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Cross-view or heterogeneous face matching involves comparing two different views of the
face modality such as two different spectrums or resolutions. In this research, we present
two heterogeneity-aware subspace techniques, heterogeneous discriminant analysis
(HDA) and its kernel version (KHDA) that encode heterogeneity in the objective function
and yield a suitable projection space for improved performance. They can be applied on
any feature to make it heterogeneity invariant. We next propose a face recognition
framework that uses existing facial features along with HDA/KHDA for matching. The
effectiveness of HDA and KHDA is demonstrated using both handcrafted and learned
representations on three challenging heterogeneous cross-view face recognition
scenarios: (i) visible to near-infrared matching, (ii) cross-resolution matching, and (iii)
digital photo to composite sketch matching. It is observed that, consistently in all the
case studies, HDA and KHDA help to reduce the heterogeneity variance, clearly evidenced
in the improved results. Comparison with recent heterogeneous matching algorithms
shows that HDA- and KHDA-basedmatching yields state-of-the-art or comparable results
on all three case studies. The proposed algorithms yield the best rank-1 accuracy of 99.4%
on the CASIA NIR-VIS 2.0 database, up to 100% on the CMU Multi-PIE for different
resolutions, and 95.2% rank-10 accuracies on the e-PRIP database for digital to
composite sketch matching.
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INTRODUCTION

With increasing focus on security and surveillance, face biometrics has found several new
applications and challenges in real-world scenarios. In terms of the current practices by law
enforcement agencies, the legacy mugshot databases are captured with good quality face cameras
operating in the visible spectrum (VIS) with inter-eye distance of at least 90 pixels (Wilson et al.,
2007). However, for security and law enforcement applications, it is difficult to meet these
standard requirements. For instance, in surveillance environment, when the illumination is not
sufficient, majority of the surveillance cameras capture videos in the near-infrared spectrum
(NIR). Even in daytime environment, an image captured at a distance may have only 16 × 16
facial region for processing. For these applications, the corresponding gallery or database image
is generally a good quality mugshot image captured in controlled environments. This leads to the
challenge of heterogeneity in gallery and probe images. Figure 1 shows samples of these
heterogeneous face matching cases. This figure also showcases another interesting application of
matching composite sketch images with digital face images. In this problem, composite sketches
are generated using a software tool based on eyewitness description, and this synthetic sketch
image is then matched against a database of mugshot face images. Since the information content
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in sketches and photos is different, matching them can be
viewed as heterogeneous matching problem.

The challenge of heterogeneous face recognition is posed by
the fact that the view1 of the query face image is not the same as
that of the gallery image. In a broader sense, two face images are
said to have different views if the facial information in the images
is represented differently. For example, visible and near-infrared
images are two views. The difference in views may arise due to
several factors such as difference in sensors, their operating
spectrum range, and difference in the process of sample
generation. Most of the traditional face recognition research
has focused on homogeneous matching (Bhatt et al., 2015),
that is, when both gallery and probe images have the same
views. In recent past, researchers have addressed the
challenges of heterogeneous face recognition (Tang and Wang,
2003; Yi et al., 2007; Lei and Li, 2009; Lei et al., 2012a; Klare and
Jain, 2013; Jin et al., 2015). Compared to homogeneous face
recognition, matching face images with different views is a
challenging problem as heterogeneity leads to increase in the
intra-class variability.

Literature Review
The literature pertaining to heterogeneous face recognition can be
grouped into two broad categories: 1) heterogeneity invariant
features and 2) heterogeneity-aware classifiers. Heterogeneity
invariant feature–based approaches focus on extracting
features which are invariant across different views. The
prominent research includes use of handcrafted features such

as variants of histogram of oriented gradients (HOG), Gabor,
Weber, local binary patterns (LBP) (Liao et al., 2009; Goswami
et al., 2011; Kalka et al., 2011; Chen and Ross, 2013; Dhamecha
et al., 2014), and various learning-based features (Yi et al., 2015;
Liu et al., 2016; Reale et al., 2016; He et al., 2017; Hu et al., 2018;
Cho et al., 2020). Heterogeneity-aware classifier–based
approaches focus on learning a model using samples from
both the views. In this research, we primarily focus on
designing a heterogeneity-aware classifier.

One set of work focuses on addressing the heterogeneity in
projection space or by statistically learning the features suitable
for heterogeneous matching. On these lines, one of the earliest
research related to visible to near-infrared matching, proposed by
Yi et al. (2007), utilizes canonical correlation analysis (CCA)
which finds the projections in an unsupervised manner. It
computes two projection directions, one for each view such
that the correlation between them is maximized in the
projection space. Closely related to CCA, Sharma et al. (2012)
proposed generalized multi-view analysis (GMA) by adding a
constraint that the multi-view samples of each class are as much
closer as possible. Similar multi-view extension to discriminant
analysis is also explored (Kan et al., 2016). Further, dictionary
learning is also utilized for heterogeneous matching (Juefei-Xu
et al., 2015; Wu et al., 2016). Efforts to extract heterogeneity-
specific features have resulted in common discriminant feature
extractor (CDFE) (Lin and Tang, 2006), coupled spectral
regression (CSR) (Lei and Li, 2009) and its extensions (Lei
et al., 2012a, b), common feature discriminant analysis
(CFDA) (Li et al., 2014), coupled discriminative feature
learning (CDFL) (Jin et al., 2015), and coupled compact
binary face descriptors (C-CBFD) (Lu et al., 2015). Similarly,
mutual component analysis (MCA) Li et al. (2016) utilizes

FIGURE 1 | Examples of heterogeneous face recognition scenarios. Top row (A) shows heterogeneity due to difference in visible and near-infrared spectrum;
(B) shows photo and composite sketches of a person. (C)–(F) illustrates heterogeneity due to resolution variation of 72x72, 48x48, 32x32, and 16x16, respectively.
(The images of different resolution are stretched to common sizes.)

