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Neuroimaging is among the most active research domains for the creation and

management of open-access data repositories. Notably lacking from most data

repositories are integrated capabilities for semantic representation. The Arkansas

Imaging Enterprise System (ARIES) is a research data management system which

features integrated capabilities to support semantic representations of multi-modal

data from disparate sources (imaging, behavioral, or cognitive assessments), across

common image-processing stages (preprocessing steps, segmentation schemes,

analytic pipelines), as well as derived results (publishable findings). These unique

capabilities ensure greater reproducibility of scientific findings across large-scale research

projects. The current investigation was conducted with three collaborating teams who

are using ARIES in a project focusing on neurodegeneration. Datasets included magnetic

resonance imaging (MRI) data as well as non-imaging data obtained from a variety

of assessments designed to measure neurocognitive functions (performance scores

on neuropsychological tests). We integrate and manage these data with semantic

representations based on axiomatically rich biomedical ontologies. These instantiate a

knowledge graph that combines the data from the study cohorts into a shared semantic

representation that explicitly accounts for relations among the entities that the data are

about. This knowledge graph is stored in a triple-store database that supports reasoning

over and querying these integrated data. Semantic integration of the non-imaging data

using background information encoded in biomedical domain ontologies has served as a

key feature-engineering step, allowing us to combine disparate data and apply analyses

to explore associations, for instance, between hippocampal volumes and measures of

cognitive functions derived from various assessment instruments.
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INTRODUCTION

Neuroimaging is among the most active research domains for
the creation and management of open-access data repositories
(Eickhoff et al., 2016). Structural and functional characteristics of
the human brain can be measured using a range of neuroimaging
techniques, such as magnetic resonance imaging (MRI), positron
emission tomography (PET), magnetoencephalography (MEG),
and electroencephalography (EEG). Many of the measures
derived from these neuroimaging techniques have revealed
characteristic differences among individuals who suffer from
various brain disorders. Research investigations of brain
disorders frequently employ neuroimaging in conjunction with
established assessment instruments that have been venerated by
years of clinical usage and/or validated as clinically meaningful
measures of a given symptom, behavior, or functional domain
of interest. Use of such condition-specific measures across
studies poses unique challenges, particularly when mining
neuroimaging data repositories that were originally collected
for specific brain disorders, such as the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (Mueller et al., 2005) or the
Progressive Parkinson’s Markers Initiative (PPMI) (Marek et al.,
2011). Identifying putative endophenotypic markers of impaired
functional processes to distinguish various clinical conditions
requires common semantic representations across both the
neuroimaging data, as well as the diverse set of assessment
instruments applied. Integrating shared semantic representations
across the neuroimaging data, derived imaging measures, and
associated non-imaging assessment data is therefore a critical
step in seeking to apply reasoning and inferencing to detect either
common or discriminative patterns of association across various
brain disorders.

Drawing on our experience with open-access data publication
and the software systems required to support such publication
in The Cancer Imaging Archive (TCIA) (Clark et al., 2013),
our research team is currently developing a streamlined
containerized open-source software platform for the creation

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; AR-CDR,

Arkansas Clinical Data Repository; ARIES, The Arkansas Imaging Enterprise

System; BET, Brain Extraction Tool; BFO, Basic Formal Ontology; DICOM,
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control; HVLT-R, Hopkins Verbal Learning Test-Revised; LSD, Fisher’s Least

Significant Difference; MEG, magnetoencephalography; MJFF, Michael J. Fox

Foundation; MNI152, Montreal Neurological Institute 1 x 1 x 1mm resolution

template; MoCA, Montreal Cognitive Assessment; MPRAGE, Magnetization
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Neuroimaging Data Model; NPT, Neuropsychological Testing Ontology; O-
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Framework; SPARQL, SPARQLProtocol and RDFQuery Language; SPGR, Spoiled

gradient recalled echo; TCIA, The Cancer Imaging Archive; UAMS, University

of Arkansas for Medical Sciences; UPSIT, University of Pennsylvania Smell

Identification Test.

