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COVID-19 has created enormous suffering, affecting lives, and causing deaths. The

ease with which this type of coronavirus can spread has exposed weaknesses of many

healthcare systems around the world. Since its emergence, many governments, research

communities, commercial enterprises, and other institutions and stakeholders around the

world have been fighting in various ways to curb the spread of the disease. Science and

technology have helped in the implementation of policies of many governments that are

directed toward mitigating the impacts of the pandemic and in diagnosing and providing

care for the disease. Recent technological tools, artificial intelligence (AI) tools in particular,

have also been explored to track the spread of the coronavirus, identify patients with

high mortality risk and diagnose patients for the disease. In this paper, areas where AI

techniques are being used in the detection, diagnosis and epidemiological predictions,

forecasting and social control for combating COVID-19 are discussed, highlighting areas

of successful applications and underscoring issues that need to be addressed to achieve

significant progress in battling COVID-19 and future pandemics. Several AI systems

have been developed for diagnosing COVID-19 using medical imaging modalities such

as chest CT and X-ray images. These AI systems mainly differ in their choices of the

algorithms for image segmentation, classification and disease diagnosis. Other AI-based

systems have focused on predicting mortality rate, long-term patient hospitalization and

patient outcomes for COVID-19. AI has huge potential in the battle against the COVID-19

pandemic but successful practical deployments of these AI-based tools have so far

been limited due to challenges such as limited data accessibility, the need for external

evaluation of AI models, the lack of awareness of AI experts of the regulatory landscape

governing the deployment of AI tools in healthcare, the need for clinicians and other

experts to work with AI experts in a multidisciplinary context and the need to address

public concerns over data collection, privacy, and protection. Having a dedicated team

with expertise in medical data collection, privacy, access and sharing, using federated

learning whereby AI scientists hand over training algorithms to the healthcare institutions

to train models locally, and taking full advantage of biomedical data stored in biobanks

can alleviate some of problems posed by these challenges. Addressing these challenges
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will ultimately accelerate the translation of AI research into practical and useful solutions

for combating pandemics.

Keywords: artificial intelligence, COVID-19, detection, diagnosis, epidemiology, social control, contact tracing,

medical imaging

INTRODUCTION

COVID-19, a type of coronavirus disease caused by Severe

Acute Respiratory Syndrome Corona-Virus 2 (SARS-CoV-2), has

created enormous suffering, affecting lives and causing deaths.
The novel nature of the virus means that humans are only
newly exposed to the virus (Brüssow, 2020; Wan et al., 2020).

First reported in China in December 2019, it was declared by
The World Health Organization (WHO) to be a Public Health

Emergency of International Concern (PHEIC) on January 30,
2020 and a pandemic on March 11, 2020 (Team, 2020; WHO,

2020). It is an infectious disease that spreads in humans mainly

through respiratory droplets produced by an already infected

person through sneezing or talking, or airborne transmission
(Moriyama et al., 2020). The early symptoms of the disease
include persistent high temperature, dry continuous coughing,
loss of taste or smell, and difficulty in breathing (Kooraki et al.,
2020; Wang et al., 2020a). Severe cases of the disease cause death
(Rothan and Byrareddy, 2020; Zhou et al., 2020a).

Due to the ease with which the coronavirus can spread and
grow exponentially within the human population, healthcare
resources and manpower to rapidly control it is limited as the
number of doctors, nurses, and other healthcare workers and
resources that could help control it is finite. Moreover, the disease
has exposed weaknesses of many healthcare systems around the
world. Indeed, the lack of affordable, quick and accurate means
of detecting the disease is one of the most important reasons it
has rapidly spread (Ai et al., 2020).

Since the emergence of COVID-19, many governments,
research communities, commercial enterprises and other
institutions and stakeholders around the world have been
fighting in various ways to curb the spread of the disease (Chen
et al., 2020a; Dong et al., 2020). Science and technology have
helped in the implementation of policies of many governments
that are directed toward mitigating the impacts of the pandemic
and in developing cures and vaccines for the disease. They
also offer unique opportunity to support healthcare workers by
providing them with tools that would save them time, improve
their ability to carry out their job and enhance the management
of healthcare systems developed to combat the pandemic, and
much more. Many resources have been made available to support
the battle against COVID-19, such as datasets (Cheng et al.,
2020; Cohen et al., 2020; Zhao et al., 2020a), computing resource
(Hack and Papka, 2020), and research funding (Casigliani et al.,
2020; Glasziou et al., 2020; Janiaud et al., 2020; Patel et al., 2020;
Prudêncio and Costa, 2020; UKCDR, 2020).

The scope of combating COVID-19 using technology is very
broad and it includes understanding the socio-economic and
medical impacts of the pandemic. From a healthcare perspective,
it includes disease detection, diagnosis, and monitoring (Huang

et al., 2020a; Kong et al., 2020; Thevarajan et al., 2020; Xu et al.,
2020a), epidemiology (Chan et al., 2020; Jin et al., 2020a; Li et al.,
2020a), social control (Jin et al., 2020a; Kandel et al., 2020; Qian
et al., 2020), virology and pathogenesis (Andersen et al., 2020;
Jin et al., 2020a; Lu et al., 2020b; Walls et al., 2020), and drug
discovery (Chen et al., 2020b; Phua et al., 2020). For example,
during the early phase of the outbreak of the pandemic, China
used facial recognition cameras to track infected patients and
drones to disinfect public places and broadcast audio messages to
the public asking them to stay at home (Ruiz Estrada, 2020). As
another example, Taiwan linked its national medical insurance
database with the immigration and custom database in order
to inform the healthcare practitioners of the travel history of
patients (Wang et al., 2020b).

The term artificial intelligence (AI) refers to the study of
developing computer algorithms with human-like intelligence to
accomplish specific tasks. Machine learning (ML) methods are
a set of techniques in AI and includes supervised (Kotsiantis
et al., 2007), unsupervised (Barlow, 1989), semi-supervised (Zhu,
2005; Chapelle et al., 2009), and reinforcement learning (Sutton
and Barto, 1998). Some of these methods and other terms often
encountered in the AI literature are briefly described in Table 1.

The applications of AI can be found in many disciplines and
industries in modern society, and healthcare is not an exemption.
The rapid growth of AI-based techniques and tools in healthcare
are addressing complex problems such as identifying previously
undiscovered relationships in patient phenotypes (Shivade et al.,
2014), optimizing healthcare pathways (Lu and Wang, 2019;
Blasiak et al., 2020), and improving accuracy of medical decision
making (Bennett and Hauser, 2013; Shortliffe and Sepúlveda,
2018).

