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Cohort-independent robust mortality prediction model in patients with COVID-19 infection
is not yet established. To build up a reliable, interpretable mortality prediction model with
strong foresight, we have performed an international, bi-institutional study from China
(Wuhan cohort, collected from January to March) and Germany (Würzburg cohort,
collected from March to September). A Random Forest-based machine learning
approach was applied to 1,352 patients from the Wuhan cohort, generating a mortality
prediction model based on their clinical features. The results showed that five clinical
features at admission, including lymphocyte (%), neutrophil count, C-reactive protein,
lactate dehydrogenase, and α-hydroxybutyrate dehydrogenase, could be used for
mortality prediction of COVID-19 patients with more than 91% accuracy and 99%
AUC. Additionally, the time-series analysis revealed that the predictive model based on
these clinical features is very robust over time when patients are in the hospital, indicating
the strong association of these five clinical features with the progression of treatment as
well. Moreover, for different preexisting diseases, this model also demonstrated high
predictive power. Finally, the mortality prediction model has been applied to the
independent Würzburg cohort, resulting in high prediction accuracy (with above 90%
accuracy and 85% AUC) as well, indicating the robustness of the model in different
cohorts. In summary, this study has established themortality prediction model that allowed
early classification of COVID-19 patients, not only at admission but also along the
treatment timeline, not only cohort-independent but also highly interpretable. This
model represents a valuable tool for triaging and optimizing the resources in COVID-19
patients.
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INTRODUCTION

The pandemic of coronavirus disease 2019 (COVID-19) has
become a public health emergency of international concern
(Salyer et al., 2021; Sirleaf and Clark, 2021; Watson and
Lilford, 2021). As of July 12, 2021, 187, 796, 841 confirmed
infection cases have been reported by the World Health
Organization, with a global mortality rate of 2.16% (https://
covid19.who.int/). Even worse, the incidence of COVID-19 is
continuously increasing worldwide, and areas already under
control are likely to relapse (Setti et al., 2020). The proportion
of critically ill COVID-19 patients is 18.5% (Epidemiology
Working Group for Ncip Epidemic Response CCfDC,
Prevention, 2020), and this high proportion of severe cases has
put enormous pressure on medical systems, resulting in a serious
shortage of medical resources (Rasmussen et al., 2020; Ammar
et al., 2021; Wahlster et al., 2021).

In recent years, machine learning methods used for large
clinical data analysis have been sprung up (Liang et al., 2020;
Wu et al., 2020; Xiao et al., 2020; Zhu et al., 2020; Gomes and
Serra, 2021; Ikemura et al., 2021; Wang et al., 2021). Yan et al.
used the XGBoost classifier (Chen and Guestrin, 2016) to predict
the outcome of 485 patients using the final samples at discharge,
and they found three blood features that could be used as
predictors, providing important evidence for clinical decision-
making and patient management (Liang et al., 2020). Xiao et al.
have used the HNC-LL score that considered hypertension,
neutrophil count, C-reactive protein (CRP), lymphocyte count,
and lactate dehydrogenase (LDH) to predict the severity of
COVID-19 with AUC higher than 0.82 based on 442 patients
(Xiao et al., 2020). Liang et al. developed a deep learning survival
Cox model for 1,590 patients’ triage, which was based on four
clinical features and six phenotypic characteristics, to ensure
patients at the greatest risk for severe illness receive
appropriate care as early as possible (Liang et al., 2020). Wu
et al. also used the Cox model to investigate the key risk factors
and predicted the mortality rate of 21,392 COVID-19 patients
based on demographic, clinical, and laboratory features and
found that the mortality rate increased with time, especially
for these critically ill patients (Wu et al., 2020).

Unfortunately, although the clinical features of COVID-19
patients have been reported in several recent publications (Gupta
et al., 2020a; Xu et al., 2020), such as decreased lymphocytes and
elevated CRP (Gupta et al., 2020a; Xu et al., 2020), the predictive
powers and interpretations of these clinical features remain
unclear. Additionally, since progression and outcome are
critical for COVID-19 patients (Liang et al., 2020; Risch,
2020), timely monitoring from admission to outcome also has
important clinical significance, making it possible to adjust
treatment regimens in time, but this process is not entirely
clear. Moreover, the foresight of a predictive model, as to how
many days before discharge these features could accurately
predict the patients’ outcome, remains elusive. However, the
association of these clinical features with phenotypic
characteristics is also unclear. The robustness of the mortality
prediction model along the timeline and the predictive power
considering different preexisting diseases also need further

exploration. Therefore, we performed this international, bi-
institutional study to establish a mortality prediction model
with the aim of early triaging and optimizing the resources.

METHODS

Ethical Approval
This study was approved by the Ethics Committee of Union
Hospital, Tongji Medical College, Huazhong University of
Science and Technology. Due to the retrospective nature of
this study, the local institutional review board of the
University of Würzburg waived the requirement for additional
approval. This study was performed in accordance with the
ethical standards laid down in the 1964 Declaration of
Helsinki and its later amendments.