of imaging centric data repositories: PRISM (Platform for
Imaging in Precision Medicine; prismtools.dev) (Sharma et al.,
2020). One of the first applications of PRISM is the Arkansas
Imaging Enterprise System (ARIES), which serves as a research
data management system for the University of Arkansas for
Medical Sciences (UAMS) and associated researchers. As the
first instantiation of the PRISM infrastructure, ARIES also serves
as a testbed to explore the practical utility and usability of the
full set of capabilities that this new platform provides. The
focus of this manuscript is the knowledge representation and
reasoning approach used within ARIES to integrate semantic
representations of multi-modal data elements from a variety
of disparate sources (e.g., imaging, behavioral, or cognitive
assessments), as well as descriptions of the derived results to
ensure greater reproducibility and comparability of scientific
findings across large-scale, heterogeneous, neuroimaging
research projects.

A pilot project using the ARIES instantiation of PRISM is
being conducted with collaborating investigative teams from
the departments of Psychiatry, Neurology, and Biomedical
Informatics at UAMS. This project aims to identify common
pathways of neurodegeneration and candidate endophenotypes
that could distinguish discrete pathophysiologic processes.
This project includes neuroimaging measures (structural and
functional MRI) as well as putative endophenotypic data
obtained from a variety of assessment instruments designed to
measure neuro-motor integration (e.g., wearable body sensors,
gait-assessment floor mat, digitized gloves, speech samples,
and handwriting/drawing assessments on a digitizing tablet),
clinical disease characteristics (e.g., the Unified Parkinson’s
Disease Rating Scale) or neurocognitive functions (e.g., scores on
standardized neuropsychological tests).

As shown in Figure 1, the data management pathways and
informatics processes in our ongoing pilot project using ARIES
are: (1) Research data collected from a dedicated electronic
data capture application such as REDCap (or available as
spreadsheets) are de-identified and transferred to a secure storage
area for ingestion into ARIES. (2) Clinical and demographic
information are retrieved from electronic medical records in
the Arkansas Clinical Data Repository (AR-CDR) (Baghal et al.,
2019) - using standard extract/transfer/load (ETL) operations.
(3) Clinical and research imaging data are imported from the
UAMS Picture Archiving and Communication System (PACS)
using standard DICOM protocols. (4) These imaging data are
deposited into the ARIES instance of the Perl Open Source
DICOM Archive (POSDA) (Bennett et al., 2018), a data curation
tool that tracks the time and date of image data receipt, manages
unique data identifiers, and performs image verification and de-
identification with change history. (5) Pseudonymous subject
identifiers are generated to maintain secure linkages across the
imaging and non-imaging data from AR-CDR using the On-
Demand Cohort and API Subject Identifier Pseudonymization
(O-CASP) (Syed et al., 2020) to ensure the anonymity of
research subjects. (6) All de-identified data (research assessments,
clinical information, demographics, and imaging) are collected
into the ARIES data repository, which consists of a MongoDB
NoSQL database (Banker, 2011; Han et al., 2011) as the default
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FIGURE 1 | Data management pathways and informatics processes in the Arkansas Imaging Enterprise System (ARIES).

storage location for all non-image data, and a semantic database
(triple-store) (Rohloff et al., 2007) to manage data integration
and provide semantic representations of metadata and key
components of study data. (7) Finally, the fully integrated data
are then made available to tools for query, cohort specification,
inferencing, and exploration.

This report presents PRISM’s semantic integration approach
and capabilities, as implemented in ARIES. Two unique study
cohorts from this project were used, both containing data from
individuals who had been diagnosed with Parkinson’s disease
(PD) and from healthy elderly individuals with no known
diagnoses of a neurological or neurodegenerative condition.
Among the research questions initially posed by the investigative
teams was whether there were any significant differences in the
volume of the hippocampus between individuals with or without
a diagnosis of PD. A secondary question was whether any of
the performance scores on the neuropsychological assessment
instruments that were included were predictive of hippocampal
volumes. This report details the semantic integration approach
taken on this project, which is required to address research
questions like this that combine elements from several disparate
data types and sources. The general semantic integration
approach in PRISM/ARIES is domain independent, suitable for

a broad array of investigations using multi-modal imaging and
non-imaging data.

