects (and occasionally
ambiguous in certain pathological topologies), but some
algorithms have made excellent progress (Qian et al., 2018).

4. RELATED WORK

The task of pixel level segmentation, or semantic segmentation
as it is known, has been explored in depth in computer science
journals (Long et al., 2015; Ronneberger et al., 2015), as well as in
neutrino physics (Adams et al., 2019). In the UNet architecture
(Ronneberger et al., 2015), shortcut connections are introduced
to a fully convolutional segmentation network for biological
images. The network we present in this paper is similar to the
“UNet” architecture in that it has shortcut connections between

Frontiers in Artificial Intelligence | www.frontiersin.org

August 2021 | Volume 4 | Article 649917


https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Acciarri et al.

Cosmic Background Removal in SBND

£
a
c
g
PSR S
°
w
Cathode i Upper TPC (Mirrored)
- Lower TPC
&£
o
c
—~. N\ S
3 ™ 3
(]
8 [
]
@ N
£
[=
Wire (2048 px)
% Plane 1
QDY Simulation
A DEre”
: £
a
c
<
" 3
- s
w
Cathode Upper TPC (Mirrored)
s Lower TPC
&£
a
c
T <
3 3
()
3 m
o
Y
£
=
Wire (2048 px)
Plane 2
Simulation
7 E
a
c
g
©
@
w
Cathode o o Upper TPC (Mirrored)
7. Lower TPC
/ a
c
< 8
3 3
3 m
o
Y
E
=
Wire (2048 px)
FIGURE 4 | The raw data for one image in the dataset at full resolution. Charge observed is colored with blue for smaller charge depositions and red for larger charge
depositions. There is an electron neutrino charged current interaction in the Upper TPC.
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down-sampled and up-sampled layers of similar resolution. More
details of the building blocks and architecture are given in
section 6.

In Adams et al. (2019), a modified version of UNet, using
residual convolution layers, was deployed to perform pixel-
level segmentation of particles based on particle topology;
electrons and photons exhibited a broader, “fuzzy” topology
when compared to “track”-like particles (protons, muons, pions)
which typically are seen as thin, line-like objects!. The network
was trained on 512 x 512 square images of data from the
MicroBooNE detector, and the result was a successful first
application of UNet style segmentation techniques to LArTPC
neutrino data. Following (Adams et al., 2019), the network
described in this paper also applies a series of residual blocks
instead of pure convolutions at each image resolution, hence is
referred to as “UResNet.”

Additionally, in Dominé and Terao (2020), the authors
introduce a spatially sparse, UResNet style architecture for
particle-wise segmentation labels in both a 2D and 3D LArTPC-
like dataset. Their result is based purely on GEANT4 (Agostinelli
etal., 2003) information, meaning that the images did not include
the simulation of electronic effects, nor drift-induced effects
such as diffusion or absorption of electrons. Nevertheless, this
is a novel technique that has broad applicability in neutrino
physics. The results presented here use a dense convolutional
network, however it is notable that a sparse implementation of
the results presented here could deliver gains in performance and
computational efficiency.

In MicroBooNE analyses, classical reconstruction techniques
are used to reject cosmic ray particles on a particle-by-
particle basis, after particles have been “reconstructed” into
distinct entities with traditional pattern recognition analyses.
For example, in an analysis of charged current muon neutrino
(Abratenko et al., 2019) there is still a background of ~35%
cosmic or cosmic-contaminated interactions at 50% signal
selection efficiency. The results presented here have been
developed with the SBND TPC and geometry in mind, but should
apply well to the MircoBooNE or ICARUS geometries, also along
the Booster Neutrino Beam and part of the SBN Program. In
general, the techniques presented here are intended to augment
analyses such as Abratenko et al. (2019) to gain better background
rejection and better signal efficiency.

5. DATASET

The dataset for this application was generated via the
| ar sof t simulation toolkit for LArTPCs (Snider and Petrillo,
2017) utilizing a SBND geometry description and electronics
simulation, as of 2018. It was known that the geometry
description and electronics simulation for SBND were not
finalized at that time, but minor changes to the geometry and
electronics response are unlikely to lead to significant changes
in the performance we report here. Each event was processed

"The “fuzzy”ness of electromagnetic particles is due to the electromagnetic cascade
or shower of particles initiated by an electron or photon with enough energy to
produce more particles.

through the simulation of readout electronics and deconvolution,
so that the input to the network is identical to data—barring
data/simulation issues that are impossible to resolve before
operation of the detector.