Advances and accessibility to high-performance scalable
computing equipment have driven the recent popularity of the
use of AI in many real-world applications. This development
has also prompted an expansion of research into novel AI
techniques and algorithms. AI algorithms have the potential to
interpret biomedical and healthcare data particularly for tasks
where conventional statistical methods are less efficient. The
algorithms are even more suitable for datasets of large scale
and high dimensions. These algorithms can therefore be used to
solve problems such as optimizing care pathways, standardizing
clinical diagnosis, identifying relationships in patient phenotypes
and developing predictive models (Johnson et al., 2017). While
AI-based methods can be used to solve many problems in
medicine and healthcare, the success of AI projects, in many
cases, depends on the choice of the AI technique, the quality of
the dataset to be used and the context associated with the way the
dataset is used. For instance, deep learning (DL) algorithms such
as convolutional neural networks (CNN) are particularly suitable
for computer vision problems such as image segmentation (Shen
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TABLE 1 | Some terms and methods commonly used in AI.

General terms

Artificial Intelligence (AI) The concept of developing computer algorithms with human-like intelligence to solve specific

tasks.

Deep Learning (or Deep

Neural Network)

A set of ML algorithms that are based on neural network (NN) that are used for feature learning.

The term “deep” refers to the fact that they have multiple layers between the input and the

output layers.

Machine Learning (ML) A subset of AI and consists of a collection of techniques to achieve AI.

Reinforcement Learning A set of ML algorithms that is based on the interaction between an agent and its environment. In

general, the agent seeks to take actions in the environment by maximizing a cumulative reward.

Supervised Learning A set of ML algorithms for developing mathematical models using data that consists of both the

input and the desired output data.

Unsupervised Learning A set of ML algorithms for finding underlying structures or patterns in datasets using only the

input data.

Convolutional Neural

Network (CNN)

A set of DL algorithms that are particularly efficient in developing AI-based applications involving

images. CNN acts as the backbone of many well-known neural network architectures (such as

U-net) used in image processing.

Random Forests (RF) Method A set of learning algorithms involving several decision trees and whose output is the class that is

the statistical mode (in classification tasks) or statistical mean (in regression tasks) of each of the

decision trees. These algorithms are often used for classification tasks and regression analysis

problems.

Support Vector Machines

(SVM)

A set of supervised learning algorithms that constructs hyperplanes in a high-dimensional

space. These algorithms are often used for classification tasks, regression analysis, and other

problems. In a classification problem, for instance, out of the many hyperplanes, the one that

has the largest distance to the data point of any class is considered the ‘optimal’ classifier.

Reference List of AI Algorithms Mentioned in this Paper

• AlexNet (Russakovsky et al., 2015; Krizhevsky et al., 2017)

• Artificial Neural Networks (ANN) (Hopfield, 1988; Jain et al., 1996)

• Adaptive-Network-based Fuzzy Inference System (ANFIS) (Jang, 1993)

• CNN (LeCun et al., 2015)

• CNN segmentation model (Region Proposal Network structure) (Ren et al., 2016)

• CNN model with Inception (Szegedy et al., 2016)

• Decision Tree (DT) (Breiman et al., 1984)

• Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016)

• Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)

• Gated Recurrent Unit (GRU) recurrent neural network (Cho et al., 2014; Chung et al., 2014)

• k-mean clustering (Kanungo et al., 2002)

• k-nearest neighbor (Cover and Hart, 1967)

• Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (Tibshirani, 1996)

• Logistic regression (Hosmer Jr et al., 2013)

• LSTM (Hochreiter and Schmidhuber, 1997)

• RF (Breiman, 2001; Liaw and Wiener, 2002)

• ResNet (He et al., 2016)

• SVM (Cortes and Vapnik, 1995)

• U-Net (Ronneberger et al., 2015)

et al., 2017). Recent advancement in AI research has led to the
development of tools in medicine and healthcare that are useful
in combating global pandemics. Researchers across several areas
of expertise and industries have therefore explored and exploited
the use of AI in the battle against COVID-19.

There are many ways in which AI can help in the fight against
the COVID-19 pandemic. For example, AI could be used to track
the spread of the virus (Al-Qaness et al., 2020; Bandyopadhyay
and Dutta, 2020; Carrillo-Larco and Castillo-Cara, 2020; Hu
et al., 2020; Jana and Bhaumik, 2020; Huang et al., 2020b; Kavadi

et al., 2020; Sameni, 2020), identify patients with high mortality
risk (Jiang et al., 2020a; Qi et al., 2020; Xu et al., 2020b; Yan
et al., 2020a), diagnose and screen a population for COVID-19
(Ghoshal and Tucker, 2020; Hassanien et al., 2020; Hemdan et al.,
2020; Jin et al., 2020b; Maghdid et al., 2020a; Narin et al., 2020;
Wang et al., 2020c,e; Wu et al., 2020a; Zhang et al., 2021; Xu
et al., 2020c), or reduce the time for diagnosis (Vaishya et al.,
2020a). Many of the AI techniques currently being deployed in
the battle already existed prior to the pandemic. These techniques
include those that can process and understand medical imaging
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data from modalities such as computed tomography (CT) and
X-ray that are being used for detection and diagnosis (Li et al.,
2020b; Wang et al., 2020e; Wynants et al., 2020) and those
involving non-imaging data that are being used for mortality rate
and outcome prediction, prognosis, outbreak prediction, contact
tracing and social control of COVID-19 (John and Shaiba, 2019;
Bandyopadhyay and Dutta, 2020; Chen et al., 2020e; Goh et al.,
2020; Pourhomayoun and Shakibi, 2020; Xu et al., 2020b). Other
AI techniques have also found new application areas due to
COVID-19. For example, in Shi et al. (2020a), argued for the
development of AI-based tools for automated acquisition of
medical images in order to optimize the imaging workflow and
reduce healthcare practitioners’ risk of exposure to the virus by
minimizing or eliminating contact with COVID-19 patients.

Several reviews, such as Albahri et al. (2020), Bansal et al.
(2020), Bragazzi et al. (2020), Bullock et al. (2020), Jamshidi et al.
(2020), Kricka et al. (2020), Kumar et al. (2020), Lalmuanawma
et al. (2020), Martin et al. (2020), Naudé (2020), Nguyen (2020),
Rasheed et al. (2020), Suri et al. (2020), Shi et al. (2020a), Vaishya
et al. (2020b), Zhou et al. (2020b), and Chen et al. (2020c), have
been published to showcase the opportunities AI presents in the
current effort to fight against COVID-19. In this paper, areas
where AI techniques are being used in the detection, diagnosis
and epidemiological predictions, forecasting and social control
for combating COVID-19 are discussed, highlighting areas of
successful applications and underscoring issues that need to be
addressed to achieve significant progress in battling COVID-19
and future pandemics. The paper assumes a basic background
knowledge of AI techniques, the reader is invited to consult
(Raghu and Schmidt, 2020) for further information of these AI
methods. Useful introduction to the epidemiology and clinical
features of COVID-19 can be found in, for example, C Disease
Control (2020).