1The terms view and domain/modality are used synonymously in the
heterogeneous face recognition literature.
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iterative EM approach along with a modeling of face generation
process to capture view-invariant characteristics.

Although statistical in spirit, a body of work approaches the
heterogeneity challenge as a manifold modeling problem. These
works explore manifold learning–based approaches to learn
heterogeneity-aware classifier. Li et al. (2010) proposed locality
preserving projections (LPP)–based approach that preserves local
neighborhood in the projection space. Biswas et al. (2013, 2012)
proposed a multidimensional scaling (MDS)–based approach for
matching low-resolution face images. The algorithm learns an
MDS transformation which maps pairwise distances in kernel
space of one view to corresponding pairwise distances of the other
view. Klare and Jain (2013) proposed a prototyping-based
approach. It explores the intuition that across different views,
the relative coordinates of samples should remain similar.
Therefore, the vector of similarities between the query sample
and prototype samples in the corresponding view may be used as
the feature.

Other research directions, such as maximum margin classifier
(Siena et al., 2013) and transductive learning (Zhu et al., 2014),
are also explored. Further, deep learning–based approaches are
also proposed for heterogeneous matching to learn shared
representation (Yi et al., 2015), to leverage large homogeneous
data (Reale et al., 2016), to learn using limited data (Hu et al.,
2018), to facilitate transfer learning (Liu et al., 2016), performing
face hallucination via disentangling (Duan et al., 2020), and
learning deep models using Wasserstein distance (He et al.,
2019). Deng Z. et al. (2019) extend MCA to utilize
convolutional neural networks for heterogeneous matching.
Most recent representation learning methods have a large
parameter space, hence require enormous amounts of data for
training models for heterogeneous matching. Nevertheless,
learned face representations from such approaches are found
to be very effective (Taigman et al., 2014; Majumdar et al., 2016;
Wu et al., 2018; Deng J. et al., 2019).

In the literature, we identify a scope for improving statistical
techniques for heterogeneous matching scenarios. Specifically, we
observe that for heterogeneous matching task, modeling of intra-
view variability is not critical, as the task always involves
matching an inter-view/heterogeneous face pair. The objective
functions of the proposed approaches differ from the literature in
focusing only on the inter-view variability. To this end, we
present two subspace-based classifiers aiming at reducing the
inter-view intra-class variability and increasing the inter-view
inter-class variability for heterogeneous face recognition.
Specifically, in this article, we

• propose heterogeneous discriminant analysis (HDA) and its
nonlinear kernel extension (KHDA),

• demonstrate the effectiveness of these HDA and KHDA
using multiple features on three challenging heterogeneous
face recognition scenarios: matching visible to near-infrared
images, matching cross-resolution face images, and
matching digital photo to composite sketch, and

• utilize deep learning–based features and show that
combined with the proposed HDA and KHDA, they
yield impressive heterogeneous matching performance.

HETEROGENEOUS DISCRIMINANT
ANALYSIS

To address the issue of heterogeneity in face recognition, we
propose a discriminant analysis–based approach. In this
context, the heterogeneity can arise due to factors such as
spectrum variations as shown in Figure 1. The same
individual may appear somewhat different in two different
spectrums. While a feature extractor may filter out some of
the heterogeneity, most feature extractors are not designed to
be heterogeneity invariant. Therefore, for practical purposes,
the heterogeneity of the source image may be retained in the
extracted features.

By definition, the end goal of heterogeneous matching is
always a cross-view comparison, for example, VIS to NIR
matching and never intra-view comparison, for example, VIS
to VIS matching. Therefore, the cross-view information would
contain stronger cues for the task than the intra-view
information. In other words, optmizing the intra-view
variation may have limited utility. It is our hypothesis that
incorporating only the cross-view (e.g., cross-spectral)
information along with intra- and inter-class variability can
improve heterogeneous matching. The proposed heterogeneous
discriminant analysis is inspired from the formulation of linear
discriminant analysis. Therefore, we first briefly summarize the
formulation and limitations of linear discriminant analysis (LDA)
followed by presenting the details of HDA.

Traditionally, intra- and inter-class variabilities are represented
using within- SW � ∑c

i�1∑ni
j�1(xi,j − μi)(xi,j − μi)T and between-

class scatter matrices SB � ∑c
i�1∑c

l�i+1(μi − μl)(μi − μl)T ; where c
is the total number of classes, ni is the number of samples in ith

class, xi,j is the jth sample of the ith class, and μi is the mean of the
ith class. The Fisher criterion J(w) � ∣∣∣∣wTSBw

∣∣∣∣/∣∣∣∣wTSWw
∣∣∣∣ attempts

to find the projection directions that minimize the intra-class
variability and maximize the inter-class variability in the projected
space.

