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Compute-in-memory (CIM) is an attractive solution to process the extensive workloads of
multiply-and-accumulate (MAC) operations in deep neural network (DNN) hardware
accelerators. A simulator with options of various mainstream and emerging memory
technologies, architectures, and networks can be a great convenience for fast early-stage
design space exploration of CIM hardware accelerators. DNN+NeuroSim is an integrated
benchmark framework supporting flexible and hierarchical CIM array design options from a
device level, to a circuit level and up to an algorithm level. In this study, we validate and
calibrate the prediction of NeuroSim against a 40-nm RRAM-based CIM macro post-
layout simulations. First, the parameters of a memory device and CMOS transistor are
extracted from the foundry’s process design kit (PDK) and employed in the NeuroSim
settings; the peripheral modules and operating dataflow are also configured to be the
same as the actual chip implementation. Next, the area, critical path, and energy
consumption values from the SPICE simulations at the module level are compared
with those from NeuroSim. Some adjustment factors are introduced to account for
transistor sizing and wiring area in the layout, gate switching activity, post-layout
performance drop, etc. We show that the prediction from NeuroSim is precise with
chip-level error under 1% after the calibration. Finally, the system-level performance
benchmark is conducted with various device technologies and compared with the
results before the validation. The general conclusions stay the same after the
validation, but the performance degrades slightly due to the post-layout calibration.

Keywords: compute-in-memory, hardware accelerator, deep neural network, design automation, benchmarking
and validation

INTRODUCTION

State-of-the-art deep neural network (DNN)–based machine learning algorithms have demonstrated
remarkable effectiveness for various artificial intelligence applications such as image processing,
speech recognition, and language translation (Deng et al., 2020). However, due to the requirement of
high parallelism and power consumption for data movement, computing platforms with traditional
von Neumann architecture are inadequate for efficient processing of DNNs. Compute-in-memory
(CIM) is a promising solution to alleviate the memory access bottleneck and has achieved attractive
energy efficiency when implemented with mature SRAM technology at 7 nm (Dong et al., 2020).
With recent progress in emerging nonvolatile memory (eNVM) devices such as resistive random
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access memory (RRAM) (Xue et al., 2020), phase change memory
(PCM) (Burr et al., 2015), and ferroelectric field-effect transistor
(FeFET) (Dutta et al., 2020), the application of a CIM-based DNN
accelerator is even more intriguing since eNVMs offer low
leakage power and nonvolatility which are necessary for
dynamic power gating and instant on and off operations in
smart edge devices.

However, the performance of CIM can be highly dependent on
design factors such as sub-array size, analog-to-digital converter
(ADC) precision, and device conductance. Though accurate, the
circuit-level SPICE simulation requires dramatically increasing
time with the scale of the DNN model. Therefore, a design
automation simulator that supports fast modeling of CIM
accelerators with various memory technologies and flexible
architecture topologies is required to realize an early-stage
design space exploration. Among all the reported CIM
simulators, NeuroSim (Chen et al., 2018) stands out as a
comprehensive platform as it covers a wide variety of design
options from a device level to a circuit level and up to an
algorithm level. The inputs to the simulator include memory
types, nonideal device parameters, transistor technology nodes,
network topology and sub-array size, and training dataset and
traces. The outputs of the simulator include the hardware
performance metrics, such as area, latency, dynamic energy
and leakage power consumption, and algorithm-level training/
inference accuracy in the run-time. NeuroSim is interfaced with
PyTorch, forming an end-to-end benchmark framework, namely,
DNN+NeuroSim (Peng et al., 2019), which is publicly available at
GitHub with hundreds of users including industry researchers
from Intel, Samsung, TSMC, and SK Hynix.