AI IN COVID-19 DETECTION AND
DIAGNOSIS

Detection and diagnosis of COVID-19 is an important part in
the fight against the virus. Current diagnostic testing methods
are mostly non-invasive methods and they include chest CT and
chest X-ray medical imaging, nucleic acid, serologic, and viral
throat swab testing methods (Fang et al., 2020; Li et al., 2020c;
Lu et al., 2020a; Ozturk et al., 2020; Schwartz, 2020; Zeng et al.,
2020). In order to contain the spread of the pandemic and isolate
the virus, fast and early detection and tracking of infected patients
is crucial and there is clearly the need of innovation in this area
(Ai et al., 2020; Fang et al., 2020). In the subsections that follow,
AI tools that have been developed for the detection and diagnosis
of SARS-CoV-2 and COVID-19 are presented.

Nucleic Acid Amplification-Based
Diagnostics
A type of nucleic acid amplification test (Udugama et al.,
2020), the Reverse Transcription-Polymerase Chain Reaction
(RT-PCR) test, is one of the most widely used standard testing
methods for detecting whether patients have COVID-19 (Ai

et al., 2020). The RT-PCR however suffers from inadequate
sensitivity, as low as 71% as reported in Fang et al. (2020), as
a result of many factors such as low detection efficiency and
complicated sample preparation (Lu et al., 2020a; Wu et al.,
2020a). This low sensitivity issue results in multiple testing of
many patients usually over several days apart in order to obtain a
reliable conclusion.

A ML model was reported in Wu et al. (2020a) that uses
11 key blood indices to distinguish between patients with and
without COVID-19. The model was developed using the random
forest (RF) ML technique and 49 clinical available blood test
parameters (consisting of 24 routine hematological and 25
biochemical parameters) from 169 patients with a total number
of 253 data samples of which 105 samples are from patients
confirmed to have the COVID-19 disease using the RT-PCR test.
The remaining samples consisted of 98 samples from patients
with common pneumonia and 25 samples each from patients
with tuberculosis and lung cancer. The data was divided into
149 training, 33 testing, and 74 validating datasets. The model
achieved accuracy of 96.97% on the testing set and 97.95% for the
cross-validation set. While this model (which could be further
investigated for reliability and also improved further) offers a
promising tool for preliminary assessment of suspected patients
with COVID-19, it so far has not made it to front-line in the fight
against the coronavirus.

Medical Imaging Diagnostics
Medical imaging is one of the main areas in which AI has
found practical applications in medicine and healthcare. Imaging
data obtained using different modalities, such as computed
tomography (CT), magnetic resonance imaging (MRI) and X-
ray, are of high dimension. They contain very rich information
that can be used to develop AI applications. Imaging data can be
used to generate many useful image-derived phenotypes that are
obtained via qualitative and quantitative assessment of structural
changes (that often characterize the structural and functional
properties of an organ), significantly shortening the time for
radiologists to accomplish these tasks (Petersen et al., 2017;
Suinesiaputra et al., 2018; Mauger et al., 2019). Imaging data
can also be combined with non-imaging data from Electronic
Health Record (EHR) or elsewhere for identifying biomarkers
and predicting disease risk factors (Alaa et al., 2019). Faster and
automated reading and interpretation of image workflow can be
achieved using AI-based tools (Petersen et al., 2019; Robinson
et al., 2019; Bai et al., 2020).

Furthermore, segmentation of medical images is useful as
these images are often affected by noise, artifacts, and other
uncertainties associated with imaging. Image segmentation
involves contouring a medical image into biologically relevant
structures, helping to quantify those structures and their
functions and to produce measurements that act as biomarkers
(such as quantities that can be used to diagnose, monitor, or
prognosticate diseases). In particular, AI-based automatic image
segmentation tools are beneficial as they help in eliminating
variability that would have been introduced if segmentation
were manually done. Consequently, the use of these AI-based
technologies has contributed in the fight against COVID-19
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(Bullock et al., 2020). Medical imaging modalities, such as
chest CT and X-ray imaging, have provided significant support
to clinicians in diagnosing COVID-19 (Apostolopoulos and
Mpesiana, 2020; Bernheim et al., 2020; Kanne, 2020). A typical
workflow for diagnosing COVID-19 with medical imaging
modalities involves the following three phases: (i) pre-scan
preparation according to a given protocol; (ii) image acquisition;
and (iii) diagnosis.

AI tools for COVID-19 diagnosis with medical images often
consist of one or a combination of several AI models (or
networks) involving the following two main components: (i)
image segmentation models, and (ii) image classification. Image
segmentation is used to mark and identify the region of interest
(ROI) while an image classification task extracts features from the
ROI and uses those features as a basis for classifying (diagnosing)
the images.

CT Medical Imaging
Chest CT images are being used for early diagnosis of COVID-
19 by identifying ground-glass opacity (GGO) around the
subpleural region (Ai et al., 2020; Chung et al., 2020; Fang
et al., 2020; Kanne, 2020; Wong et al., 2020). In Pan et al.
(2020), the dynamic radiological patterns in chest CT images of
COVID-19 patients was reported with the following four stages
identified: (i) 0–4 days: early stage; (ii) 5–8 days: progressive
stage; (iii) 9–13 days: peak stage; and (iv) 14 days and beyond:
absorption stage. These distinct manifestations of COVID-19
in CT images provide evidence and severity of the disease
that are exploited using AI systems for diagnosing the disease.
Generally, the process of COVID-19 diagnosis with CT images
involves the following steps: (i) image pre-processing, (ii) image
segmentation, (iii) classification, and (iv) model evaluation.

AI tools for COVID-19 diagnosis with CT images involving
lung tissue segmentation are reported in Jin et al. (2020b), Li
et al. (2020b), and Xu et al. (2020c). As an example, the AI
system presented in Jin et al. (2020b) classifies chest CT input
image slices into the following four categories: non-pneumonia,
non-viral community acquired pneumonia (CAP), influenza-
A/B and COVID-19. The predicted class of an image is that
which has the highest probability among the four classes. This
AI system was developed using two main DL algorithms: the U-
Net for performing the lung segmentation task and the ResNet
for performing the classification (diagnosis) task. The ROI in the
image include the lung, lung lobes, bronchopulmonary segments,
and infected lesions. The dataset consists of 10,250 CT scans
from three centers in China and three publicly available external
databases. This multi-center dataset was from 7,917 subjects
consisting of 3,686 scans of COVID-19, 2,886 scans of CAP,
132 scans of influenza-A/B and 3,546 scans of non-pneumonia
subjects. The COVID-19 subjects were all confirmed using the
RT-PCR diagnostic test. The imaging dataset of 10,250 was
divided into a total training dataset of 5,104 and a total testing
dataset of 5,146. As a measure of accuracy, on internal testing
dataset of 3,203 images (out of the 5,146) the AI system achieved
an AUC of 97.17%, a sensitivity of 90.19% and a specificity
of 95.76%. It achieved an AUC of 97.77% on the remaining
(external) dataset of 1,943 images.