The drift direction in each plane is digitized at a higher spatial
resolution than the wire spacing. For this dataset, the images are
downsampled along the drift direction by a factor of 4 to make
vertical and horizontal distances have the same scale. To better
suit downsampling and upsampling operations, the images are
centered horizontally into images with a width of 2,048 pixels,
with each pixel representing one wire. The drift direction is 1,260
pixels. Pixels on the right and left, beyond the original image, are
set to 0 in both label and input images. The cathode is visible
in these images as a green horizontal space in the middle of
each image.

Because the images to segment are so large, this work is
demonstrating these results on a downsampled version of the
images, where each image is at 50% resolution (640 pixels tall,
1,024 pixels wide). The computational challenges leading to
this decision are two-fold: first, the GPU memory availability is
typically too small to fit the full resolution image during training
with all of the intermediate activations required for the gradient
calculation. Second, even if the images fit into memory, training
on full resolution images takes 4x longer than downsampled
images, making model comparisons prohibitively expensive.
We anticipate a further publication with full resolution images
as the latest computing hardware reduces and eliminates
these challenges.

Each interaction in the dataset used here has neutrino
interactions simulated with the GENIE software package
Andreopoulos et al. (2010) (v2.12.8¢c), and cosmic backgrounds
simulated using CORSIKA (Heck et al., 1998) (v1.7i). The BNB
neutrino flux is used to sample neutrinos at the proper energies,
however the relative populations of three distinct categories of
events (v, CC, v, CC, and NC) are balanced in the training set
(see Figure 3).

The label images are created using truth level information
from GEANT4 (Agostinelli et al.,, 2003) (v4.10.3.p01b), where
each deposition on a wire is tracked from the particle that created
it. Each particle, in turn, is tracked to its parent particle up to the
primary particles. All depositions that come from a particle (or
its ancestor) that originated with GENIE are labeled as neutrino
induced, and all depositions that originated from a CORSIKA
particle are labeled as cosmics. In the event of an overlap, as
is common, the neutrino label takes precedence. Approximately
50% of all events have an overlap in at least one plane. The label
images for the event in Figure 4 can be seen in Figure 5.

6. NETWORK ARCHITECTURES AND
IMPLEMENTATIONS

For this work, we present a novel modification of the UResNet
architecture for cosmic and neutrino segmentation that aims to
meet several criteria:

e Discriminate cosmic pixels from neutrino pixels with high
granularity.
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e Segment entire events across all planes simultaneously and
efficiently.
e Incorporate multi-plane geometrical information.

To this end, we present a multi-plane, UResNet style architecture
as depicted in Figure 6. The input to the network is entire
images for each of the three planes, each of which is fed through
a segmentation network in the shape of a UResNet. Unique
to this work, at the deepest convolutional layer, the per-plane
filters are concatenated together into one set of convolutional
filters and proceed through convolutions together, in order to
learn cross-plane geometrical features. Without this connection
at the deepest layer, this network is exactly a “standard” UResNet
architecture applied to each plane independently. We see in our
experimental results below that without this connection layer, the
network does not perform as well. After this, the filters are split
and up-sampled independently again.

Because each plane has similar properties at a low level
(i.e., particles look similar in each plane, even if the geometric
projection is different), convolutional weights are shared
across all three planes for up-sampling and down-sampling
of the network.

The implementation of the network is available in both
TensorFlow (Abadi et al., 2015) and PyTorch (Paszke et al., 2019)
on GitHub (Adams, 2021)%. The basic building blocks of this
network are residual convolutional layers (He et al,, 2015). In a
residual layer, the input tensor is processed with convolutions,
non-linear activations, and (potentially) normalization layers
before being summed with the input of residual layer: R(x) =
x + C(x), where R is the residual function and C represents the
convolution layers. In this work, we use Batch Normalization
(Ioffe and Szegedy, 2015) as a normalization layer, and
LeakyReLU (Maas et al., 2013) as a non-linear activation. Batch
Normalization minimizes image to image variance on a whole-
image level during training, leading to improved accuracy of deep
neural networks. LeakyReLU is a modified version of the rectified
linear unit (ReLU), with f(x) = xforx > 0 and f(x) = axforx <
0, and o small. LeakyReLU preserves gradient information for
negative activations (x < 0) which proves useful in this network
as many pixels are zero, and have negative activation values if
any bias terms are negative. While there are many configuration
parameters, the baseline model - which we call here Multiplane
UResNet—has six levels of depth and the following properties:

e The network operates on each plane independently except at
the very deepest layer.