METHODS

Subjects
The datasets used in this study originate from two separate
sources: Dataset1 includes neuroimaging (structural and resting-
state functional MRI, as well as EEG), demographics, and
assessment data collected on a longitudinal research study
funded by the Michael J. Fox Foundation (MJFF). A total of 50
participants in this study for whom baseline structural MRI and
neuropsychological assessment data were available were included
in the current use-case analyses. Of these, 29 had been clinically
diagnosed with idiopathic PD and 21 were elderly healthy control
(HC) subjects. Dataset2 includes data compiled by the MJFF
and made available to researchers as part of the Parkinson’s
Progression Markers Initiative (PPMI; http://www.ppmi-info.
org/data) (Banker, 2011). For the current use-case analyses,
baseline MRI, demographic, clinical, and neuropsychological
assessment data were obtained from the PPMI repository for
100 individuals, of whom 69 had been clinically diagnosed with
idiopathic PD and 31 were elderly HC subjects, with no known
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TABLE 1 | Demographic characteristics of study participants.

Dataset1 Dataset2

PD HC PD HC

Number of participants 29 21 69 31

% Female 28 62 34 39

Mean Age in Years 67.1 69.7 61.8 58.7

Mean Years of Education 17.9 17.1 16.4 17.2

Mean Hoehn and Yahr Score 2.29 0 1.65 0

Mean MoCA Total Score 25 26.6 26.9 28.1

neurological diagnoses or first-degree relatives with PD. Both
of the studies were conducted following review and approval
from applicable Institutional Review Boards and all participants
provided informed written consent that was fully compliant with
the principles of the Declaration of Helsinki and included a clause
stipulating that anonymized data could be used in secondary
analyses such as the current project. Table 1 provides a summary
of the demographic characteristics of participants.

Neuropsychological Assessments
Each of the two datasets included in the current report employed
batteries of standardized neuropsychological assessment
instruments to characterize the cognitive functions of the
participants. The battery administered to participants in
Dataset1 included the Montreal Cognitive Assessment (MoCA)
(Nasreddine et al., 2005), the Trailmaking Test Parts A and B
(Greenlief et al., 1985), the Stroop Color-Word Interference Test
(Stroop, 1935), and the Repeatable Battery for the Assessment
of Neuropsychological Status (RBANS) (Randolph et al., 1998),
which itself includes subtests for Verbal List Learning (with
Delayed Recall and Recognition), Story Learning (and Delayed
Recall), Figure Copy (and Delayed Recall), Line Orientation,
Picture Naming, Digit Span, Coding, and Semantic/Category
Fluency. The battery administered to participants in Dataset2
included the MoCA, the Semantic/Category Fluency Test
(Rosen, 1980), the Phonetic/Letter Fluency Test (Benton et al.,
1983) the Hopkins Verbal Learning Test – Revised (HVLT-R)
(Brandt, 1991), the Letter-Number Sequencing Test (Gold
et al., 1997), the Benton Judgement of Line Orientation Test
(Benton et al., 1978), the Symbol-Digit Modalities Test (Smith,
1968), and the University of Pennsylvania Smell Identification
Test (UPSIT) (Doty et al., 1984). Notably, there were only
two assessment instruments that were administered on both
datasets, the MoCA and the Semantic/Category Fluency Test
(using “Animals” as the category). As such, these measures
were prioritized for semantic integration on the current use-
case analyses. The approach to semantic representation as
described below could also be used to aggregate scores across
matching functional domains, though, this would require
additional transformations of the data outside the scope of the
current demonstration.

MRI Processing Pipeline
MRI images were acquired from different scanner devices
using standard 3D T1-weighted acquisition sequences (e.g.,
MPRAGE or SPGR) for Dataset1, and the T1 images for
Dataset2 were acquired on a Siemens 3T Trio scanner using a
3D MPRAGE acquisition sequence. All images were acquired
with slice thickness of 1.5mm or less with no interslice gaps.
Processing of these T1 images was conducted using the following
tools from the FMRIB Software Library (FSL) (Smith et al.,
2004; Woolrich et al., 2009; Jenkinson et al., 2012): Brain
extraction was performed using the Brain Extraction Tool
(BET). Registration and subcortical segmentation was performed
using the FMRIB’s Integrated Registration and Segmentation
Tool (FIRST) (Patenaude et al., 2011) which co-registers all
images to a 1 x 1 x 1mm resolution template from the
Montreal Neurological Institute (MNI152) (Fonov et al., 2011)
via 2-step linear registration using the FMRIB’s Linear Image
Registration Tool (FLIRT) (Jenkinson et al., 2002) before
segmenting subcortical spaces into 15 regions that include
the brainstem and seven bilateral structures (hippocampus,
amygdala, nucleus accumbens, caudate, pallidum, putamen,
and thalamus). Total intracranial volumes and hippocampal
volumes were both calculated using the “fslstats” utility. Finally,
hippocampal volumes were normalized for each participant by
dividing by the total intracranial volume.