The way the scatter matrices are defined ensures that all the
samples are as close to the corresponding class mean as possible
and that class means are as apart as possible. Any new sample
resembling the samples of a certain class would get projected near
the corresponding class mean. LDA attempts to optimize the
projection directions assuming that the data conforms to a
normal distribution. Obtaining such a projection space is useful
when the samples to be compared are homogeneous, that is, there
is no inherent difference in the sample representation. Even if we
assume that each view of each class is normally distributed in itself,
the restrictive constraint of LDA is not satisfied. As shown in
Figure 2, when provided with a multi-view or heterogeneous data,
the projection directions obtained from LDA may be suboptimal
and can affect the classification performance. Therefore, for
heterogeneous matching problems, we propose to incorporate
the view information while computing the between- and within-
class scatter matrices.

The formulation of the proposed heterogeneous discriminant
analysis is described in the following two stages: 1. adaptation of
scatter matrices and 2. analytical solution.
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Adaptation of Scatter Matrices
Let xai,j and x

b
i,j denote the two views (A and B) of the jth sample of

the ith class, respectively, and nai and nbi represent the number of
samples in view A and B of the ith class, respectively. χai �
{xai,j

∣∣∣∣1≤ j≤ nai } represents the samples in view A of ith class. For
example, χai represents the visible spectrum face images of ith

subject, and χbi represents the near-infrared spectrum face images
of the subject.

• χa1 − χa1 and χ
a
1 − χb1 are examples of match pairs, that is,

face images in a pair belong to the same subject.

• χa1 − χb2 and χ
a
1 − χb2 are examples of non-match pairs

consisting of face images of different subjects.

• χa1 − χa1 and χ
b
1 − χb2 represent intra-view pairs where face

images belong to the same view.

• χa1 − χb1 and χ
b
1 − χa2 are examples of inter-view pairs, that

is, face images in a pair belong to different view.

There can be four kinds of information: i) inter-class intra-
view difference, ii) inter-class inter-view difference, iii) intra-class
intra-view difference, and iv) intra-class inter-view difference.
Optimizing the intra-view (homogeneous) distances would not
contribute in achieving the goal of efficient heterogeneous
matching. Therefore, the scatter matrices should be defined
such that the objective function reduces the heterogeneity
(inter-view variation) along with improving the classification
accuracy. The distance between the inter-view samples of the
non-matching class should be increased and the distance between
inter-view samples of the matching class should be decreased.
With this hypothesis, we propose the following twomodifications
in the scatter matrices for heterogeneous matching:

Inter-class inter-view difference encodes the difference
between different views of two individuals (e.g., χa1 − χb2 and χ

b
1 −

χa2 pairs). This can be incorporated in the between-class scatter
matrix.

Intra-class inter-view difference encodes the difference
between two different views of one person (e.g., χa1 − χb1 and −
χb2 − χa2 pairs). This can be incorporated in the within-class scatter
matrix. (see Figure 2)

Incorporating these yields a projection space in which same-
class samples from different views are drawn closer, thereby fine
tuning the objective function for heterogeneous matching. The

heterogeneous between-class scatter matrix (SHB) encodes the
difference between different views of different classes

SHB � ∑
i�1

c ∑
l�1,l ≠ i

c

pai p
b
l (μai − μbl )(μai − μbl )T

μki �
1

nk
i

∑
j

xki,j, p
k
i �

nk
i

na + nb
, k ∈ {a, b}

(1)

Here, μai and pai are the mean and prior of view A of class i,
respectively; na represents the number of samples in view A.
Similarly, μbi and pbi represent the mean and prior of view B of
class i, respectively; nb represents the number of samples in view
B. nai and nbi represent the number of samples in view A and B of
the ith class, respectively, and c represents the total number of
classes. Note that, unlike CCA, the number of samples does not
have to be equal in both views. The within-class scatter matrix
SHW is proposed as

SHW � ∑
i�1

c ⎛⎜⎝ 1
na
i

∑
j�1

nai (xai,j − μbi )(xai,j − μbi )T

+ 1

nb
i

∑
j�1

nbi (xbi,j − μai )(xbi,j − μai )T⎞⎟⎠ (2)

Since the proposed technique encodes data heterogeneity in
the objective function and utilizes the definitions of between- and
within-class scatter matrices, it is termed as heterogeneous
discriminant analysis. Following the Fisher criterion, the
objective function of HDA is proposed as

w � arg max
w

J(w) � arg max
w

∣∣∣∣wTSHBw
∣∣∣∣

|wTSHWw| (3)

The optimization problem in Eq. 3 is modeled as a generalized
eigenvalue decomposition problem which results into a closed-
form solution such thatw is the set of top eigenvectors of S−1HWSHB.
The geometric interpretation of HDA in Figure 2 shows that the
objective function in Eq. 3 tries to achieve the following in the
projected space: 1) Bring samples χa1 closer to mean μb1 of χ

b
1 and

vice versa; and similarly for class 2. This reduces the inter-view
distance within each class, for example, the projections of visible
and NIR images of the same person become similar. 2) Increase

FIGURE 2 | (A) Graphical interpretation of HDA and (B–D) illustration of the effectiveness of HDA with multiple views. Class 1 and 2 are generated using Gaussian
mixture of two modes resulting in two views. (B) represents the scatter plot and the projection directions obtained using LDA and HDA (without regularization).
The histograms of projections of data samples on the LDA and HDA directions are shown in (C) and (D), respectively.
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the distance between mean μa1 of χa1 and mean μb2 of χb2; and
similarly increase the distance between mean of χb1 and mean of
χa2, that is, the projections of mean visible face image of a subject
become different from the mean NIR face image of another
subject. The proposed way of encoding inter- (Eq. 1) and
intra-class (Eq. 2) variations in the heterogeneous scenario
requires that both the views are of the same dimensionality. In
the application domain of face recognition, this is usually not an
unrealistic constraint as, in practice, same kind of features, with
same dimensionality, are extracted from both the views
(Dhamecha et al., 2014).