e The first layer of the network is a 7 x 7 convolutional filter that
outputs a parameterizable number of filters—the reference
models use 16.

e Each subsequent layer in the down-sampling pass takes the
previous output and applies two residual blocks, described
below, followed by a max pooling to reduce the spatial
size. After the max pooling, a bottleneck 1 x 1 convolution
increases the number of filters by a factor of 2.

e After the 5th down-sampling pass, the spatial size of the
images is (10, 16) with 512 filters in each plane. The images

2https://github.com/coreyjadams/CosmicTagger.

from each plane are concatenated together, and a bottleneck
convolution is applied across the concatenated tensor to
reduce the number of filters to 256. Then, 5 residual blocks
of size 5 x 5 are applied, followed by a 1 x 1 layer to increase
the number of filters back to 1,536. The filters are split into
three tensors again.

o After the deepest layer, each up-sampling layer takes the
output of the corresponding downward pass, adds it to
the output of the previous up-sampling layer, and performs
two residual blocks with 3x3 convolutions. This pattern of
up-sampling/addition/convolutions continues until original
resolution is reached.

e Once the original resolution has been restored, a single
1 x 1 convolution is applied to output three filters for
each image, where the three filters correspond to the three
background classes.

The details of each layer are summarized in Table 1. The residual
blocks used in the network mirror those in He et al. (2015),
and are the following sequence of operations: convolution, Batch
Normalization, LeakyReLU, convolution, Batch Normalization,
sum with input, LeakyReLU.

To summarize, the network architecture used here is taking
state-of-the-art segmentation techniques [“UNet” (Ronneberger
etal., 2015) and “UResNet” (Adams et al., 2019)] and enhancing
them to learn correlated features across images.

6.1. Analysis Metrics

Because of the sparse nature of the images from a LArTPC
detector, the per-pixel accuracy does not give good
discriminating power to gauge network performance. Simply
predicting “background” for all pixels yields a very high accuracy
over 99%—even with every “cosmic” and “neutrino” pixel
mislabeled. To mitigate this, we calculate several metrics that
have proven useful for measuring the performance of a cosmic
tagging network:

e Accuracy is computed as the total fraction of pixels that are
given the correct label by the network, where the predicted
label is the highest scoring category in the softmax for
that pixel.

e Non-background Accuracy is the same as Accuracy above,
but computed only for pixels that have a non-zero label in the
truth labels. In basic terms, this metric is measuring how often
the network is predicting the correct pixel on the parts of the
image that matter, as background pixels can easily be identified
from their lack of charge.

o Intersection over Union (or IoU) is calculated for the
neutrino (and cosmic) pixels. This metric uses the set of pixels
that are labeled (by the simulation) as neutrino (or cosmic) and
the set of pixels that are predicted (by the network) as neutrino
(or cosmic). The metric is the ratio of the number of pixels that
are in both sets (intersection) divided by the number of pixels
in either set (union). In basic terms, this metric measures how
often the network predicts active categories (neutrino, cosmic)
on the correct pixels and only the correct pixels.
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FIGURE 6 | A representation of the multi-plane UResNet architecture. Only two of the three planes are shown in this image for clarity.

TABLE 1 | A description of the multi-plane UResNet architecture used in this work.

Layer X Y Filters Parameters Operations

Initial 640 1024 1 416 conv7x7, BN, LeakyRelLU

Down O 640 1024 8 2,576 Res3x3, Res3x3, MaxPool, Bottleneck 8-16

Down 1 320 512 16 10,016 Res3x3, Res3x3, MaxPool, Bottleneck 16-32

Down 2 160 256 32 39,488 Res3x3, Res3x3, MaxPool, Bottleneck 32-64

Down 3 80 128 64 156,800 Res3x3, Res3x3, MaxPool, Bottleneck 64-128

Down 4 40 64 128 624,896 Res3x3, Res3x3, MaxPool, Bottleneck 128-256
Down 5 20 32 256 2,494,976 Res3x3, Res3x3, MaxPool, Bottleneck 256-512
Bottleneck 10 16 1,536 393,984 Concat across planes, bottleneck 1,536-256
Deepest 10 16 256 16,391,680 Resbx5, 5 layers