As another example, the AI system presented in Xu et al.
(2020c) classifies chest CT input image slices into the following
three categories: influenza-A viral pneumonia (IAVP), COVID-
19 and irrelevant to infection (i.e., cases that do not belong to
the other two categories) cases. The predicted class of an image is
that which has the highest probability that the image belongs to
it. This AI system consists of two main DL algorithms: a three-
dimensional (3D) CNN segmentation model (Region Proposal
Network structure) for performing a lung segmentation task and
a ResNet-based model for performing the image classification
task. The dataset consists of 618 CT scans from three hospitals
in China’s Zhejiang Province of which 110 subjects (219 scans)
were confirmed of COVID-19 using the RT-PCR diagnostic test;
224 subjects (224 scans) had IAVP, and the remaining 175 scans
are healthy subjects. The imaging dataset of 528 (189 COVID-19
cases plus 194 IAVP cases plus 145 healthy cases) were used for
training and validation, and the remaining 90 scans (30 COVID-
19 cases plus 30 IAVP cases plus 30 healthy cases) were used as
a testing dataset. On the testing dataset, the AI system achieved
an f1-score of 83.9% for COVID-19 cases, 84.7% for IAVP cases,
91.5% for healthy cases and an overall accuracy rate of 86.7%.

Several AI systems, such as Ardakani et al. (2020), Chen et al.
(2020d), Gozes et al. (2020), Kang et al. (2020), Li et al. (2020b),
Shi et al. (2020b), Song et al. (2020), Tang et al. (2020) and Wang
et al. (2020c,d), have been developed for diagnosing COVID-
19. Compared to the examples in the two preceding paragraphs,
these AI systems mainly differ in their choices of the algorithm
for image segmentation of the ROI and the algorithm used for
classification or diagnosis. The image segmentation algorithms
used include U-Net, U-Net++, V-Net, and others, and the
image classification algorithms include ResNet and CNN model
with Inception.

In order to address the problem of lack of large datasets of
COVID-19 patients for developing AI-basedmodels, researchers,
such as in Jin et al. (2020b) and Zhao et al. (2020a), have used
different techniques such as data augmentation and transfer
learning, to solve the CT image classification problems for
COVID-19 diagnosis. In Qian et al. (2020), the classification task
was to classify COVID-19 patients into those that will have short-
term and long-term hospital stay. Some AI models, such as Shi
et al. (2020b,c), went further after the image segmentation task
to predict the severity of COVID-19 in patients using algorithms
such as least absolute shrinkage and selection operator (LASSO)
logistic regression model and RF.

X-Ray Medical Imaging
The X-ray technology is a very popular imaging modality in
medical imaging (Wang et al., 2017). The CT and X-ray medical
imaging modalities have been more widely accessible and used
to provide evidence and for COVID-19 diagnosis compared to
other imaging modalities due to their fast acquisition. In fact,
in many healthcare centers and hospitals, X-ray imaging, due
to its accessibility and quickness to obtain, is often the first-
line imaging modality for suspected COVID-19 patients (Bullock
et al., 2020; Shi et al., 2020a). Although the chest X-ray images are
less informative compared to CT images for diagnosing COVID-
19 due to lower sensitivity of chest X-ray images, the popularity
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and availability of X-ray imaging facilities means that it is widely
used for the diagnosis of the disease. As with chest CT imaging,
chest X-ray imaging is being used for diagnosis of COVID-19 by
identifying ground-glass opacity (GGO) around the subpleural
region, and these manifestations of COVID-19 in chest X-ray
images provide evidence and classification of severity of the
disease that are being exploited using AI systems for diagnosing
the disease.

In general, the process of COVID-19 diagnosis with chest
X-ray images using AI tools involves the following steps: (i)
image pre-processing, (ii) image classification, and (iii) model
evaluation. In other words, compared to the AI tool for CT
images, the image segmentation process is absent although some
researchers, such as Hassanien et al. (2020), included classical
computer vision methods (i.e., not AI-based methods, such as
image thresholding) for carrying out the image segmentation step
as well. The AI-based image segmentation part of the process
is particularly difficult in the case of chest X-ray images given
that the ribs are projected onto other tissues on these images
(Chen et al., 2020c) so researchers often skip that step completely.
Classification tasks were binary, multi-class, multi-labeled or
hierarchical classifications (Albahri et al., 2020).

Several AI systems, such as Ghoshal and Tucker (2020),
Hassanien et al. (2020), Hemdan et al. (2020), Maghdid et al.
(2020a), Narin et al. (2020), Wang et al. (2019, 2020d), Zhang
et al. (2021), have been developed for diagnosing COVID-19
using chest X-ray images. These AI systems mainly differ in
their choice of the algorithms used for the image classification
task and often combine several algorithms (often, to achieve a
feature extraction step before a classification process). The image
classification algorithms that are being used include Support
Vector Machines (SVM), CNN, AlexNet, ResNet, and CNN
model with Inception.

The large number of AI techniques available for diagnosing
and classifying a disease means that it can be daunting to
select the most appropriate technique (in terms of accuracy and
computation efficiency) for a given problem given that many of
the researchers have used different (and sometimes conflicting)
evaluation criteria for their adopted techniques (Alsalem et al.,
2018, 2019; Zaidan et al., 2020). In Albahri et al. (2020), carried
out a literature review of AI techniques involving medical images
that are being used for diagnosing COVID-19 in an attempt
to evaluate and establish benchmarking procedures for these
techniques. A detailed description of the proposed methodology
for the evaluation and benchmarking of these AI techniques is
beyond the scope of this paper and the reader is invited to consult
(Albahri et al., 2020) for further information.

Other Tools for Diagnostics
In Schuller et al. (2020), presented a potential computer audition
tool that uses AI-based speech and sound analysis to COVID-
19 diagnosis. The authors surveyed automatic recognition and
monitoring of contextually significant phenomena from speech
or sound, such as dry and wet coughing or sneezing sounds, pain,
speech under cold, and breathing for diagnostic exploitation
using AI techniques such as Generative Adversarial Networks
(GANs) (Pascual et al., 2017).

In Wang et al. (2020f), an AI-based classification model was
proposed that is able to distinguish respiratory pattern from
six other viral infection respiratory patterns using the Gated
Recurrent Unit (GRU) recurrent neural network algorithm with
bi-directional attentionmechanism. Asmeasures of accuracy, the
reported precision, recall, f1-score, and accuracy of the model
were 94.4, 95.1, 94.8, and 94.5%, respectively. Other models that
use respiratory or coughing data for COVID-19 diagnosis can be
found in Brown et al. (2020), Imran et al. (2020), and Jiang et al.
(2020b).