In some applications including face recognition, the number of
training samples is often limited. If the number of training samples
is less than the feature dimensionality, it leads to problems such as
singular within-class scatter matrix. In the literature, it is also
known as the small sample size problem and shrinkage
regularization is generally used to address the issue (Friedman,
1989). Utilizing the shrinkage regularization, Eq. 3 is updated as

J(w) �
∣∣∣∣wTSHBw

∣∣∣∣
|wT((1 − λ)SHW + λI)w| (4)

Here, I represents the identity matrix and λ is the
regularization parameter. Note that λ � 0 results in no
regularization, whereas λ � 1 results into not utilizing the
within-class scatter matrix SHW .

To visualize the functioning of the proposed HDA as opposed
to LDA, the distributions of the projections obtained using LDA
and HDA are shown in Figure 2. Table 1 presents a quantitative
analysis in terms of the overlap between projections of views of
both classes. The overlap between two histograms is calculated as∑mmin(h1(m), h2(m)), where h1(m) and h2(m) are the values of
the mth bin of the first and second histograms, respectively.
In the ideal case, the projections of different views of the
same class should completely overlap (i.e., area of overlap 0.5)
and the projections of the views of different classes should
be nonoverlapping (i.e., area of overlap 0). Since LDA does
not take into account the view information, the overlap
between projections of both classes is large. Further, it is
interesting to note that LDA yields a significant overlap of
0.351 between view A of class 1 and view B of class 2. Such

overlap can deteriorate the heterogeneous matching
performance. In the heterogeneous analysis (last two rows
of Table 1), the overlap between projections of two views of
the same class is relatively low. Note that view A and view B of
class 1 result in two individual peaks. This also increases the
intra-class variation, that is, projection distributions of both
classes are spread rather than peaked. HDA yields better
projection directions with less than 50% of inter-class
overlap compared to LDA. For the homogeneous matching
scenarios (fourth and fifth rows), HDA has marginally poor
overlap compared to LDA. However, for the heterogeneous
scenarios, the overlap of HDA is significantly lower for non-
match pair of view A class 1–view B class 2 (seventh row) and
higher for match pairs (last two rows). For the view A class
2–view B class 1 (eighth row), the numbers are slightly poorer
for HDA; however, the difference is small enough to be
neglected in context of the overlap metrics of other three
pairs.

The time complexity of computing SHB and SHW isO(nd2) and
O(c2d2), respectively. The generalized eigenvalue decomposition
in Eq. 3 has time complexity of O(d3), where n, d, and c are the
number of training samples, feature dimensionality, and number
of classes, respectively.

Nonlinear Kernel Extension
We further analyze the objective function in Eq. 3 to adapt it for
nonlinear transformation x→ ϕ(x). Using the representer
theorem (Schölkopf et al., 2001), the projection direction in w
can be written as linear sum of the transformed samples, that is,
w � ∑na

p�1αpϕ(xap) + ∑nb

q�1βqϕ(xbq). Using this property, the Eq. 4
can be rewritten as2

J(α, β) �
∣∣∣∣∣∣∣[αTβT]M*[ αβ ]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣[αTβT][(1 − λ)N* + λ][ α
β
]∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

whereM* and N* are analogous to SHB and SHW , respectively, and
are defined as

Mp � ∑
i�1

c ∑
l�1,l ≠ i

c

pai p
b
l [MAa

i −MAb
l

MBa
i −MBb

l

][MAa
i −MAb

l

MBa
i −MBb

l

]T

Np � ∑
i�1

c ⎛⎜⎝ 1
na
i

∑
j�1

nai ⎡⎣KAa
i,j −MAb

i

KBa
i,j −MBb

i

⎤⎦⎡⎣KAa
i,j − MAb

i

KBa
i,j − MBb

i

⎤⎦T

+ 1
nbi

∑
j�1

nbi ⎡⎣KAb
i,j −MAa

i

KBb
i,j −MBa

i

⎤⎦⎡⎣KAb
i,j − MAa

i

KBb
i,j − MBa

i

⎤⎦T⎞⎟⎠
where (MBa

i )q � 1
nai

∑nai
s�1

K(xbq , xai,s) and (KBa
i,j)q � K(xbq , xai,j),

where K is a kernel function. In this work, we use the
Gaussian kernel function. Eq. 5 with linear kernel is
equivalent to Eq. 4. However, if d < n, the criterion in Eq. 4 is
computationally more efficient than Eq. 5 but if d > n, Eq. 5
is computationally more efficient than Eq. 4.

TABLE 1 | Analyzing the overlap of projection distributions in Figures 2. LDA vs
HDA comparison indicates that ignoring intra-view differences could be
beneficial for heterogeneous matching.