Bottleneck 10 16 1536 397,824 bottleneck 256 to 1,536, split into 3 planes

Up 5 20 32 256 2,494,208 Interp., Sum w/ Down 5, Bottleneck, Res3x3, Res3x3
Up 4 40 64 128 624,512 Interp., Sum w/ Down 4, Bottleneck, Res3x3, Res3x3
Up 3 80 128 64 156,608 Interp., Sum w/ Down 3, Bottleneck, Res3x3, Res3x3
Up 2 160 256 32 39,392 Interp., Sum w/ Down 2, Bottleneck, Res3x3, Res3x3
Up 1 320 512 16 9,968 Interp., Sum w/ Down 1, Bottleneck, Res3x3, Res3x3
Bottleneck 640 1,024 16 2,652 Bottleneck1x1 to 3 output filters.

Final 640 1,024 3 57 Final Segmentation Maps

7. TRAINING approximately 11,000 per plane. Of these, approximately 2,300

The network here is trained on a down-sampled version of the
full-event images, so each event represents three planes of data
at a height of 640 pixels and a width of 1,024 pixels, for a
total of 655,360 pixels per plane and 3 planes. Though it would
be ideal to train on full-resolution images, this is prohibitive
computationally as the network doesn’t fit into RAM on current
generation hardware.

The number of active (non-zero) pixels varies from image
to image. In general the number of pixels which have some
activity, either from particle interactions or simulated noise, is

per plane on average are from cosmic particles, and merely ~250
per plane are from neutrino interactions, on average. See Figure 7
for more details.

To speed up training and ensure the neutrino pixels, which
are the most important scientifically, are well-classified, we adopt
a weight scaling technique. The loss for each pixel is a three
category cross entropy loss, and the traditional loss per plane
would be the average over all pixels in that plane. Here, instead,
we boost the loss of cosmic pixels by a factor of 1.5, and
neutrino pixels by a factor of 10. The final loss is averaged
over all pixels in all three planes. We also experimented with
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FIGURE 7 | Distribution of pixel occupancies, by label, in this dataset. In
general, the cosmic-labeled pixels are <1% of pixels and the neutrino-labeled
pixels are <0.3%.

a loss-balancing technique where, in each image, the weight
for each pixel is calculated so the product of the total weight
of all pixels in each category is balanced: weightpackground ¥
Nbackground = weightcosmic X Neosmic = Weightneutrino X Nueutrino-
Experimentally, we find that more aggressive loss boosting of
neutrino and cosmic pixels leads to blurred images around
the cosmic and neutrino pixels, as those pixels are heavily de-
weighted as background pixels. In future studies, we plan to
investigate the use of dynamic loss functions such as focal
loss (Lin et al., 2017) to allow better balancing of background to
significant pixels throughout training.

We report here the performance of several variations of the
network, in order to examine the properties of the final accuracy
and determine the best network. We test several variations of
the network. The baseline model, Multiplane UResNet, is as
described above, trained with the mild weight balancing, using
an RMSProp (Hinton et al., 2012) optimizer. For variations we
train the same network with the following modifications:

Concatenated Connections—instead of additive connections

across the “U” (the right-most side of every dashed line),

we use concatenation of the intermediate activations (from

upsampling and downsampling layers), and 1x 1 convolutions

to merge them.

Cross-plane Blocked—the concat operation blocked at the

deepest layer (no cross-plane information), effectively using a

single-plane network three times simultaneously.

e Batch Size x 2 —a minibatch size of 16, instead of 8, is used.

e Convolutional Upsample—convolutional — up-sampling
instead of interpolation up-sampling.

o Num. Filters/2—fewer initial filters (8 instead of 16).

e No Loss Balance—all pixels are weighted equally without

regard to their label.

Larger Learning Rate—the learning rate is set to 0.003

(10x higher).

Non Residual—no residual connections

sampling and up-sampling pass.

in the down-

e Adam Optimizer—unmodified network trained with Adam
Optimizer (Kingma and Ba, 2015).

e Full Balance—a full loss balancing scheme where each
category is weighted such that the sum across pixels of the
weights for each category is 1/3.