Researchers, such as in Maghdid et al. (2020b), have also
proposed frameworks for using in-built mobile phone sensors
including cameras (to scan CT images, for example), temperature
sensors, and so on, for COVID-19 diagnosis. The computer
audition tools for diagnosing COVID-19, models that use
respiratory or coughing data for COVID-19 diagnosis and other
AI-based computational frameworks that use speech and sound
analysis and in-built mobile sensors, such as Iqbal and Faiz (2020)
have not yet gone beyond the conceptual phase.

AI IN EPIDEMIOLOGY

In the subsections that follow, AI tools that have been developed
for epidemiological predictions, forecasting and social control for
combating COVID-19 are presented.

AI for Prognosis
The ability to forecast possible patient outcomes is vital in the
planning and management of a pandemic such as COVID-
19. In order to improve prognosis and not to overwhelm
healthcare systems, the ability to predict number of patients
at risk of developing acute respiratory distress syndrome and
patients at risk of hospitalization or death can be very important
(Bullock et al., 2020). In the fight against MERS Co-V, for
example, AI-based models have been used to predict prognosis
in patients’ infection (in particular, patients’ recovery) using
patients’ profession (e.g., whether healthcare workers or not), age,
pre-existing healthcare conditions, and disease severity as model
input parameters (John and Shaiba, 2019). Similar AI-based
applications andmethods have been developed for Ebola patients
(Colubri et al., 2016; Riad et al., 2019). These and other similar
tools can help, for example, to assess healthcare preparedness for
a pandemic and to determine treatment methods and resource
allocation during a pandemic, and some of the these algorithms
could be adapted for decision making in the management of
COVID-19 (Bansal et al., 2020).

Epidemiological research is a vast area, and a huge amount
of publications on epidemiological modeling of COVID-19
using well-established classical methods have surfaced since
the beginning of the pandemic (Cooper et al., 2020; Jewell
et al., 2020; Ndairou et al., 2020). Recently, researchers have
proposed several AI-based techniques for predicting mortality
rate, long-term patient hospitalization (Qi et al., 2020) and
patient outcomes for COVID-19 (Jiang et al., 2020a; Yan et al.,
2020a). AI-based techniques that have been used to accomplish
the prediction tasks include artificial neural networks (ANN),
SVM, and XGBoost. For example, in Pourhomayoun and Shakibi
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(2020), using dataset of more than 117,000 confirmed COVID-
19 patients from 76 countries described in Xu et al. (2020b),
the authors used several AI-methods (including SVM, ANN, RF,
Decision Tree (DT), logistic regression, and k-nearest neighbor)
for the prediction of mortality rate of COVID-19 patients using
112 features consisting of 80 features from patients’ doctors notes
and health status and 32 features from patients’ demographic and
physiological data.

AI for Outbreak Forecasting and Control
The development of forecasting models in order to help policy
makers and other stakeholders understand the progression of the
pandemic is one of the first areas where mathematical methods
were applied to tackle the COVID-19 pandemic. It is therefore
not surprising that outbreak forecasting is also one of the first
areas in which AI methods have been applied in the fight
against the COVID-19 pandemic (Rasheed et al., 2020). There
are many existing statistical and dynamic methods for modeling
the spread of infectious diseases and understand the impact of
interventions to curb these diseases, such as mass vaccination
or social distancing, in any given population (Anderson and
May, 1979;May and Anderson, 1979;Mena-Lorcat andHethcote,
1992; Isham and Medley, 1996; Vynnycky and White, 2010;
Siettos and Russo, 2013; Pastor-Satorras et al., 2015). Several
of these methods have been used to understand and forecast
the spread of COVID-19 from available data (Karako et al.,
2020; Sameni, 2020; Wu et al., 2020b; Zhao et al., 2020b). These
methods can be used to determine transmission factors in order
to establish preventive and control measures for the pandemic.

The majority of AI applications developed in the fight
against COVID-19 have focused on predicting national and
local statistics such as the number of confirmed cases, deaths,
and people recovered from COVID-19 (Bullock et al., 2020).
AI models that have been developed for outbreak predictions
include (Al-Qaness et al., 2020; Bandyopadhyay and Dutta,
2020; Carrillo-Larco and Castillo-Cara, 2020; Hu et al., 2020;
Jana and Bhaumik, 2020; Huang et al., 2020b; Kavadi et al.,
2020; Sameni, 2020), and the modeling techniques used for
these models include CNN, long short-term memory (LSTM),
adaptive-network-based fuzzy inference system (ANFIS), partial
derivative regression and non-linear machine learning (PDR-
NML) (Kavadi et al., 2020), SVM and k-mean clustering.

For example, in Carrillo-Larco and Castillo-Cara (2020), a
model based on the k-means clustering algorithm was developed
and used to categorize countries based on the number of
confirmed COVID-19 cases using a dataset that contains features
such as the prevalence of HIV/AIDS, diabetes, and tuberculosis
in 156 countries in addition to data on the number of COVID-
19 related deaths, confirmed cases and recovered cases. In Al-
Qaness et al. (2020), an ANFIS-based model was developed to
estimate and forecast the number of confirmed cases of COVID-
19 10 days ahead using data of previously confirmed cases.
And in Ribeiro et al. (2020), for 10 Brazilian states with a
high daily COVID-19 incidence, a stacked ensemble of learning
algorithms [autoregressive integrated moving average (ARIMA),
cubist regression (CUBIST), RF, ridge regression (RIDGE), SVM]
with a Gaussian process (GP) meta-learner was used to conduct

1, 3, and 6-days ahead time series forecasting of the COVID-19
cumulative confirmed cases, achieving errors in a range of 0.87–
3.51%, 1.02–5.63%, and 0.95–6.90% in 1, 3, and 6-days-ahead
predictions, respectively.

In addition, some of these AI-based models, such as in
Kavadi et al. (2020), have reported prediction accuracies that
are superior to traditional linear regression-based methods.
Researchers, such as in Fong et al. (2020), have also proposed
techniques for comparing these different models that havemostly
been developed using different architectures and trained with
non-identical hyperparameters.

AI for Contact Tracing and Social Control
The implementation of indiscriminate lockdowns in several
countries in an attempt to control the COVID-19 pandemic
have had severe social and economic consequences. Despite
the physical distancing measures in-place when some of the
lockdown restrictions where gradually relaxed, other public
health measures were necessary in order to control the pandemic
(Hellewell et al., 2020; Hope et al., 2020; Park et al., 2020;
Salathé et al., 2020; Kretzschmar et al., 2020a,b), and contact
tracing (whether conventional methods that rely on interviewing
COVID-19 patients or mobile phone application technology)
has been one of the methods that have been adopted in many
parts of the world for this purpose. Contact tracing involves
contact identification, contact listing and contact follow-up
(Kricka et al., 2020).