Semantic Integration Approach
ARIES integrates and manages datasets and associated metadata
using shared, ontology-based representations that account for
both explicit and implicit connections among the data across
the source datasets. This approach removes obstacles to:
working with different source representations for the same
type of information; connecting and interpreting different types
of data that are about the same phenomena (e.g., different
cognitive assessments that provide measurements of the same
domains); and combining diverse data sets that are about the
same individuals. ARIES semantically integrates diverse datasets
using representations based on axiomatically rich ontologies
to construct a knowledge graph that combines instance data
from these unique study cohorts into a shared semantic
representation. This knowledge graph is stored in a triple-
store database that supports reasoning over and querying
the integrated data. This approach facilitates discovery of
important new linkages among endophenotypic expressions
of disturbed neural functions and discrete neuroanatomical
markers of neurodegeneration obtained from the derived
neuroimaging results.

Ontologies and Knowledge Graph
Semantic representation of these data in ARIES relies on
axiomatically rich ontologies from the Open Biomedical
Ontologies (OBO) Foundry (Smith et al., 2007), which provides
a collection of orthogonal and consistent biomedical ontologies
aligned through their shared use of the upper level Basic Formal
Ontology (BFO). As an upper level ontology, BFO provides
a high-level model or theory of the types of entities that
exist in the world (processes, material entities, and so on).
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Domain ontologies extend this upper level to model scientific
knowledge in particular areas. As shown in Figure 2, the ARIES
knowledge graph uses interconnected ontology resources at
different levels of specificity, starting with the upper level BFO.
A collection of interoperable domain ontologies is used to model
foundational anatomy (FMA), biomedical investigations (OBI),
and more. These ontologies provide background knowledge in
a machine-interpretable, logical language (Smith et al., 2007;
Blobel and Yang, 2018; Brochhausen et al., 2018). Of particular
relevance is the Neuropsychological Testing Ontology (NPT)
(Cox et al., 2013), an OBO-compatible ontology that provides
detailed modelling of cognitive assessment plans and processes,
of the measurements generated by those assessments, and of
the underlying cognitive functions and processes they aim
to measure.

All these ontologies are encoded using the Web Ontology
Language (OWL) (Hitzler et al., 2009), a knowledge
representation language based on description logics (DL)
(Baader et al., 2003) and the Resource Description Framework
(RDF) (McBride, 2004).

An application ontology is tailored to a specific application
or use (Arp et al., 2015), commonly comprising data elements
or entities specific to that application and that are unlikely
to be used or developed further by a wider community. The
ARIES application ontology developed as part of this project
includes terms that are specifically useful for modelling our
data, for instance the ARIES-application term “right hippocampal
volume feature extraction using the FIRST segmentation utility
from FSL on a T1 MRI image”. Such terms are given axiomatic
definitions linking them to domain ontology terms such as

FIGURE 2 | Levels in the ARIES semantic infrastructure: (A) The upper level ontology provides a common language; (B) domains ontology extend this to cover a

particular area of science; (C) ARIES application-specific terms and definitions for our project; (D) ARIES knowledge graph containing instance data aligned with the

domain and application ontologies.
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OBI’s “measurement datum” and the FMA term for “right
hippocampus”. For example, the axiomatic definition of the term
mentioned above includes, among others, assertions that:

• This specific type of feature extraction is a subtype of “OBI:
planned process” and a subtype of “ARIES: right hippocampal
volume feature extraction”.

• This type of process has as one of its specified inputs an
“IAO: image”

• This type of process has as its specified output some “ARIES:
right hippocampal volume measurement datum”.