To our best knowledge, none of other CIM simulators have
been validated with the actual silicon data, although the
peripheral circuit modules (e.g., decoder, switch matrix, mux,
and adder) of NeuroSim have been validated with SPICE
simulations using the PTM model (PTM, 2011) and FreePDK
(FreePDK, 2014). It is known that the PTM model and FreePDK
are for educational purposes, rather than for foundry fabrication
purposes. Therefore, it is imperative to validate the simulator’s
prediction with the silicon implementation. In this study, we will
validate NeuroSim against a 40-nm 16-kb CIM macro using the
TSMC 40-nm RRAM process (Chou et al., 2018), which has been
taped out recently (Li et al., 2021). First, the parameters of the
memory device and CMOS transistor are exacted from the
TSMC’s PDK and employed in the NeuroSim settings. Next,
the comparison is made on the analog and digital modules,
respectively. New modules such as a level shifter, which uses
I/O transistors (to support RRAM’s high write voltage), is added
to NeuroSim libraries. The area, critical path delay, and energy
consumption are evaluated between the analytical modeling and
the SPICE simulations from Cadence Spectre. Finally, adjustment
factors are introduced to tune the transistor size, add the wiring
area in layout, consider the gate switching rate and the post-
layout performance drop, etc. Using the validated NeuroSim
settings, we will further benchmark CIM accelerators with a
variety of device technologies and compare the performance
prediction before and after the validation. It is noted that we
only focus on the hardware performance validation in this work

and do not focus on the software accuracy estimation, though the
inference accuracy is reportable from the framework.

BACKGROUND

The convolution neural network (CNN) is one of the most
popular DNN models, consisting of multiple convolutional
layers to learn the salient features and a few fully connected
layers for classification. In this study, we focus on the acceleration
of the inference engine where the weights have been pretrained
offline. In a convolutional layer, an output feature map (OFM) is
the result of multiply-and-accumulate (MAC) operations on a
collection of weights (or filters) operating in a sliding window
fashion over the input feature map (IFM). Consider the case
where the IFM of size W×W×D is processed by N filters, each of
size K×K×D. Then the OFM of size W×W×N is computed as
follows:

O[x][y][n] � ∑
K−1

i�0
∑
K−1

j�0
∑
D−1

k�0
I[x + i][y + j][k] ×W[i][j][k][n],

where I, W, and O are the IFM, weights, and OFM,
respectively. CIM is an attractive solution for the extensive
MAC operations in DNN inference as it combines memory
access and computation. The conceptual crossbar structure for
CIM is shown in Figure 1A, where the memory device is located
at each cross point. If the weights are programmed as the
conductance of the memory devices, when the input vectors
encoded by read voltage signal, the weighted sum (MAC)
operation can be performed in a parallel fashion and obtained
as currents at the end of each column. Resistive random access
memory (RRAM) is a two-terminal nonvolatile memory based on
the metal/oxide/metal structure that stores the multi-bit weight
by changing cell’s multilevel conductance states. RRAM has been
successfully demonstrated in industrial 40 nm (Chou et al., 2018)

FIGURE 1 | (A)Weighted sum (MAC) operation in a conceptual crossbar
array structure. (B) RRAM-based sub-array with peripheral circuits (e.g., CIM
macro).
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and 22 nm platform (Xue et al., 2020). The one-transistor-one-
resistor (1T1R) structure is widely used in RRAM-based CIM
macro where the word-line (WL) to switch rows of cells and
the MAC results are read out through bit-line (BL) voltage
converted from weighted sum currents. As shown in
Figure 1B, a complete RRAM-based CIM macro also
contains peripheral circuits such as a WL switch matrix and
BL/SL decoder (to select specific rows or columns), level shifter
(to convert the logic VDD to high write voltage for RRAM),
MUX and its decoder, analog-to-digital converter (ADC),
shift-add, and accumulator to support multi-bit input and
multi-bit weight operations.

NEUROSIM SETTINGS

NeuroSim is designed for the CIM-based hardware
accelerators. The hierarchy of the simulator consists of
different levels of abstraction and analytical modeling from
the memory cell and transistor technology to the gate-level
standard cell and peripheral circuit modules and then to the
one sub-array (or a macro as defined in this article). Then
multiple sub-arrays will form one processing element (PE),
and multiple PEs will form one tile with H-tree–based
interconnect routing. An arbitrary neural network model
could be mapped with a number of tiles.

New Features of NeuroSim
Compared with the last version of NeuroSim (Chen et al., 2018),
many new modules and features are added in this version.

• Level-shifter is normally required for RRAM (or PCM/
FeFET) array to support the need of higher write voltage
(than logic VDD). Now, a level-shifter is added as a
peripheral module and will be validated later.