Pair Overlap

Ideal LDA HDA

Overall
Class 1–class 2 0.000 0.356 0.159

Homogeneous
View A class 1–view A class 2 0.000 0.110 0.135
View B class 1–view B class 2 0.000 0.005 0.013

Heterogeneous
View A class 1–view B class 2 0.000 0.351 0.076
View A class 2–view B class 1 0.000 0.000 0.034
View A class 1–view B class 1 0.500 0.025 0.261
View A class 2–view B class 2 0.500 0.174 0.429

2Detailed formulation is in the supplementary document.
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PROPOSED CROSS-VIEW FACE
RECOGNITION APPROACH

The main objective of this research is to utilize the proposed
heterogeneity-aware classifiers in conjunction with robust and
unique features for heterogeneous face recognition. Figure 3
showscases the steps involved in the face recognition pipeline.
From the given input image, the face region is detected using a
Haar face detector or manually annotated (for digital sketches) eye
coordinates. It is our assertion that the proposed HDA and KHDA
should yield good results with both handcrafted and learnt
representations. Based on our formulation, to a large extent,
HDA and KHDA should help obtain heterogeneity invariant
representation of features. Therefore, the lesser heterogeneity
invariant a feature is, the greater should be the extent of
improvement by HDA and KHDA. Arguably, the learned
features are more sophisticated and heterogeneity invariant
compared to handcrafted features. Therefore, in this research,
we have performed experiments with features of both types for
detailed evaluation. In the literature, it has been observed that
histogram of oriented gradients (HOG) and local binary patterns
(LBP) are commonly used handcrafted features for heterogeneous
face matching (Klare and Jain, 2013, 2010). Dhamecha et al. (2014)
compared the performance of different variants of HOG and
showed that DSIFT (Lowe, 2004) yields the best results.
Therefore, among handcrafted features, we have demonstrated
the results with DSIFT (extracted at keypoints on uniform grid and
landmark points). For learnt representation, we use local class
sparsity–based supervised encoder (LCSSE) (Majumdar et al.,
2016), LightCNN (Wu et al., 2018), and ArcFace (Deng J. et al.,
2019). For LightCNN (LightCNN29V2) and ArcFace, both the
models pretrained on MS-Celeb 1M dataset are utilized as feature
extractor. In this research, we have used the pretrained LCSSE
model and fine-tuned with the training samples for each case study.

As shown in Figure 3, once the features are obtained, they are
projected on to a PCA space (preserving 99% eigenenergy),
followed by projecting onto the c − 1 dimensional HDA or
KHDA space. It is to be noted that learning of PCA subspace
does not use class labels, whereas HDA and KHDA training
utilize identity labels and the view labels. Finally, distance score
between gallery and probe feature vectors is computed using
cosine distance measure.

EXPERIMENTAL EVALUATION

The effectiveness of the proposed heterogeneous discriminant
algorithm is evaluated for three different case studies of
heterogeneous face recognition: 1) visible to near-infrared matching,
2) cross-resolution face matching, and 3) composite sketch (CS) to
digital photo (DP) matching. For all three case studies, we have used
publicly available benchmark databases: CASIA NIR-VIS 2.0 (Li et al.,
2013), CMU Multi-PIE (Gross et al., 2010), and e-PRIP composite
sketch (Han et al., 2013; Mittal et al., 2014). Table 2 summarizes the
characteristics of the three databases. The experiments are performed
with existing and published protocols so that the results can be directly
compared with reported results.

Cross-Spectral (Visible–NIR) FaceMatching
Researchers have proposed several algorithms for VIS to NIR
matching and primarily used the CASIA NIR-VIS 2.0 face
dataset (Li et al., 2013). The protocol defined for performance
evaluation consists of 10 splits of train and test sets for random
subsampling cross-validation. As required by the predefined
protocol, results are reported for both identification (mean and
standard deviation of rank-1 identification accuracy) and
verification (GAR at 0.1% FAR).

The images are first detected and preprocessed. Seven
landmarks (two eye corners, three points on nose, and two lip
corners) are detected (Everingham et al., 2009) from the input
face image and geometric normalization is applied to register the
cropped face images. The output of preprocessing is grayscale face
images of size 130 × 150 pixels. All the features3 are extracted
from geometrically normalized face images. We evaluate the
effectiveness of HDA over LDA. To compare the results with
LDA, the pipeline shown in Figure 3 is followed with the
exception of using LDA instead of HDA. The results are
reported in Table 3 and the key observations are discussed
below.4

FIGURE 3 | Illustrating the steps involved in the face recognition pipeline with the proposed HDA and KHDA.

3Results of LBP, HOG variants, and pixel are in supplementary document.
4There is slight difference between LightCNN + W/O DA of Table 3 and
LightCNN in Table 4, as former is our implementation and later is as reported
in (Wu et al., 2018).
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Discriminative Learning using HDA
As shown in Table 3, without discriminant analysis (LDA or
HDA), the performance of individual features is lower. The deep
learning–based LCSSE yields around 50% rank-1 accuracy. The
LightCNN and ArcFace features yield impressive rank-1 accuracy
of about 95% and 97%, respectively, which shows their superior
feature representation. The next experiment illustrates the effect
of applying LDA on individual features. Table 3 shows that LDA
improves the accuracy up to 60%. Comparing the performance of
HDA with LDA shows that HDA outperforms LDA. Utilizing
HDA in place of LDA for discriminative learning improves the
results up to 12.9%. The HDA and LDA performance is very high
and almost same for LightCNN, which may point toward its
spectrum-invariant representation capabilities. For ArcFace,
although small, a consistently progressive improvement of
about 1% is observed between raw features, LDA, and HDA,
respectively. Understandably, if the feature is spectrum-invariant,
the benefits of heterogeneity-aware classifier are expected to be
limited. The improvement provided by HDA can be attributed to
the fact that it learns a discriminative subspace specifically for
heterogeneous matching. Similar to the toy example shown in
Figure 2, it can be asserted that the multi-view information yields
different clusters in the feature space. Under such scenarios, since
the fundamental assumption of Gaussian data distribution is not
satisfied, LDA can exhibit suboptimal results. However, by
encoding the view label information, HDA is able to find
better projection space, thereby yielding better results.