All models, except one, are trained with a minibatch size of 8 (x
three images, one per plane). The learning rate is set to 0.0003,
except for the network that uses a higher learning rate. The other
network is trained with a larger batch of 16 images. Due to the
memory requirements of this network, a single V100 instance
can accommodate only batch size 1. These networks were trained
in parallel on 4 V100 devices, using gradient accumulation to
emulate larger batch sizes. Figure 8 shows the progression of the
metrics while training the Multiplane UResNet model.

In Table 2, we compare the metrics for the different loss
schemes and for the network with the concatenate operation
blocked. We see good performance in the baseline model,
however the models with fully balanced loss and without a
concatenate operation are degraded. The full loss balancing
exhibits a “blurring” effect around the cosmic and neutrino
pixels, since the penalty for over-predicting in the vicinity of
those points is minimal. Since nearly half of all events have some
overlap between cosmic and neutrino particles, this significantly
degrades performance. We also see that using a less extreme
loss weighting performs better than no weighting at all, due
to the relatively low number of neutrino pixels. Notably, the
network with the concatenate connections blocked at the deepest
layer (therefore, no cross plane correlation), performs more
poorly than the baseline model with every other parameter held
constant. Notably, the larger learning rate and use of the adaptive
Adam optimizer give poor results with this network.

The larger batch size shows the best performance, including in
the average of both IoU metrics. The cosmic IoU is higher than
the neutrino IoU due to the difference in difficulty in these labels:
many more cosmic pixels implies that errors of a few pixels have
a small effect on the cosmic IoU, and a large detrimental effect
on the neutrino IoU. We speculate that increasing the batch size
further will improve results and will investigate this further with
the use of a massive computing system needed to accommodate
this large network at a high batch size for training.

As a final comment on the training process, we note that this
network is expensive to train and has challenging convergence
properties. This has limited the experiments performed on model
and training hyperparameters. We expect a future result to
investigate hyperparameters in a systematic way. In the following
section, we use the model trained with a minibatch size of 16,
“Batch Size x2,” as it had the best performance on the test set.
Example images of the output of the network are found in
Appendix A.

8. ANALYSIS RESULTS

Figure 9 shows the metric performance as a function of neutrino
energy for the best performing network, broken out across three
kinds of neutrino interactions: electron neutrino charged current,
muon neutrino charged current, and neutral current.
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TABLE 2 | A comparison of the performance metrics for the various networks
trained.

Acc.Non 0 Cosmic loU NeutrinoloU Mean loU

Multiplane UResNet 0.951 0.908 0.606 0.757
Concat. connections 0.947 0.898 0.609 0.753
Cross-plane blocked 0.942 0.898 0.571 0.734
Batch size x 2 0.956 0.914 0.698 0.806
Convolution upsample 0.938 0.898 0.539 0.718
Num. filters/2 0.930 0.887 0.457 0.672
No loss balance 0.913 0.882 0.544 0.7138
Larger learning rate 0.896 0.852 0.447 0.649
Non residual 0.944 0.904 0.584 0.744
Adam optimizer 0.904 0.852 0.509 0.680
Full balance 0.940 0.720 0.339 0.530

The best result in each metric is highlighted. The “Mean loU” is the mean of the cosmic
and neutrino loU values. “Acc. Non 0” refers to the non-background accuracy.

To demonstrate the utility of this deep neural network in
a physics analysis, we perform a very elementary selection of
events. We perform inference on a selection of events from all
types of simulated interactions, including events where there is
no neutrino interaction.

There are two main objectives of this analysis. First, on an
event by event basis, decide if there is a neutrino interaction
present in the measured charge using TPC information only.
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FIGURE 9 | Metric performance across neutrino interaction types, as a
function of neutrino energy. The solid lines are the Intersection over Union for
the neutrino predicted/labeled pixels, while the dashed lines are the
Intersection over Union for the cosmic predicted/labeled pixels. Each color in
this plot represents the loU for all events containing that particular neutrino
interaction.

It is expected that any additional information from the light
collection or cosmic ray tagging systems will further enhance
these results. Second, within an interaction that has been selected
as a neutrino interaction, measure the accuracy with which the
interaction has been selected from the cosmic backgrounds.