• Different types of ADCs are supported such as Flash ADCs
using voltage-mode sense amplifiers or current-mode sense
amplifiers and successive approximation register (SAR)
ADC, as shown in Figure 2. They have trade-offs in the
area/power and latency. For each technology node, latency
and energy data from Cadence simulation are collected with
sweeping of a reasonable dynamic voltage (or current) range
and then are fitted with polynomial functions for fast

FIGURE 2 | Schematics of (A) level shifter; (B) voltage sense amplifier (VSA); (C) current sense amplifier (CSA); (D) successive approximation register (SAR) ADC.

FIGURE 3 | Layout of inverter cells for (A) bulk and (B) FinFET.

TABLE 1 | Updated transistor model of bulk (130–22 nm) and FinFET (14–7 nm) technologies.

Technology
(nm)

Bulk FinFET

130 90 65 45 32 22 14 10 7

Fin pitch (nm) 48 36 30
Fin height (nm) 37 42 52
Fin width (nm) 8 6 6
NMOS width of bulk (nm) / #Fin of FinFET 907 689 507 352 267 198 3 3 2
PMOS width of bulk (nm) / #Fin of FinFET 1,809 1,191 850 587 401 262 3 3 2
Gate length (nm) 75 55 35 30 28 26 22 20 18
Standard cell layout width (nm) 988 684 494 342 243 167 143 104 78
Standard cell layout height (nm) 3,640 2,520 1,820 1,260 896 616 462 336 250
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estimation of NeuroSim, given real traces from the
workloads.

• Inverter, NAND, and NOR gates based on FinFET
technologies (down to 7 nm) are optimized considering
the layout rule. Figure 3 shows the FinFET-based
inverter gate layout. It should be pointed out that
FinFET decouples the physical width (determined by the
Fin pitch) and the electrical width (determined by the Fin
height).

• The technology file is updated for FinFET. The default
transistor models in NeuroSim were calibrated with the
PTM model (PTM, 2011), which is available to the public
and has a wide range of technology nodes from 130 to 7 nm.
However, as the PTM model (of 14, 10 and 7 nm) was
proposed far earlier than the industry adoption of FinFET,
their prediction of Fin geometry actually deviated from the
actual values today. We corrected the Fin height, width, and
pitch following the recent trends in leading foundries and

made some corresponding changes in the standard cell
height/width and interconnect wire pitch, and switched
to the assumption of using a maximum electrical width/
or fin number in the standard cell for digital circuit design.
The detailed values are shown in Table 1.

• A Scaling trend of the SRAM cell area with technology
nodes is calibrated and shown in Figure 4. Since the
technology node name F deviates from the transistor
physical dimensions in the recent generations, the SRAM
cell area that is normalized to F2 significantly increases in
14 nm and beyond.

• The H-tree–based routing between memory arrays is
optimized with a low-swing interconnect to improve
energy efficiency.

• The extra-large SRAM buffers are split into smaller block
buffers for a more realistic and efficient performance
estimation.

• The peripheral mux used to be sized up significantly to
avoid large voltage drop for a memory device with small on-
state resistance (Ron). Considering the DNN model
sparsity, the sizing of mux is decided by the average
column resistance, instead of the worst-case all “on”
resistance to alleviate the area overhead.

• Latency is measured by clock cycles, instead of directly
accumulating the critical path of each module. The clock
period is decided by the sensing cycle, which is the critical
path from giving input to the memory array till the ADC
generating the digital partial sum as this is an analog process
and no digital buffer could be added in between. The latency
of other digital modules is measured cycles needed for the
processing because their timing could be adjusted by adding
digital buffer.

Transistor and Peripheral Circuit Modules
The default transistor models in NeuroSim are calibrated with a
predictive technology model (PTM) (PTM, 2011), which is
available to the public and has a wide range of technology

FIGURE 4 | Scaling trend of SRAM cell area with technology nodes
(assuming F is the same as the technology node).