Sample Description
Clinical data were collected from 1,441 COVID-19 patients from
January 28, 2020, to March 29, 2020, at Wuhan Union Hospital
(also called Wuhan cohort), China, for model development.
Moreover, 96 patients with confirmed COVID-19 disease were
collected from the University Hospital of Würzburg (also called
Würzburg cohort), Germany, from March 6, 2020, to September
14, 2020, for independent test.

For the Wuhan cohort, more than 300 clinical features from
hospital laboratory tests were recorded, and most patients have
multiple sets of clinical features during their stay in the hospital.
In addition, physical examinations, such as height, weight,
temperature, sphygmus, systolic/diastolic pressure, respiratory
rate, and heart rate, were performed upon admission of these
COVID-19 patients. For robust analysis, clinical features that
covered less than 30 samples, as well as samples containing fewer
than three clinical features, were discarded (Figure 1A). After
filtering out low-quality records, 1,352 patients and 130 clinical
features were selected for systematic analysis. The average age of
these patients was 58.22 (standard error: 14.90), and 50.52% of
them were male, indicating a balanced gender. The minimal,
maximal, and median duration from admission to discharge of
the 1,352 patients is 0, 55, and 10 days, respectively. Among all of
1,352 COVID-19 patients, 1,221 patients survived and 131 died
(Supplementary Table S1).

Clinical features (Figure 1B) from hospital laboratory tests
were primarily composed of two parts: 101 numerical features,
such as LDH and CRP, and 29 binary features, such as ABO blood
type, Mp-IgM, and Mp-IgG. These clinical features were
considered as candidate biomarkers for COVID19 mortality
prognosis.

Phenotypic characteristics at admission (Figure 1B) were
primarily composed of two parts: numerical and binary
phenotypic characteristics. The numerical phenotypic
characteristics included age, height, weight, temperature,
sphygmus, systolic/diastolic pressure, respiratory rate, heart rate,
and clinical classification. Binary phenotypic characteristics
included records of gender, smoking status, and blood type.

Recent studies have already reported that the outcome of
COVID-19 patients is greatly influenced by whether the

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6720502

Bai et al. AI-Enabled COVID-19 Mortality Prognosis

https://covid19.who.int/
https://covid19.who.int/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


FIGURE 1 | COVID-19 patients and their clinical feature filtering process, phenotypic characteristics and clinical features used in this study, and the outcome of the
two cohorts. (A) Process of filtering low-quality samples of the two cohorts. Here, 330 features in theWuhan cohort were the union of 1,441 patients’ clinical features and
130 features were the union of the 1,352 patients’ clinical features after filtering. “≥3 features” says that the patients from the Wuhan cohort should contain at least three
clinical features during the hospital stays, and “≥30 patients” says that the clinical features that collected from clinical laboratory should cover at least 30 patients
and thus could be used for subsequent analysis. In the Würzburg cohort, “≥1 feature” says that the patient should contain at least one of the features from these four
clinical features: lymphocyte (%), neutrophil count, LDH, and CRP. (B)Different types of clinical features and phenotypic characteristics used in the two cohorts. We used
clinical features from hospital laboratory tests for developing the prediction model, and these clinical features were also used to test the association with phenotypic
characteristics and other records. (C)Overview of samples used for model development and independent test. Samples of 1,352 COVID-19 patients fromWuhan Union
Hospital (Wuhan cohort, the blue background) were used for building and testing the mortality prediction model, while samples of 81 COVID-19 patients from Germany
(Würzburg cohort, the orange background) were used for independent test of the mortality prediction model. The green number represents the number of patients who
survived from COVID-19, while the red number means the number of patients who died from COVID-19. Note that several patients have more than one preexisting
disease.
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patient has a preexisting disease (Azevedo et al., 2020; Zhou et al.,
2020a; Williamson et al., 2020), such as CHD (Mai et al., 2020),
hypertension (Itoh, 2020), and diabetes (Gupta et al., 2020b).
Here, we divided 1,352 COVID-19 patients into seven groups: s/p
stroke (23 survived and seven died), CHD (89, 11), chronic
obstructive pulmonary disease (COPD) (12, 2), diabetes (155,
21), hypertension (306, 45), malignant tumor (56, 15), and those
without preexisting diseases (767, 60) according to their past
medical history (Figure 1C).

For the 96 patients in the Würzburg cohort, we have filtered
out the patient who has not a single clinical feature among the
four clinical features (lymphocyte (%), neutrophil count, LDH,
and CRP) (Figure 1A). After this process, 81 samples were
retained and utilized for independent test. For these 81
patients, their phenotypic characteristics including systolic
pressure, diastolic pressure, temperature, heart rate, SpO2, age,
and respiratory rate were also used for analysis. The average age
of these patients was 67.15 years (standard error: 15.17), which
was significantly higher than that of patients in theWuhan cohort
(t-test, p � 0.0005). 62.96% of them aremale, 53.67% of them have
respiratory failure, and 41.46% of them need mechanical
ventilation. Among them, 72 survived and nine died from
COVID-19 (Supplementary Table S2).