For contact tracing purposes, mobile applications that have
been deployed to notify every participating user that a person
with COVID-19 was within a certain distance of the user
for more than a specific amount of time include COVIDSafe
(Australia), Ketju (Finland), CoronaApp (Germany), StopCovid
(France), NZ COVID Tracer (New Zealand), TraceTogether
(Singapore), NHS Covid-19 App (United Kingdom), to mention
a few (Lalmuanawma et al., 2020). As far as we know, none of
these digital technologies have been confirmed to use AI-based
models as tools, for example, in identifying those in contact with
a COVID-19 patient [in Lalmuanawma et al. (2020) though, there
is a report that AI tools are being used but this could not be
confirmed in the references provided by the authors]. There are
however promises [see Kricka et al. (2020), for example] that
data gathered through these applications could be exploited for
developing AI-based tools in the future.

In addition, AI techniques have been used to develop
applications for managing and control the spread of the COVID-
19 pandemic. Technologies, such as drones and surveillance
cameras equipped with AI-based models for enforcing social
isolation (Ahmed et al., 2021), have been reported. As for the
impacts of the various social control strategies, the reader is
invited to consult (Chang et al., 2020; Hellewell et al., 2020;
Kissler et al., 2020; Koo et al., 2020) for further information.

DISCUSSION

Promising and encouraging AI-based techniques and
frameworks for the detection, diagnosis, and epidemiological
predictions, forecasting and social control of COVID-19 have
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been proposed in the fight against the disease. For these AI
techniques to gain wide acceptance and use in practical clinical
settings however, there would need to be a framework on
how these models would be incorporated into clinical practice
systems. Importantly, the models, which have been developed
with mostly limited amount of data using different algorithms
and architectures, would need to be trained and validated with
larger amount of data and issues such as overfitting and biasness
should be appropriately addressed. Evaluating and comparing
the performance of AI models is crucial but challenging. This
is partly due to complex relationships amongst the choice of
algorithms, architectures, hyperparameters, and the quality and
amount of data used for these models.

In addition, many (if not the majority) of the proposed
or developed AI-based techniques and models for COVID-
19 diagnosis and epidemiological forecasting have not been
externally evaluated and caution must be exercised in the
interpretation of these results. Indeed, despite the urgency for the
publication of research results during the COVID-19 pandemic,
these models cannot be used in clinical practice in their current
form as critical review and external assessment of the techniques
and models with multi-center datasets should be carried out.

To illustrate the scale of the lack of external evaluation
problem with an example, consider a recent study presented in
Yan et al. (2020b) where the authors have used blood samples
from 485 infected patients in the region of Wuhan, China, to
identify crucial predictive biomarkers of disease mortality using
AI-based tools. In this relatively simple severity and outcome
prediction task, and with a small validation sample size and no
external model evaluation, the authors have used the XGBoost
classifier method to identify three biomarkers [namely, lactic
dehydrogenase (LDH), lymphocyte count and high-sensitivity C-
reactive protein (hs-CRP)] that will allow the prediction of the
mortality of COVID-19 patients more than 10 days in advance
with reportedly more than 90% accuracy. External evaluation
of this result by several other researchers, such as in Barish
et al. (2020), Giacobbe (2020), Quanjel et al. (2020), and Dupuis
et al. (2021), has shown that the results of Yan et al. (2020b)
have limited clinical utility as it was impossible to replicate the
findings and arrive at the same conclusion. If a huge external
evaluation problem exists even for simpler problems (such as
prediction and forecasting problems), one can only imagine
the scale of the problem when using AI-based model for more
complicated problems such as those involving images (computer
vision-related problems).

AI has huge potential in the battle against the COVID-
19 pandemic. Despite several AI approaches and techniques
proposed for the detection, diagnosis and epidemiological
predictions, forecasting, and social control in the combat against
the pandemic, successful practical deployments of these AI-based
tools have so far been limited. There are challenges that have
led to the limited applicability of these AI-based tools. In the
following paragraphs, some of these challenges are discussed with
some suggestions of how some of these obstacles may be tackled
in order to achieve significant progress in battling COVID-19 and
future pandemics using AI techniques.

Data Accessibility
One of the key challenges that AI experts have faced during the
COVID-19 pandemic is the lack of access to sufficiently large
datasets for training and external validation of AI models upon
which deployable and successful applications depend. In order
to tackle this problem for COVID-19 and future pandemics,
healthcare centers would need a dedicated team with expertise
in medical data collection, privacy, access, and sharing. In
short, data governance frameworks and protocols for pandemics
and other emergency times will need to be designed and put
in place.

One of the sources of data that has not been taken full
advantage of so far for developing AI-based applications and
solutions during the COVID-19 pandemic are data from
biobanks. Biobanks provide infrastructure for the collection and
storage of biomedical data, including data related to health
records and lifestyle of participants, with the aim of advancing
scientific research and improving healthcare. They are often
large databases that can store imaging data, text data from
electronic health record (EHR) and lifestyle information, and
numerical data obtained by physical measurements of consented
participants. Several types of biobanks exist around the world
with different population sizes, including genetic banks, blood
banks, and tissue banks. These biobanks contain valuable data
that can provide insights into how the health of a population
develops over years and provide a rich source of data that can
be harnessed to unveil complex relationships amongst variables
[such as environmental (Wright et al., 2002; Hall et al., 2014),
lifestyle choice (Rutten-Jacobs et al., 2018; Said et al., 2018),
and genetics (Arnau-Soler et al., 2019; Wang et al., 2019)]
that are associated with COVID-19. Biobanking is particularly
useful in that it provides a unified data repository with mostly
standardized data collecting protocols. In contrast, the hospital
data are “messy” due to the nature of data collection and
storage across multiple repositories. Examples of biobanks
include the Kaiser Permanente’s Research Program on Genes,
Environment and Health (RPGEH) with 200,000 participants
(Kaiser Permanente, 2020), the UK Biobank with 500,000
participants (Biobank, 2014), China Kadoorie Biobank with
500,000 participants (Chen et al., 2005a, 2011), India’s Chennai
biobank with 500,000 participants (Gajalakshmi et al., 2007), and
Biobank of Vanderbilt University Medical Center (BioVU) with
over 1.4 million participants (Roden et al., 2008). Not all these
biobanks have data of COVID-19 patients. The UK Biobank, one
of the largest biobanks in the world in terms of data volume and
depth including multi-organ imaging, is an example of one that
has been integrated with pre-existing data of COVID-19 patients.
UK Biobank’s data has been used for research related to COVID-
19 [for example, see Armstrong et al. (2020), Atkins et al. (2020),
Grant andMcDonnell (2020), Hastie et al. (2020), Jimenez-Solem
et al. (2020), Kenneth and So (2020), Pereira et al. (2020), Sattar
et al. (2020), Toh and Brody (2020), and Zimmerman and Kalra
(2020)]. Few AI-based applications, such as in Jimenez-Solem
et al. (2020), Kenneth and So (2020), Pereira et al. (2020), Toh
and Brody (2020), and Zimmerman and Kalra (2020), exist that
have used biobanks’ data for their development, and it is likely
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that the use of biobanks’ data for the development of AI solutions
will increase in the near future.