FIGURE 5 | Id-Vg comparison of PTM model and TSMC PDK in (A) linear-scale and (B) semilogarithmic scale.
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nodes from 130 to 7 nm. However, it is known that the
commercial foundry process may differ noticeably from the
PTM model. Figure 5 shows the comparison of the Id-Vg

curve between the PTM model and TSMC PDK. In this
validation, the transistor parameters are directly extracted
from TSMC 40-nm RRAM PDK and specifically set in the
NeuroSim transistor library, including device W/L, the supply
voltage (VDD), threshold voltage (VTH), gate and parasitic
capacitance, and NMOS/PMOS on/off current density. Based
on these parameters, the area and intrinsic RC/power model of
standard logic gates can be calculated analytically using the
formula, as discussed in Ref. Chen et al. (2018); thus, the
performance metrics of each sub-circuit can be estimated. The
transistor W/L in ADC, mux, switch matrix, and drivers are
predefined according to the required drivability, while transistor
W/L in the other logic gates used fixed size (to be corrected later
with validation). The capacitances at the logic gate level are also
fixed with their transistors’ sizing known, τ � RC and CVDD

2 are
calculated to estimate the module delay and dynamic energy
consumption. Leakage power is also considered for sub-circuit
modules and SRAM cells.

CIM Macro Configurations
In this particular design (Li et al., 2021) with TSMC 40-nm
RRAM, the CIMmacro could support MAC operation with zero-
skip and reconfigurable precision for DNN inference. The input
sparsity-aware controller counts the number of 1’s in the input
vector, and the scanned rows are asserted in parallel once the
counter reaches the threshold (7 in this design, considering the
ADC sensing range and the practical RRAM on/off ratio). By
skipping the 0’s in the input, only meaningful ADC conversions
take place to improve throughput and energy efficiency. Flexible
weight precision (1/2/4/8 bits) is supported to suit the optimized
quantization levels for a variety of DNN models. On-chip shift-
add and accumulator adaptively justify the different significances
of weight bits and accumulate the partials sums in the digital
domain. Each 3-bit ADC consists of seven voltage-mode sense
amplifiers (VSAs) and is shared among eight columns as the
RRAM cell pitch is much smaller than the size of the ADC. One
reference voltage (Vref) is required for each VSA. For the ease of
routing, the data column and the reference column are
interleaved in a 256 × 256 physical array, but the actual
computation array size is 128 × 128. Overall, the simulator
settings are kept consistent with the actual macro and are
summarized in Table 2. Figures 6, 7 separately show the
macro organization and physical layout.

NEUROSIM VALIDATION

AnalogModules: RRAMArray, Level Shifter,
Mux, and ADC
In the validation of analog sub-circuits, we mainly care about the
RRAM array, level shifter, mux, and ADC. We will compare the
area, latency, and energy consumption between NeuroSim
simulation and the actual macro, as shown in Table 3.

TABLE 2 | Table of simulator settings.

Technology TSMC 40 nm w/RRAM

Array size 256 × 256 (only 128 × 128 in computation)
ADC precision 3-bit
Weight precision 1/2/4/8 bit
Operating voltage 0.9 V
Rows turned on simultaneously 7

FIGURE 6 | RRAM CIM macro organization that supports input zero-
skip and reconfigurable weight precision. ©2021 IEEE. Reprinted, with
permission, from Li et al., 2021.

FIGURE 7 | CIM macro layout implemented with TSMC 40 nm RRAM
process.
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Area: First, the RRAM cell size is a user-defined parameter in
terms of F2 (75 F2 in this design) to estimate the array area
according to the array size. In the simulator, the gate area is
estimated according to transistor W/L and pitch requirements in
the layout rules. In general, logic transistors with minimal length
are utilized to constitute the sub-circuit modules. To simulate the
I/O transistors in the level shifter, the gate layout width is
multiplied by 2.5 times considering the poly width and the
gap between gate polys in the PDK; the gate layout height is
also multiplied 2.5 times to simulate the practical gate area
measured in the macro design. After these corrections, the
simulator shows 2.8 um × 10 um per level shifter unit, which
is quite close to the measurement on the actual layout (Figure 8).
There are totally 256 × 3 level shifters for WL, BL, and SL for the
entire array size of 256 × 256. By comparison with the actual area
measured in the layout, a wiring area factor α � 1.44 will be
imposed on the level shifter for calibration. ADCs and their mux
are located together on the layout occupying about 5,400 um2 (the
ADC block labeled in Figure 7), and the simulator estimates a
result of 4,730 um2 with acceptable error by its default settings.
The other visible mux block labeled in Figure 7 is for selecting the
signal to BL and SL for programming the memory cells.