Effect of HDA across Features
The results show that the proposed HDA improves the accuracy
of DSIFT and LCSSE features by 40–60%. For instance, applying
LCSSE with HDA improves the results by around 45%. As
discussed earlier, even the raw LightCNN and ArcFace
features yield very high performance, leaving very little room
of improvement by LDA or HDA projections.

Direction vs Magnitude in Projection Space
Cosine distance encodes only the difference in direction between
samples, whereas the Euclidean distance encodes both direction
and magnitude. For the given experiment, as shown in Table 3,
cosine distance generally yields higher accuracy over Euclidean
distance. This shows that for heterogeneous matching, the
magnitude of projections may not provide useful information
and only directional information can be used for matching.

Optimum Combination
From the above analysis, it can be seen that the proposed HDA in
combination with DSIFT features and cosine distance measure
yields an impressive 81% for a handcrafted feature. ArcFace
features with HDA and cosine distance measure yield the best
results. However, LightCNN and LCSSE are also within 3% of it.
For the remaining experiments (and other case studies), we have
demonstrated the results with DSIFT, LCSSE, LightCNN, and
ArcFace features and cosine distance measure along with
proposed heterogeneity-aware classifiers.

Comparison with Existing Algorithms
We next compare the results of the proposed approaches with the
results reported in the literature. Comparative analysis is shown
with a leading commercial off-the-shelf (COTS) face recognition
system, FaceVACS5, and 20 recently published results. Table 4
shows that with pixel values as input, the proposed HDA
approach outperforms other existing algorithms. For example,
MvDA with pixel values yields 41.6% rank-1 identification
accuracy and 19.2% GAR at 0.1% FAR, whereas the proposed
approach yields similar rank-1 accuracy with lower standard
deviation and much higher GAR of 31.4%. Further, Table 4
clearly6 demonstrates the performance improvement due to the
proposed HDA and its nonlinear kernel variant KHDA. KHDA
with learnt representation LCSSE and HDA with LightCNN yield
almost equal identification accuracy. However, our best results
are obtained with ArcFace with KHDA at 99.4% rank-1 and
99.1% GAR@FAR�0.1%. The reported results are comparable to
the recently published state of the art.

Also, LCSSE+KHDA and LightCNN+HDA achieve 94.3%
and 96.5% GAR at 0.1% FAR, respectively. Also note that, in a
fair comparison, DSIFT features with the proposed KHDA also
yield results comparable to other non-deep learning–based
approaches.

TABLE 2 | Datasets utilized for evaluating the proposed HDA and KHDA on three heterogeneous face recognition challenges.

Case Study Gallery Probe Dataset #Images #Subjects

Total Training: Testing (Protocol)

Cross-spectral VIS NIR CASIA NIR-VIS-2.0 (Li et al., 2013) 17,850 725 357 : 358 (Li et al., 2013)
Cross-
resolution

HR LR CMU Multi-PIE (Gross et al., 2010) 18,420 337 100 : 227 (Bhatt et al., 2012; Bhatt et al., 2014)

Photo to sketch DP CS e-PRIP composite sketch (Han et al., 2013; Mittal et al., 2014) 246 123 48 : 75 (Mittal et al., 2014)

TABLE 3 | Rank-1 identification accuracy for visible to near-infrared face matching
on the CASIA NIR–VIS 2.0 database (Li et al., 2013).

Algorithm DSIFT LCSSE LightCNN ArcFace

W/O DA Eucl 12.6±0.9 50.3±8.3 95.7±0.3 97.1±0.4
Cos 19.6±1.4 51.6±7.8 96.9±0.3 97.4±0.5

LDA Eucl 56.7±2.2 82.3±4.8 96.8±0.3 98.2±0.9
Cos 80.4±1.7 88.9±3.2 98.1±0.5 98.5±0.6

HDA Eucl 58.0±2.1 95.2±1.7 96.3±0.5 99.1±0.2
Cos 81.0±1.9 96.8±0.9 98.1±0.3 99.3±0.2

5http://www.cognitec.com/technology.html
6ROC in the supplementary document.
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Cross-Resolution Face Matching
Cross-resolution face recognition entails matching high-
resolution gallery images with low-resolution probe images. In
this scenario, high resolution and low resolution are considered as
two different views of a face image. We compare our approach
with Bhatt et al. (2012, 2014) as they have reported one of the best
results for the problem. We follow their protocol on CMUMulti-
PIE database (Gross et al., 2010). Each image is resized to six
different resolutions: 16 × 16, 24 × 24, 32 × 32, 48 × 48, 72 × 72,

and 216 × 216. In total, ( 6

2
)�15 cross-resolution matching

scenarios are considered. For every person, two images are
selected and images pertaining to 100 subjects are utilized for
training, whereas the remaining 237 subjects are utilized
for testing. The results are reported in Table 5. Results for

ArcFace+KHDA are similar to ArcFace+HDA, hence not
reported here. Since the protocol (Bhatt et al., 2012, 2014)
does not involve cross-validation, error intervals are not reported.