In addition, researchers, such as in Brisimi et al. (2018),
Lee et al. (2018), Rieke et al. (2020), Li et al. (2020d), and
Xu et al. (2020d), have proposed the use of federated learning
(FL) whereby, rather than participating healthcare institutions
hand over healthcare data to AI experts to develop AI models,
AI experts will handover training algorithms to the healthcare
institutions to train their models locally. The AI experts only
get the model or model parameters in return—thus, eliminating
some of the problems of data governance and privacy associated
with data transfer between different parties while giving access
to large amount of data. FL is not without its challenges, such as
lesser accuracy of the final model (Li et al., 2020d), and the reader
is invited to consult (Brisimi et al., 2018; Lee et al., 2018; Li et al.,
2020d; Xu et al., 2020d) for further information of this approach.

External Evaluation
Many of the developed AI-based techniques and models for
COVID-19 diagnosis and epidemiological forecasting have not
been externally evaluated. External model evaluation helps in
assessing the generalisability of the predictions on independent
datasets and ensures that the model has learnt the underlying
features of the process that produces the data rather than
“memorized” the features of a particular set of data. For
illustration, Figure 1 shows the steps in developing models using
AI algorithms, highlighting the model evaluation stage of the
development process.

Many publicly available datasets for COVID-19 diagnosis do
not necessarily generalize to the whole population (i.e., they are
usually for a specific country or regions of a country or a specific
number of hospitals). The implication is that most ML models
based on them will be biased (He and Garcia, 2009), which
can reduce the performance of the models in practical settings
(Chawla et al., 2002) and can promote healthcare inequalities
(Petersen et al., 2019). Many mainstream ML algorithms for
classification problems, including SVM, decision trees, and
nearest neighbor, were developed based on the assumption that
the dataset has balanced class distribution (Chen et al., 2005b;
Almogahed and Kakadiaris, 2015), resulting in significant error
when classifying the minority class. Algorithms that have been
developed to overcome this problem algorithmically or at data
level can be found in Hart (1968), Kubat and Matwin (1997),
Laurikkala (2001), Barandela et al. (2003), Oh (2011), and
Almogahed and Kakadiaris (2015). In addition, it is important
for published research to report the pre-processing, the cleaning
and the feature engineering steps applied to the data used for
developing AI-based solutions.

AI Regulatory Landscape
Recently, frameworks for strong regulatory and ethical
requirements of AI-based clinical utility tools are being
developed but significant hurdles still persist (Petersen et al.,
2019). Many AI experts are unaware of the regulatory landscape
governing the development of AI tools in healthcare and have
not considered this matter in their development. Proof of model
performance is not sufficient. Issues, such as model biasness,

safety, effectiveness, and benefit-versus-harm analysis have
mostly been ignored by developers of many critical AI-based
healthcare technologies.

Collaboration Between AI Experts and
Clinicians
While AI provides the opportunity to reduce the time for disease
diagnosis and improve accuracy, the workload of healthcare
professionals is very high during a pandemic. The impact of this
includes the difficulty for healthcare professionals to be up to date
with the progress being made in areas relevant to their work.
It has also hindered their contribution toward that progress.
The absence and lack of engagement of clinicians to contribute
and review research results during the COVID-19 pandemic has
contributed to the limited impact, reliability and clinical utility
of many of these research findings. The COVID-19 pandemic
has highlighted the importance of domain specific knowledge
in AI. It is not sufficient for clinicians to handover data to AI
experts who understand how to develop and use classical AI
algorithms. Rather, it is important for the clinicians to work with
AI experts to help them understand the context of the solutions
being developed, to help them interpret the results from those
solutions, and to guide them on how those solutions could be
used and integrated into existing clinical healthcare pathways or
workflows. Thus, multidisciplinary research collaborations will
no doubt accelerate the translation of AI research into practical
solutions in healthcare and funding bodies could help in this
by ensuring multidisciplinary collaborations as a condition for
funding. An important lesson that should be learnt in using AI
techniques for combating COVID-19 and future pandemics is
that the applicability of these techniques is limited if AI experts
work in isolation. Important progress in healthcare using AI
technologies can be achieved only in a multi-disciplinary setting
where clinicians, epidemiologists, computer scientists, software
developers, AI experts and others work together to achieve
the common goal of improving healthcare services through
innovative technologies.

Public Engagements Over Privacy
Concerns
While AI-based technologies embedded in digital systems have
played a role in controlling the spread of COVID-19 and the
general management of the disease by many governments across
the world, the concerns of the general public over privacy have
had an impact on the acceptance of many of these technologies
and even other potential applications. Consider, for instance,
the contract tracing mobile applications that many governments
have deployed as a tool for controlling COVID-19, concerns
over the possibility that data gathered through these applications
could be exploited for other purposes has meant that the general
public have been very reluctant in using them (Clark et al.,
2020; Lewis, 2020). It has also meant that tools applicable to one
country (such as China’s use of facial recognition cameras to track
infected patients or the linking of the national medical insurance
database with the immigration and custom database in order to
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FIGURE 1 | Steps in developing models using AI algorithms.

inform the healthcare practitioners in Taiwan of the travel history
of patients) may not be applicable to others.

A framework that will ensure transparency over the legal basis
of data use, that data collection is safe and that there are controls
and mechanisms to protect misuse of data is critical now and in
future. Thus, while it is essential to gather data to address the
challenges posed by a pandemic, the authorities would need to
do work on gaining the trust of the population through effective
engagements with all stakeholders on themechanisms that would
be in place in order to protect privacy and data misuse.

Potential Misuse of AI Applications
One of the dangers of reliance on AI applications during a
pandemic is the potential for misuse. Medical imaging involves
several stages including image acquisition, reconstruction,
and transmission for storage using Digital Imaging and
Communications in Medicine (DICOM) protocol. A cyber-
attack could disrupt the use of the devices such as CT devices
that can be critical for disease diagnosis during a pandemic
(Mahler et al., 2018). With the advent of advanced AI techniques
such as generative adversarial network in medical imaging (Yi
et al., 2019), one can envisage sophisticated scenarios where
AI technologies are used for cyber-attacks that can alter the
output of imaging modalities (for instance, by removing or
adding a tissue to medical images) altering the results of medical
examination, which could lead to fatal consequences. With
increasing cyber-attack activities during COVID-19 (Lallie et al.,
2021; Muthuppalaniappan and Stevenson, 2021), healthcare
providers must be prepared for preventing the occurrence and
also detecting and mitigating the impacts that these type of AI
attacks will cause when they occur.