Latency: The chip could operate around 200 MHz with the
digital blocks only, but the clock frequency drops to 100 MHz
(post–layout simulation, 110 MHz for pre-layout) when the
analog modules are included. It means the critical path is
within the analog modules and it is the sensing delay from
activating the level shifters to the currents summing along the
columns till the ADCs converting the digital outputs. The sensing
delay in the actual macro is ∼10 ns. The latency of each module
estimated by NeuroSim is listed in Table 3. A latency factor β �
1.4 will be utilized in the simulator based on the comparison.

Energy: The energy consumption of analog modules is
measured by SPICE simulation. In NeuroSim, the energy

estimation of ADCs is also based on a lookup table–like fitting
function with various weight patterns and Vref swept that are
predefined by SPICE simulations. Other digital-like modules
utilize CV2 as the dynamic energy estimation. Leakage power
is also considered in NeuroSim, but the values are typically small.
With precise settings demonstrated in NeuroSim Settings section,
the estimation of NeuroSim is sufficiently accurate, as shown in
Table 3.

Digital Modules: Shift-Add, Accumulator,
and Controller
The breakdown performance of digital sub-circuits in the macro
design is not easy to extract because they are together
automatically synthesized through register transfer-level (RTL)
codes. For simplicity, we consider digital modules as only three
classes to be validated: shift-add, accumulator, and control
circuits. The sparsity-aware controller, encoder, and decoders
are all categorized as control circuits. It is noted that although
zero-skipped input is supported in this macro to improve
throughput and energy efficiency, our pre-layout SPICE
simulation and NeuroSim estimation are both based on 0%
input sparsity (no zero-skip).

Area: From the actual macro’s digital design, the number
of different types of gates and their corresponding areas can
be extracted to validate the prediction. In order to support
reconfigurable weight precision, the D-type flip-flops (DFFs)
in the shift-add and accumulator are required to
accommodate the largest precision (8-bit), and the adders
have to be prepared for each precision (1/2/4/8-bit). We
confirmed that the settings in NeuroSim could support the
function and are similar as those in the actual chip, as shown
in Table 4. In NeuroSim, the DFF contains four transmission
gates, four inverters, and another four inverters for clock; the
adder consists of nine NAND gates per bit. Although the
exact number and types of gates cannot be guaranteed to be
the same as the actual chip, the area comparison shown in
Table 5 is already close to the default models in NeuroSim.
Unlike shift-add and accumulator, control circuits might
consist of all types of gates and the composition can be
quite diverse in different designs. Therefore, all the gates
in the controller are normalized to the inverter gate count
according to their area for simulation simplicity. The inverter
layout height in NeuroSim is multiplied by 1.84 to mimic the

TABLE 3 | Analog module validation.

Module Area (um2) Latency (ns) Energy (pJ)

NeuroSim Real chip NeuroSim Real chip NeuroSim Real chip

Level shifter 256 × 28xαx3 � 30,966 12,084 (WL)+19,505 (BL+SL) � 31,589 1.12 1.02 0.99
Mux 459 5,400 0.06 0.07
ADC 4,271 5 74.50
Array 256 × 256 × 0.12 � 7,864 7,864 0.19 4.99
(Mux decoder) Counted in control part of digital modules 0.37 Counted in control part of

digital modules(ADC encoder) 0.02
Total 43,560 44,853 6.76xβ ∼10 80.58 86.79

FIGURE 8 | Layout of level shifter.
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actual inverter area on this PDK. After the calibration,
Table 5 shows that the overall area estimation of digital
modules is quite accurate.

Latency: As we pointed out earlier, the sensing cycle of the
RRAM array is typically the critical path of the entire chip as the
digital blocks can always be partitioned into multiple stages to be
hidden within this analog critical path delay. Therefore, we
propose counting the number of operations for digital
modules. Each operation of shift-add or accumulator is one
cycle according to the timing. For the entire DNN processing,
we estimated the chip-level latency as the total number of clock
cycles to complete the computation in a layer-by-layer manner.

Energy: Table 5 shows the comparison of dynamic energy
consumption of digital modules. The energy of actual chip is
extracted from SPICE simulations. As most gates actually do not
switch during run-time, switching activity factors should be
considered in real workloads. As the DFFs are able to
accommodate the largest precision, most DFFs are on
operation when the real chip is tested under 8 bits. While the
adders are prepared for each precision, most of gates are inactive
in practice. Therefore, we set activity factors γ � 50% and δ � 15%
separately for DFF and adder of shift-add and accumulator. The

normalized inverters and DFFs to simulate the control circuits are
employed with factor ϵ � 5% and ζ � 11%.