• This type of process achieves a “OBI: feature
extraction objective”

In the foregoing, “OBI: planned process” refers to the term
labeled “planned process” in the OBI ontology, and similarly
for terms from other ontologies. Within the actual axiomatic
definitions of ARIES application ontology terms, each term
from another ontology is included/referenced using its globally
unique Internationalized Resource Identifier (IRI). For example,
the IRI for “OBI: planned process” is http://purl.obolibrary.
org/obo/OBI_0000011. OBI and related ontologies also include
definitions for many of the standard relations used in their
definitions, for example “has specified input” and “achieves
planned objective”. These ontological resources are combined
into a single knowledge graph within ARIES, linking the
ontologies to instance-level representations of the entities that
ARIES source data are about: subjects, their assessments,
individual cognitive functions, brain regions, etc. This knowledge
graph is stored in a triple-store database (“semantic database”
in Figure 1) that supports querying and reasoning over the
integrated data.

Though imaging workflows management within ARIES is still
a work in progress, this capability will ensure reproducibility and
provenance tracking by explicitly representing within the ARIES
knowledge graph both the data processing pipelines themselves,
and all derived results. TheNeuroimaging DataModel (NIDM) is
built on semantic web technologies and establishes vocabularies
for neuroimaging experiments, workflows, and derived results
(Keator et al., 2013). NIDM differs in its approach from the OBO
Foundry resources we have deployed in ARIES, most notably
in that it is not aligned with the BFO upper-level ontology,
and so is not automatically interoperable with the rest of our
knowledge graph. We are working to determine how NIDM can
be combined with our knowledge graph to represent workflows
and provenance.

RESULTS

Mapping Instance Data
This pilot study combines data about subjects from two different
studies, collected by different investigators at different times and
in different places, and without any common representation
scheme. While the semantic integration accomplished here
goes beyond simple data harmonization, having these data
harmonized into a common and clear representation is one
immediate advantage. For example, both datasets include
Montreal Cognitive Assessments (MoCA) taken by subjects, and

both include scores for MoCA subtests, such as the MoCA
language fluency / category fluency test. However, in one of
our source data sets, this score is stored under the heading
“MOCA_words_total”, while in the other it is stored more
opaquely as “MCAVF”. That these fields capture the same type of
information is not obvious to a human user of these data, who
must understand the domain and consult any documentation
accompanying the data to have any hopes of combining these.
The background knowledge that a user of these data must either
already have in order to use the data includes: that the MoCA
language fluency test is a planned process; that it is part of the
Montreal Cognitive Assessment; that its output is a measurement
about a cognitive function of the subject; and so on. By
integrating these instance data using ontologies that contain the
relevant background information in both human- and machine-
interpretable forms, we greatly enhance its potential for reuse,
enable automated inference over these data using semantic web
tools, and create a richly-labeled dataset amenable to use with
other artificial intelligence approaches, including statistical and
machine learning based uses of these data.

ARIES instance data are mapped into semantic
representations using a semi-automated process that starts
with construction of appropriate semantic patterns (subgraphs
of ontology terms and instances) represented in the source
data. These mappings are then processed, along with the source
data, by a Python program to translate the source data into
OWL/RDF-based representations, which are then serialized
to RDF output files. Our Python program to accomplish the
translation to RDF/OWL uses the open source RDFLib package
(https://github.com/RDFLib/rdflib). The OBO-ROBOT (Jackson
et al., 2019) command line tool is used to extract minimal
modules from the relevant ontologies (OBI, NPT, etc.) that
include all the terms used in our instance data, as well as
recursively retrieving the terms that appear in their axioms.
OBO-ROBOT is also used to merge ontology modules with our
instance data and the ARIES application ontology. The resulting
file is loaded into an Ontotext GraphDB triple-store (https://
www.ontotext.com/products/graphdb/), which provides rulesets
for various OWL/description logic reasoning profiles, as well as
exploration and query APIs.