It can be seen that LCSSE+KHDA outperforms the cotransfer
learning (Bhatt et al., 2012, 2014) in all the cross-resolution
matching scenarios. For example, when 48 × 48 pixel gallery
images are matched with probe images of 32 × 32, 24 × 24, and
16 × 16 pixels, performance improvement of about 30%–40% is
observed. LightCNN and ArcFace yield even higher identification
accuracy, except when the probe image is 16 × 16. We believe that
the feature extractor is unable to extract representative information
at these resolutions. Analyzing the results across resolutions shows
that the accuracy reduces with increase in resolution difference
between the gallery and probe images. FaceVACS yields impressive
performance when the size of both gallery and probe are higher

TABLE 4 | Comparing the face recognition performance of the proposed and some existing algorithms for VIS to NIR face matching on CASIA NIR–VIS 2.0 dataset.

Algorithm Year Rank-1 GAR

Accuracy (%) @ FAR = 0.1%

FaceVACS (Dhamecha et al., 2014) 2014 58.6±1.2 52.9

Pixels as Features

CCAa (Hardoon et al., 2004) 2004 28.5±3.4 10.8
PLSa (Sharma and Jacobs, 2011) 2011 17.7±1.9 2.3
CDFEa (Lin and Tang, 2006) 2006 27.9±2.9 6.9
MvDAa (Kan et al., 2016) 2012 41.6±4.1 19.2
GMLDAa (Sharma et al., 2012) 2012 23.7±1.4 5.1
GMMFAa (Sharma et al., 2012) 2012 24.8±1.1 7.6
PCA+Symmetry+HCA (Li et al., 2013) 2013 23.7±1.9 19.3
PIXEL+HDA - 41.4±1.3 31.4

Other Features/Approaches

DSIFT+SDA (H � 2) (Zhu and Martinez, 2006) 2006 75.7±1.2 54.8
Gabor+RBM+Remove 11 PC (Yi et al., 2015) 2015 86.2±1.0 81.3
C-DFD (s�3)a (Lei et al., 2014) 2014 65.8±1.6 46.2
CDFL (s�3) (Jin et al., 2015) 2015 71.5±1.4 55.1
C-CBFD+LDA (Lu et al., 2015) 2015 81.8±2.3 47.3
Joint Dictionary Learning (Juefei-Xu et al., 2015) 2015 78.5±1.7 85.8
Saxena and Verbeek (2016) 2016 85.9±0.9 78.0
Reale et al. (2016) 2016 87.1±0.9 74.5
TRIVET (Liu et al., 2016) 2016 95.7±0.5 91.0
MTC-ELM (Jin et al., 2016) 2016 89.1 -
Lezama et al. (2017) 2017 89.6±0.9 -
He et al. (2017) 2017 95.8±0.8 94.0
Gabor+HJB (Shi et al., 2017) 2017 91.7±0.9 89.9
G-HFR (Peng et al., 2017) 2017 85.3±0.0 -
Frankenstein (Hu et al., 2018) 2018 85.1±0.8 -
LightCNN (Wu et al., 2018) 2018 96.7±0.2 94.8
WCNN (He et al., 2019) 2019 98.7 98.4
MC-CNN (Deng et al., 2019b) 2019 99.2±0.2 -
RGM+NAU+C-softmax (Cho et al., 2020) 2020 99.3±0.1 98.9
PACH (Duan et al., 2020) 2020 98.9±0.2 98.3

DSIFT+HDA - 81.0±1.9 62.8
DSIFT+KHDA - 83.1±1.7 62.1
LCSSE+HDA - 96.8±0.9 93.1
LCSSE+KHDA - 98.1±0.5 94.3
LightCNN+HDA - 98.1±0.3 96.5
ArcFace+HDA - 99.3±0.2 98.8
ArcFace+KHDA - 99.4±0.1 99.1

arepresents the results reported in Jin et al. (2015), Lu et al. (2015). Other cited results as reported in their corresponding publications.
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than 32 × 32. However, the performance deteriorates significantly
with decrease in the gallery image size and with increase in the
resolution difference. Generally, the performance of the proposed
HDA and/or KHDA is less affected due to resolution difference in
comparison to FaceVACS and CTL.We have also observed that for
cross-resolution face recognition, learned features (LCSSE,

LightCNN, and ArcFace) show higher accuracies compared to
DSIFT with a difference of up to 25%.

Digital Photo to Composite Sketch Face
matching
In many law enforcement and forensic applications, software
tools are used to generate composite sketches based on eyewitness
description and the composite sketch is matched against a gallery
of digital photographs. Han et al. (2013) presented a component-
based approach followed by score fusion for composite to photo
matching. Later, Mittal et al. (2014, 2013, 2015, 2017) and Chugh
et al. (2013) presented learning-based algorithms for the same.
Klum et al. (2014) presented FaceSketchID for matching
composite sketches to photos.

For this set of experiments, we utilize the e-PRIP composite
sketch dataset (Han et al., 2013; Mittal et al., 2014). The dataset
contains composite sketches of 123 face images from the AR face
dataset (Martinez, 1998). It contains the composite sketches
created using two tools, Faces and IdentiKit7. The PRIP
dataset (Han et al., 2013) originally has composite sketches
prepared by a Caucasian user (with IdentiKit and Faces
softwares) and an Asian user (with Faces software). Later, the

TABLE 5 | Rank-1 identification accuracy of the proposed HDA, KHDA and existing algorithms, Cotransfer Learning (CTL) and a commercial off-the-shelf (COTS) (Bhatt
et al., 2012, 2014), DSIFT (Lowe, 2004), LCSSE (Majumdar et al., 2016), LightCNN, and ArcFace on CMU Multi-PIE database (Gross et al., 2010) with different gallery
and probe image sizes.