Frontiers in Artificial Intelligence | www.frontiersin.org

11

August 2021 | Volume 4 | Article 649917


https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Acciarri et al.

Cosmic Background Removal in SBND

TABLE 3 | Selection efficiencies for sample cuts using the inference output of the
best network.

Category Efficiency (%)

ve CC 91.5

v, CC 78.6

NC 37.3

Cosmics 91.1 cosmic-only event rejection

To demonstrate the performance in event-level identification,
we apply a simple set of metrics. We require a minimum
number of pixels, per image, to be classified as neutrino by
the network. Additionally, since the drift direction (Y-axis) of
all three images is shared in each event, we apply a matching
criterion. Specifically, we compute the mean Y location of all
neutrino-tagged pixels in each plane, and we require that the
difference in this mean location is small across all three planes.

Quantitatively, we find good results by requiring at least 100
neutrino-tagged pixels per plane, and a maximum separation of
mean Y location of 50 pixels across all three combinations of
images. With these basic cuts, we observe the selection efficiencies
of Table 3. We note that neither 100 pixels per plane, nor a
separation distance of 50 pixels, is a well-tuned cut. For some
analyses targeting low energy events in the Booster Neutrino
Beam, these cuts would be too aggressive. Instead, the desired
goal is to demonstrate that the predictive power of this network
can be leveraged in a basic event filtering workflow.

The selection efficiencies with these cuts, though not
aggressively tuned, do have variation from one type of
neutrino interaction to another. The muon-neutrino events are
distinguished by the presence of a long muon from the neutrino
interaction, while electron neutrino events have no muons and
instead an electro-magnetic shower. Since the cosmic particles
are primarily, though not entirely, composed of high energy
muons, it is not surprising that electron neutrino events are more
easily distinguished from cosmic-only events, as compared to
muon neutrino events. Additionally, the neutral current events
have an outgoing neutrino that carries away some fraction of
the energy of the event; on average, these events have much
less energy in the TPC and therefore fewer active pixels to
use for selection and discrimination of events. Consequently,
neutral current events are harder to reject compared to charged
current events.

As a comparison to classical techniques, we first note that the
metrics presented and used in this paper, which are the right
discriminating tools for this machine learning problem, are not
studied in the classical analysis. Therefore, a direct comparison
to classical results does not exist. We note that in Acciarri et al.
(2018), the traditional reconstruction applies a cosmic-muon
tagging algorithm in the MicroBooNE detector. This algorithm
groups pixels into “clusters” first, and then tags clusters—as a
whole—as either cosmic-ray induced or not cosmic-ray induced.
The algorithm in Acciarri et al. (2018) quotes a cosmic muon
rejection rate of 74%, on average.

While the detectors are different geometries, to first order
MicroBooNE and SBND have the same order-of-magnitude
flux of cosmic-ray muons. Further, since the cosmic muons
account for ~90% of the non-zero pixels, we may speculate
that ~26% of cosmic pixels are mislabeled, or ~23% of all
non-zero pixels—with the assumption that all neutrino pixels
are correctly labeled. In short, though the same metrics are
not directly applied in Acciarri et al. (2018) and the detector
geometries are slightly different, a rough comparison may be
made in the non-zero accuracy metric of 95.6% (this work) to
77% (traditional reconstruction)—in other words, a reduction of
23-4.4% mis-classified pixels on average.

We do not speculate here on final purity for an analysis of
this kind on the BNB spectrum of neutrinos at SBND. The final
analysis will use both scintillation light and cosmic ray tagger
information in addition to the TPC data. However, it is notable
that a simple analysis can reduce the cosmic-only interactions by
a factor of 10x, and the remaining events have the correct pixels
labeled at a 95% non-background accuracy level. We believe this
is a promising technique for the SBN experiments.

9. CONCLUSIONS

In this paper, we have demonstrated a novel technique for pixel
level segmentation to remove cosmic backgrounds from LArTPC
images. We have shown how different deep neural networks can
be designed and trained for this task, and presented metrics
that can be used to select the best versions. The technique
developed is applicable to other LArTPC detectors running at
surface level, such as MicroBooNE, ICARUS, and ProtoDUNE.
We anticipate future publications studying the hyperparameters
of these networks, and an updated dataset with a more realistic
detector simulation prior to the application of this technique to
real neutrino data.
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