Post-Layout Calibration
The above performance comparison (except sensing delay) is
based on pre-layout SPICE simulation. For chip-level energy
efficiency, the actual macro could run at 10 TOPS/W with 0%
input and 50% weight sparsity, where we can derive that it costs
3,151 pJ to compute the entire array (128 × 128 × 2 operations).
As a comparison, NeuroSim predicts 3,178 pJ after the
calibration. In order to reflect the silicon data, the post-layout
performance drop is also considered in our validation, as shown
in Table 6. In post-layout SPICE simulation, the macro has an
energy efficiency of 8.48 TOPS/Wwith the same input and weight
patterns, which derives that 3,864 pJ is required to compute the
entire array. Therefore, a factor η � 1.22 is imposed to estimate
the chip-level post-layout dynamic energy consumption.

BENCHMARK

In this section, we evaluate the impact of the aforementioned
calibration factors on the DNN+NeuroSim framework by
implementing the VGG-8 model on CIFAR-10 dataset, testing
on various technologies and memory devices with a general
architecture and operation mode, following the methodologies
reported in Ref. Peng et al. (2019). The simulation is set up across
versatile device technologies (HfOx RRAM (He et al., 2020),
TaOx/HfOx RRAM (Wu et al., 2018), PCM (Kim et al., 2019),
and FeFET (Ni et al., 2018), as shown in Table 7. SRAM-based

TABLE 4 | Shift-add and accumulator settings for reconfigurable precision.

Module 1-bit weight 2-bit weight 4-bit weight 8-bit weight NeuroSim Real chip

Shift-
add

#DFF 64 registers × 5 bit/
register

32 registers × 7 bit/
register

16 registers × 11
bit/register

16 registers × 11 bit/register
� 176

176 DFFs

#Adder
bit

16 adders × 3 bit/
adder

16 adders × 3 bit/
adder

16 adders × 3 bit/
adder

16 adders × 3 bit/adder × 3
� 144

144 full adders +16
half adders

Accum #DFF 128 registers × 8
bit/register

64 registers × 10
bit/register

32 registers × 12
bit/register

16 registers × 16
bit/register

128 registers × 8 bit/register �
1,024

1,216 DFFs

#Adder
bit

16 adders × 7 bit/
adder

16 adders × 9 bit/
adder

16 adders × 11 bit/
adder

16 adders × 15 bit/
adder

16 adders × (7 + 9+11 + 15)
bit/adder � 672

704 full adders +112
half adders

TABLE 5 | Digital modules validation.

Module Area (um2) Latency Energy (pJ)

NeuroSim Real chip NeuroSim Real chip

Shift-add DFF 719 681 1 cycle � 10 ns 2.504 x γ � 1.25 1.25
Adder 662 663 0.81 x δ � 0.12 0.15
Inverter 2,133 INV � 1,336 1,334 3.31 x ϵ � 0.17 0.33

Accumulator DFF 4,968 4,706 1 cycle � 10 ns 17.3 x γ � 8.65 8.37
Adder 3,089 3,291 3.99 x δ � 0.60 0.60
Inverter 10,869 INV � 6,808 6,797 16.88 x ϵ � 0.84 0.80

Control DFF 7,334 26.96 x ζ � 2.97 3.01
Inverter 10,485 INV � 6,569 6,558 16.28 x ϵ � 0.81 0.75

Total 31,893 31,386 15.41 15.26

TABLE 6 | Chip-level pre- and post-layout energy comparison.

Energy
for whole array

NeuroSim Real chip

Pre-layout 3,177.75 pJ 10.4TOPS/W → 3,150.8 pJ
Post-layout 3,177.75 pJ×η 8.48TOPS/W → 3,864.2 pJ
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CIM accelerators are evaluated at both 22 and 7 nm, and eNVM-
based ones are evaluated at 22 nm as 22 nm is the state-of-the-art
node where the eNVMs are integrated. Considering the read-

noise and on/off ratio, the 4-bit/cell is assumed for eNVMs,
except the 2-bit RRAM from Winbond (He et al., 2020). The
subarray size is 128 × 128. A 4-bit precision ADC is utilized for 1-
bit SRAM cells, with an inference accuracy of 92%; while a 5-bit
precision ADC is utilized for multi-bit eNVMs to maintain an
inference accuracy of 91% (Peng et al., 2019). Relatively high
precision with 8-bit weight and 8- bit activation is also used to
ensure no accuracy loss. A full 128-row parallel operation is
assumed for the most efficient calculation. The number of
operations is normalized to 8-bit, regardless of the memory
cell precision.