In addition, while FL can resolve data governance issues,
it does not necessarily guarantee data security on its own as
it may be possible to reconstruct parts of the training dataset

from the weights on decentralized computer nodes (Kaissis
et al., 2020). This possibility can allow attackers to steal sensitive
personal information in the training datasets from the nodes and
even reconstruct medical images with high degree of accuracy
(Fredrikson et al., 2015; Hitaj et al., 2017), leading to patient
confidentiality violations.

Problems associated with data imbalance, variability and
incompleteness resulting from the use of datasets that are
not accurate representation of the population on which AI
models was built for can lead to biased treatment of certain
ethnic, sex, age, and other groups. In many cases, these data
biases are often introduced inadvertently by AI algorithm
developers but unscrupulous individuals can take advantage of
this to exacerbate bias from cultural prejudices and increase
disparities in delivering healthcare services. Moreover, misuse
of AI models can also result when the datasets used for model
training do not take into account future use-case conditions;
for example, radiologists can easily adapt to change in MRI
field strength and breathing motion artifacts but these changes
will affect the performance of AI models unless they have
been specifically allowed for during the training of the models
(Brady and Neri, 2020).

These issues of misuse of AI as highlighted here show that
it is important to provide safeguards to ensure that new AI
solutions during a pandemic are assessed before being deployed
at scale. It is important to emphasize that these challenges posed
by AI are not necessarily associated with the limitations of AI
per se (Rodriguez et al., 2018). Rather, they apply to particular
use-cases and emphasize the importance of understanding the
relationships that AI models use in arriving at their predictions.
As such, guards against spurious predictions must be put in place
in order to limit data misuse.

We finish by noting that, recently, there have been several
promising initiatives from key players (e.g., government bodies,
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commercial institutions, and policy makers) to collect and
manage data in order to address or alleviate some of the problems
highlighted in this paper. We mention a few of them in the
following paragraphs.

In the United Kingdom, NHSX, the government’s unit
responsible for developing and setting national policy on digital,
data and technology for National Health Service (NHS), has
developed the National COVID-19 Chest Imaging Database
(NCCID) in order to collect patient data and facilitate research
and the development and validation of technologies that are
promising for improving COVID-19 care (NHSX, 2021). The
categories of collected data include chest X-ray, CT, and MR
images including those performed in the 3 years preceding
the first COVID-19-related imaging study, routine demographic
data, biochemical and hematological data, and outcome data.

In the EuropeanUnion (EU), SoBigData is a research initiative
under the EU’s Horizon 2020 programme (Grant No. 654024
and 871042) which provides an integrated ecosystem of “big
data” for ethnic-sensitive scientific discoveries in multiple fields
including mathematics, ICT, and human, social, and economic
sciences (SoBigData.eu, 2021). The idea is to promote repeatable
and open science by meeting the data and infrastructural needs
of researchers while also ensuring that users’ data are gathered
for specific application and timebound (e.g., relates to dealing
with the COVID-19 pandemic only and data will be deleted
afterwards), the data cannot be shared without consent, and
the data must be of direct benefit to the users whose data
were gathered. Another initiative in the EU, The Confederation
of Laboratories for Artificial Intelligence (CLAIRE) (CLAIRE,
2021), has warned that it is very likely that our societies will be
confronted with other crises at a scale similar to COVID-19 in the
not-so-far future and have outlined an European approach with
the recommendation that standards and frameworks that would
facilitate the development of efficient management of medical
data that will not erode human dignity must be developed
(Ishmaev et al., 2021).

In the United States, three national institutions namely,
National Center for Advancing Translational Sciences (NCATS),
Clinical and Translational Science Awards (CTSA) Program and
Institutional Development Award Networks for Clinical and
Translational Research (IDeA-CTR), have partnered to form the
National COVID Cohort Collaborative (N3C) in an attempt to
enable collaborators to contribute and use COVID-19 clinical
data for scientific research that will have impact in the battle
against the pandemic (NCATS-US, 2021). As at the time of
writing this paper, the data of more than 950,000 COVID-
19 positive patients are available from N3C for researchers to
examine associations between COVID-19 patient outcomes and
other determinants of health and, at least, 144 projects are already
on-going for this purpose. Interestingly, in addition to patient
data being de-identified for privacy reasons, this cloud-based data
repository consists of synthetic (that is, computationally derived)
data that statistically resemble original patient information but
are not the actual data of the patients, adding another layer of
privacy protection for patients.

The summary of the key messages and the main lessons
learnt on the application of AI-based techniques and frameworks

for the detection, diagnosis and epidemiological predictions,
forecasting and social control of COVID-19 is as follows:

• We recommend that healthcare centers set up dedicated teams
with expertise in medical data collection, privacy, access and
sharing, and data governance frameworks and protocols for
pandemics and other emergency times.

• External model evaluation is important to avoid the problems
associated with model overfitting and biasness, such as
arriving at clinically unusable solutions or introducing
inequalities in health and healthcare. We recommend the
establishment of independent units at national level or
through international collaboration with the goal of assessing
and validating AI applications developed for healthcare during
pandemics before such applications are adopted and scaled up.

• The regulatory landscape (covering issues such as safety,
effectiveness and benefit-versus-harm analysis) governing the
development of AI tools in healthcare need to be accessible
and understandable to AI experts. We recommend that
professional bodies that will oversee certification programmes
for AI experts working in healthcare be introduced to ensure
that, through continuing professional development, these
professionals adhere to common ethical standards and are
aware of the current ethical and social issues related to
their work.

• The COVID-19 pandemic has highlighted the importance
of domain specific knowledge in AI, and multidisciplinary
research collaborations will only accelerate the translation of
AI research into practical and useful solutions in healthcare.
In funding AI projects, we recommend that research fund
awarding bodies should make the collaboration between
AI scientists and domain specific experts a condition for
grant awards.

• In order to gain the trust of the population in terms of
data collection, privacy and protection, we recommend that
all stakeholders work together in the development of a data
use and sharing framework that will ensure effective data
management is in place for the development and advancement
of AI applications in healthcare.

CONCLUSION

In this paper, AI techniques that are being used in the detection,
diagnosis and epidemiological predictions, forecasting and social
control for combating COVID-19 have been discussed. While AI
has huge potential in the battle against COVID-19, the successful
practical deployments of these AI-based tools have so far been
limited due to challenges such as limited data accessibility, need
for external evaluation of AI models, lack of awareness of AI
experts of the regulatory landscape governing the deployment
of AI tools in healthcare, the need for clinicians and other
experts to work with AI experts in a multidisciplinary context
and the need to address public concerns over data collection,
privacy and protection. Overcoming these challenges will lead to
significant progress in battling COVID-19 and future pandemics
using AI techniques.
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