Figure 3 shows an excerpt of the resulting knowledge graph,
focusing on representations for a subset of data about a single
subject. Circles indicate RDF instances, while ovals indicate
ontology classes. Arrows show relations between instances, or
between instances and classes. In the center (b) is an instance
of type “Homo sapiens” – this represents the study subject
that these data are about. Attached to that instance is some of
the knowledge contained in the FMA about human anatomy,
including instances for the subject’s brain and for parts of
the subject’s brain (hippocampus), as well as specific cognitive
functions and processes realized within the brain. On the left
side (a) are instances of brain imaging processes (MRI) and the
image produced, as well as a volume measurement – an image-
derived feature. These sections are linked by connecting the
subject’s hippocampus to the volume measurement that is about
the hippocampus. The right side (c) shows representations of a
cognitive assay that the subject has completed (an instance of the
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MoCA), and a specific part of that assay that measures memory
function. These processes and the measurements they output are
linked in the graph to the subject’s memory function.

Cohort Selection Using Semantically
Integrated Data
Once compiled across the two datasets, the semantic
representations of the data elements allow for the selection
of cohorts for statistical comparisons and other analyses.
Initially, we sought to select all subjects for whom hippocampal
volumes were available. The PD subjects were also stratified
according to total scores on the MoCA. The listing below shows
a simple SPARQL Protocol and RDF Query Language (SPARQL)
(Pérez et al., 2009) query used for cohort selection on data in
the semantic repository. SPARQL queries use term IRIs to refer
to ontology classes, relations, and individuals. For example,
the IRI http://purl.obolibrary.org/obo/NPT_0020000 is the
identifier for the “Montreal cognitive assessment assay” in the
Neuropsychological Testing Ontology. This query uses SPARQL
PREFIX statements to improve its readability for readers not
familiar with the IRIs. SPARQL queries specify graph patterns
with variables and return results that match those patterns. This
query retrieves the subject identifier and total MoCA score for
all subjects (across source data sets) that scored <26 on the
MoCA. This query returns 110 subjects with total MoCA scores
below 26, 78 from the MJFF source data set, and 32 from the
PPMI data set. A more complex query could delve into the
sub-scores (specific parts of the MoCA test), or even run across
the knowledge graph to also retrieve image-derived features like
volumetric measurements of specific brain regions, for instance,
the hippocampus, as seen in Figure 2.

In addition to pattern-based querying with SPARQL, the
triple-store also provides semantic web reasoning capabilities
that can be used to further simplify retrieval and inference
on relevant information from our repository. For example, we
might define classes in the ARIES application ontology for
“Study subject with mild cognitive impairment,” “Study subject
with reduced semantic category fluency function,” or “Study
subject with reduced left hippocampal volume” that incorporates
into their axioms the necessary patterns for a reasoner to
automatically group individual subjects into these classes based
on the contents of the knowledge graph.

Work is ongoing in PRISM to develop ontology-driven tools
for cohort selection, data exploration, and advanced search.
These tools, which are being deployed and tested within ARIES,
will allow researchers to take advantage of semantically integrated
data in the knowledge graph without directly using SPARQL
queries or other semantic web technologies.

Exploratory Analyses on Hippocampal
Volumes
The initial question posed by the investigative team was whether
there were any differences between PD and HC participants in
hippocampal volumes. Normalized hippocampal volumes were
compared between the PD and HC participants using a one-
way analysis of variance. Although the mean normalized volume

BOX 1 | A SPARQL query that retrieves the subject identi�er and total

MoCA score for all subjects across source data sets that scored less than

26 on the MoCA.

PREFIX human: <http://purl.obolibrary.org/obo/NCBITaxon_9606>

PREFIX denotes: <http://purl.obolibrary.org/obo/IAO_0000219>

PREFIX has_participant: <http://purl.obolibrary.org/obo/BFO_0000057>

PREFIX moca: <http://purl.obolibrary.org/obo/NPT_0020000>

PREFIX assay: <http://purl.obolibrary.org/obo/OBI_0000070>

PREFIX has_specified_output: <http://purl.obolibrary.org/obo/OBI_0000299>

PREFIX value_specification: <http://purl.obolibrary.org/obo/OBI_0001933>

PREFIX measurement_datum: <http://purl.obolibrary.org/obo/IAO_0000109>

PREFIX has_value_specification: <http://purl.obolibrary.org/obo/OBI_0001938>

PREFIX has_specified_value: <http://purl.obolibrary.org/obo/OBI_0002135>

PREFIX subject_role: <http://purl.obolibrary.org/obo/OBI_0000097>

PREFIX inheres_in: <http://purl.obolibrary.org/obo/RO_0000052>

select ?idl ?score where {

?s rdf:type human:. # s is the individual subject; binds to a person

?srole rdf:type subject_role:. # ensures that the person is a subject

?srole inheres_in: ?s.