The general conclusions stay the same as Ref. Peng et al.
(2019). First, at the same technology node, eNVM-based designs
outperformed the SRAM-based designs in both energy efficiency
(in the unit of TOPS/W) and compute efficiency (in the unit of
TOPS/mm2). Second, devices with higher on-state resistance
(Ron) such as FeFET show substantial improvements in
energy efficiency. Third, SRAM at the leading-edge node (e.g.,
7 nm or beyond) still show competitive energy efficiency and
outstanding compute efficiency. Compared to the previous results
before the validation, the new benchmark results show that the
areas of eNVM-based designs are increased substantially owing to
the calibration for the level-shifter area. The compute efficiency in
all the design significantly decreases mainly because of the
adopted clock cycle–based method to measure the latency. The

TABLE 7 | Benchmark results of CIM accelerators on VGG-8 for CIFAR-10 and ResNet-18 for ImageNet, based on SRAM (at 7 and 22 nm), and reported eNVM devices
(assumed at 22 nm).

Technology node
(LP)

7 nm 22 nm

Device 8T-SRAM 8T-SRAM RRAM [12] RRAM [13] PCM [14] FeFET [15]

MLSA-ADC precision 4-bit 4-bit 5-bit 5-bit 5-bit 5-bit
Memory cell precision 1-bit 1-bit 2-bit 4-bit 4-bit 4-bit
Ron (Ω) / 6 k 100 k 40 k 240 k
On/off ratio / 150 10 12.5 100
VGG-8 (8-bit activation; 8-bit weight) on CIFAR10, with novel weight mapping and dataflow
Area (mm2) 13.34 61.92 45.55 25.57 25.57 25.52
Memory utilization (%) 98.73% 98.73% 96.86% 93.47% 93.47% 93.47%
Clock period (ns) 2.98 4.87 2.05 2.02 2.22 2.30
L-by-L latency (ms) 2.09 3.60 1.46 1.30 1.43 1.48
L-by-L dynamic energy (uJ) 31.27 58.69 37.75 16.73 17.32 16.07
L-by-L leakage power (mW) 2.71 1.73 0.63 0.33 0.33 0.33
Compute efficiency (TOPS/mm2) 0.044 0.006 0.019 0.037 0.034 0.033
Pre-layout energy efficiency (TOPS/W) 31.87 18.48 31.63 71.25 68.69 73.72
Post-layout energy efficiency (TOPS/W) 26.12 15.14 25.93 58.40 56.11 60.43

Before calibration
Area (mm2) 13.34 60.25 31.18 17.88 17.88 17.64
Compute efficiency (TOPS/mm2) 0.147 0.027 0.057 0.118 0.118 0.120
Energy efficiency (TOPS/W) 47.66 21.78 40.89 85.44 82.12 89.14

ResNet-18 (8-bit activation; 8-bit weight) on ImageNet, with novel weight mapping and dataflow
Area (mm2) 16.77 80.37 62.04 39.68 39.68 39.61
Memory utilization (%) 94.59% 94.59% 91.42% 86.64% 86.64% 86.64%
Clock period (ns) 2.98 4.87 2.05 2.02 2.22 2.30
L-by-L latency (ms) 22.75 39.14 13.39 11.53 12.67 13.12
L-by-L dynamic energy (uJ) 148.50 275.81 197.03 92.62 96.00 89.18
L-by-L leakage power (mW) 3.29 2.11 0.80 0.50 0.50 0.50
Compute efficiency (TOPS/mm2) 0.014 0.002 0.007 0.012 0.011 0.011
Pre-layout energy efficiency (TOPS/W) 25.87 15.93 26.68 56.41 54.27 58.07
Post-layout energy efficiency (TOPS/W) 21.20 13.06 21.87 46.24 44.48 47.60