Probe res. CTL COTS DSIFT LCSSE LightCNN ArcFace

HDA KHDA HDA KHDA HDA HDA

Gallery: 216 × 216

72 × 72 81.0 99.5 94.1 95.4 95.8 97.0 100 100
48 × 48 79.7 98.1 92.4 94.1 93.7 95.3 100 100
32 × 32 65.3 97.4 89.0 90.7 92.0 93.2 99.6 100
24 × 24 37.7 54.5 87.3 85.7 89.0 89.5 92.0 95.0
16 × 16 23.6 10.9 37.6 37.6 61.2 62.5 35.0 46.0

Gallery: 72 × 72

48 × 48 92.3 92.7 95.4 96.2 96.6 97.0 100 100
32 × 32 84.1 84.3 92.4 96.2 92.8 96.6 100 100
24 × 24 77.4 78.5 89.0 91.6 93.2 94.1 95.4 98.2
16 × 16 72.4 72.8 44.3 54.9 73.4 75.1 39.2 52.4

Gallery: 48 × 48

32 × 32 61.8 96.8 95.4 97.1 96.2 97.9 100 100
24 × 24 57.1 75.9 95.4 94.9 96.6 97.5 89.9 94.8
16 × 16 32.9 6.4 73.8 71.3 77.2 78.1 34.6 50.0

Gallery: 32 × 32

24 × 24 45.7 78.4 94.9 94.5 95.8 96.2 98.7 100
16 × 16 28.1 5.4 88.6 86.1 90.3 91.1 50.6 62.4

Gallery: 24 × 24

16 × 16 43.2 16.3 85.7 85.2 87.3 89.0 56.5 68.8

TABLE 6 | Results for composite sketch to photo matching.

Algorithm Rank-10 Accuracy (%)

Faces (Caucasian) Faces (Indian)

Mittal et al. (2015) 56.0±2.1 60.2±2.9
Mittal et al. (2017) 59.3±0.8 58.4±1.1
COTS (Mittal et al., 2014) 11.3±2.1 9.1±1.9
Saxena and Verbeek (2016) - 65.6±3.7

DSIFT only 67.5±5.8 51.7±4.0
DSIFT+HDA 79.5±2.8 73.9±5.8
DSIFT+KHDA 78.6±3.4 74.6±3.8
LCSSE only 68.0±2.6 65.3±4.1
LCSSE+HDA 85.6±1.3 89.0±1.5
LCSSE+KHDA 89.6±1.9 94.7±1.0
LightCNN only 84.6±0.9 75.4±1.0
LightCNN+HDA 85.0±0.6 72.1±0.9
ArcFace only 86.5±0.2 80.6±1.3
ArcFace+HDA 89.1±0.6 90.8±1.1
ArcFace+KHDA 90.2±0.4 95.2±0.7

7Faces: www.iqbiometrix.com, IdentiKit: www.identikit.net
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dataset is extended by Mittal et al. (2014) by adding composite
sketches prepared by an Indian user (with Faces software) which
is termed as the e-PRIP composite sketch dataset. In this work, we
use composite sketches prepared using Faces software by the
Caucasian and Indian users as they are shown to yield better
results compared to other sets (Mittal et al., 2014, 2013). The
experiments are performed with the same protocol as presented
by Mittal et al. (2014). Mean identification accuracies, across five
random cross-validations, at rank-10 are reported in Table 6, and
Figure 4 shows the corresponding CMC curves.

With the above mentioned experimental protocol, one of the
best results in the literature has been reported by Mittal et al.
(2017) with rank-10 identification accuracies of 59.3%
(Caucasian) and 58.4% (Indian). Saxena and Verbeek (2016)
have shown results with Indian users only and have achieved
65.5% rank-10 accuracy. As shown in the results, the proposed
approaches, HDA and KHDA, with both DSIFT and LCSSE
improve the performance significantly. Compared to existing
algorithms, DSIFT demonstrates an improvement in the range
of 11–23%, while LCSSE+HDA and LCSSE+KHDA improve the
rank-10 accuracy by ∼30% with respect to state of the art (Saxena
and Verbeek, 2016). Interestingly, LightCNN yields poorer
performance compared to LCSSE in this case study. ArcFace
yields the highest identification accuracy. Similar to previous
results, this experiment also shows that application of HDA/
KHDA improves the results of DSIFT, LCSSE, and ArcFace.
However, the degree of improvement varies between handcrafted
and learned features.

CONCLUSION

In this research, we have proposed a discriminant analysis
approach for heterogeneous face recognition. We formulate
heterogeneous discriminant analysis which encodes view labels
and has the objective function optimized for heterogeneous
matching. Based on the analytical solution, we propose its
kernel extension, KHDA. The proposed techniques are
heterogeneity aware. Potentially, they can be applied on top of

any features to get heterogeneity invariant representation, to an
extent. Experiments are performed on three heterogeneous face
matching problems, namely, visible to NIR matching, cross-
resolution matchings, and digital photo to sketch, with
handcrafted DSIFT and deep learning–based LCSSE, LightCNN,
and ArcFace features. The results show that incorporating the
proposed discriminant analysis technique consistently improves
the performance of both learnt and handcrafted features, without
increasing much to the computational requirements. The
improvement is more pronounced in handcrafted features and
provides an efficient way to improve their performance.
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