?id denotes: ?s. # the subject identifier

?id rdfs:label ?idl.

# the subject participated in a moca assay, scored <26 total

?assay has_participant: ?s.

?assay sesame:directType moca:.

?assay has_specified_output: ?output.

?output rdf:type measurement_datum:.

?output has_value_specification: ?vs.

?vs has_specified_value: ?score.

FILTER (?val < 26)

}

for PD participants was slightly smaller than those from HC
participants, these differences were not found to be statistically
significant (F = 2.72; p = 0.10). However, when the PD group
was stratified into separate groups using the common MoCA
threshold for cognitive impairment as those scoring <26, the
normalized hippocampal volumes were found to be significantly
different between the three groups (F = 3.67; p = 0.028). Post-
hoc comparisons using Fisher’s Least Significant Difference (LSD)
method, revealed that the normalized hippocampal volumes for
the PD patients who scored <26 on the MoCA were significantly
smaller than those from PD patients who scored≥26 (p= 0.039),
as well as lower than the mean volumes for the HC group (p
= 0.008).

These preliminary findings are consistent with prior research,
which have shown increased hippocampal atrophy among PD
patients with cognitive impairments or dementia (Laakso et al.,
1996; Camicioli et al., 1999, 2003; Yildiz et al., 2015).

DISCUSSION

The Arkansas Imaging Enterprise System (ARIES) leverages
the basic capabilities of the Platform for Imaging in Precision
Medicine (PRISM) to effectively represent and integrate a
diverse set of multi-modal data elements and provide detailed
descriptions of the results obtained across the analytic processing
stages and in relation to the supporting endophenotypic data.
Such capabilities are essential to ensure greater reproducibility in
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FIGURE 3 | ARIES knowledge graph data structure showing ontology-based representations of (A) an image capture and image-derived volume measure, (B) a

human subject, and (C) a cognitive assessment.

large-scale neuroimaging research projects. In the current results,
we have shown that the use of semantic representation patterns
based on axiomatically rich ontologies facilitates combining,
linking, and interpreting these data in a way that makes
them more easily interpretable and reusable. The machine-
interpretable description logic definitions accompanying the
axiomatically rich ontologies used in our knowledge graph
provide explicit semantics for the data necessary for machine
reasoning to support inference, analysis, and exploration.
Currently under development are ontology-aware user-facing
tools backed by the knowledge graph that provide cohort
selection and data exploration capabilities. The knowledge
graph constitutes an integrated, richly-labeled dataset, a valuable
feature-enriched resource useful for further analyses and
approaches extending beyond knowledge representation and
reasoning into other artificial intelligence approaches, including
statistical and machine learning applications.

Future directions for the ongoing development of PRISM,
as well as the ARIES instance, will also include semantic
representations of the processing pipelines using tools such as
the Neuroimaging Data Model (NIDM) (Keator et al., 2013)
to describe the software applications, processing steps, and
derived neuroimaging results. We also plan to integrate with
the work being done by the ReproNim initiative (repronim.org)
(Kennedy et al., 2019), which has developed a highly innovative
suite of utilities and training modules to promote greater
reproducibility in neuroimaging research. For example, ARIES is
capable of storing containers within which executable processing

pipelines will be housed. When used in conjunction with
the ReproNim utilities, as well as the NIDM framework,
the ARIES infrastructure offers a comprehensive solution for
integrated semantic representation of all pertinent aspects of
conducting a fully re-executable neuroimaging investigation such
that researchers could share not only their findings, but also
the detailed processing pipelines that would be required for
other researchers to replicate their results. It is hoped that
such functionality will help to alleviate the notoriously poor
replicability of neuroimaging results that has plagued the field
and limited the generalizability of many published discoveries
(Kennedy et al., 2019).
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