FIGURE 9 | Energy breakdown of CIM accelerators on VGG-8 for
CIFAR-10, based on SRAM (at 7 and 22 nm), and reported eNVM devices
(assumed at 22 nm).
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pre-layout energy efficiency is reduced mainly as a result of larger
transistor size utilized after update, while the calibration on
energy consumption of DFFs and adders somehow offset the
more leakage caused by longer latency and the longer
interconnect distance caused by the larger area. The post-
layout energy efficiency is further dropped as a direct result of
the calibration. The energy breakdown of simulated accelerators
on VGG-8 for CIFAR-10 is shown in Figure 9. The devices with
high Ron cost much less energy on the memory array charging
and ADCs; devices with high cell precision could effectively
reduce the operation of bit shift-and-add, thus reducing the
energy consumption on accumulation; a smaller chip area
contributes to less interconnection energy.

In this work, we also explore the scalability of the framework
toward larger networks for more complex problem. The
benchmark results of the ResNet-18 model on ImageNet
dataset are also shown in Table 7, where the trend is similar
as VGG-8 on CIFAR-10. The inference under 8-bit weight and 8-
bit activation could reach 69% top-1 accuracy of ImageNet. The
overall chip area increases by 25–50%, compute efficiency
decreases by ∼70%, and energy efficiency decreases by ∼20%
for ImageNet compared to CIFAR-10 workloads. In this version
of the released framework, we assume a custom chip design for
specific DNNmodels where all the weights are stored on chip. For
the designs with chip area constraints where the weight reloading
from off-chip DRAM is unavoidable, the readers could refer to
the relevant discussions in Lu et al. (2020). For the reconfigurable
chip design where one chip instance is able to support various
DNN models, the readers could refer to the relevant discussions
in Lu et al. (2021).

DISCUSSION

The related works in this field include the following reported
simulators. NVSim (Dong et al., 2012) is a memory-oriented
simulator, and its peripheral circuit modules do not support CIM
functions. Other reported CIM-oriented simulator platforms such as
MNSIM (Xia et al., 2018) and TxSim (Roy et al., 2021) have
demonstrated powerfulness in the design space exploration or the
device nonideality analysis, but theymay have limited considerations
either on the algorithm accuracy or on the hardware performance
metrics. RxNN (Jain et al., 2020) is capable of various device and
circuit nonideality analyses and rough energy estimation. Compared
with RxNN, our work makes more comprehensive considerations
on the hardware performance estimation. An IBM Analog AI HW
Kit (IBM, in press) and CrossSim (CrossSim, 2018) only focus on the
neural network accuracy estimation without the hardware
performance estimation. PIMSim (Xu et al., 2018) is an
architectural simulator for process in memory (most for near
DRAM processing) with compatibility for traditional computer
architecture simulator GEM5.

The prediction of NeuroSim is validated against the post-
layout simulation of an actual 40 nm RRAM-based CIM macro
design. Some adjustment factors are introduced: α � 1.44 for the
wire areas in the level shifter; β � 1.4 for the sensing cycle as the
critical path; γ � 50% and δ � 15% separately for dynamic energy

of DFFs and adders in shift-add or accumulators; ϵ � 5% and ζ �
11% for dynamic energy of inverters and DFFs in control circuits;
and η � 1.22 for a post-layout energy increase. After these
calibrations, the chip-level simulation from NeuroSim is quite
accurate with error under 1%.

However, we admit some inevitable limitations of this
validation. First, the factors might be overfitted for this
specific design. Limited by the available resources, it is
unrealistic for us to have more chips fabricated with different
technologies or design options. Although there are some other
reported CIM macros developed by other groups, the lack of
detailed design information and performance breakdown prevent
using them for such validation. Second, even with our own CIM
macro, the performance breakdown is not precise enough. For
example, in NeuroSim, the latency is considered as the
accumulation of the critical path delay of each module, while
for the real chip, we could only get an overall estimation
according to the clock cycle. Third, the calibration mainly
focuses on the sub-array level as there is no large-scale multi-
macro system with eNVM-based CIM accelerators as of today.
Some additional factors may be required to capture the system-
level activity rate of accumulators and buffer access frequency.
Nevertheless, we believe this calibration with actual silicon
implementation could offer an important reference and make
the estimation of NeuroSim more convincing and reliable for the
growing community of this simulator.
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