Severity Classification
According to the diagnosis and treatment of pneumonia infected
by the new novel coronavirus (the trial seventh edition) (National
Health Commission of the People’s Republic of China, 2020), the
patient’s severity classification was divided into three
classifications, general, severe, and critical, according to their
symptoms at admission. In this work, among 1,352 patients from
theWuhan cohort, 896 were in general, 393 were in severe, and 63
were in critical. For the Würzburg cohort, 24 were in general, 35
were in severe, and 22 were in critical. Here, we defined severity
classification as follows: general as 1, severe as 2, and critical as 3.

Clinical Feature Profiling
Using patient samples at admission, all numerical clinical features
were normalized to a range [0, 1]. These normalized data with an
average abundance ≥0.001 were illustrated as boxplots using the
R package “ggplot2”. To illustrate differences between patients
who survived and died, as well as between patients with or
without preexisting diseases, principal coordinate analysis
(PCoA) was performed using all patients’ numerical clinical
features at admission based on the Jaccard coefficient for
distance measurement using the R package “vegan”.

Feature Selection and Development of a
Prediction Model Utilizing Clinical Features
To identify the most important clinical features that reflect
differences among the samples, feature selection was employed
for a deeper understanding of COVID-19 infection. We assessed
the contribution of each clinical feature to facilitate the decisions
of the algorithm. Considering both MeanDecreaseAccuracy and
MeanDecreaseGini, the top five discriminatory clinical features
were selected. Different Random Forest (RF) models were tested

on the top five important clinical features, as well as their different
combinations according to their importance.

To develop a mortality prediction model that is capable of
distinguishing the outcome of COVID-19 patients, RF analysis
was performed by randomForest() function in R (package
“randomForest”). For the sample size larger than 100, we
randomly selected 90% of samples as training set and 10% of
samples as testing set using sample() function with replacement.
In this process, replace parameter was set as true, which specifies
using the Bootstrap method for random sampling. For each
model, based on each training set, the important parameters
ntree (number of decision trees contained in the RF model) and
mtry (variable sampling values for each iteration) were trained
and estimated with the out-of-bag (OOB) value. The importance
was set as true for calculating the importance of each variable in
the model, which was mainly used in conjunction with the
importance() function. The proximity parameters were set as
true for calculating the proximity matrix of the model, which is
mainly used in conjunction with the MDSplot() function to
realize the visualization of random forest. The na.action
parameter specifies the methods for handling the missing
values and was set as na.omi (that is, delete the samples with
missing values of all features). Other parameters were set as
default. A traversal search was performed on all clinical features
to obtain the minimum OOB value. The value of mtry was
determined by the OOB value (that is, the index of the
minimum OOB value). Then, combining the outcome of
COVID-19 patients, the mtry value was iterated to obtain an
optimal ntree. This process was iterated 15,000 times or more to
construct the most accurate model. When the error tree
approaches stable, the minimum number of trees was the best
value for ntree. This trained model was used for predicting the
outcome of the testing set.

Evaluation of Prediction Models
To evaluate the performance of the RF model, we used several
standard statistic parameters: accuracy, precision, sensitivity or
recall, specificity, and F1 scores. Here, we defined the prediction
result: survived-survived as TP and died-died as TN. The
formulas of the parameters mentioned above are defined as
follows:

accuracy � (TP + TN)/(TP + TN + FP + FN), (1)

precision � TP/(TP + FP), (2)

recall � TP/(TP + FN), (3)

specificity � TN/(TN + FP), (4)

F1 � 2* precision*recall/(precision + recall), (5)

where TP, TN, FP, and FN stand for true-positive, true-negative,
false-positive, and false-negative rates, respectively.

Correlation Analysis Between Phenotypic
Characteristics and Clinical Features
To better understand the relationship between phenotypic
characteristics and the mortality rate of patients, we used the
Pearson coefficient to examine the correlation between
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phenotypic characteristics and clinical features. Again, we
organized these correlation values along the timeline to
identify the dynamics of such correlations during treatment
progression.

Evaluation of Prediction Models along the
Timeline
Most patients have multiple sets of clinical features during their
stay in the hospital, allowing for a series of mortality prediction
models along the timeline. Here, we ordered these mortality
prediction models in two directions: from admission forward
to outcome to directly provide day-to-day guidance for clinics
and from outcome backward to admission to evaluate the
robustness and prediction power of the model against the time
of hospital stay.

Development of High-Quality and
Interpretable Binary Decision Tree for
Clinical Diagnosis
Based on the five selected features, we aimed to develop a high-
quality decision tree for clinical diagnosis. To train the RF model,
the dataset was randomly separated into two groups: the training
set (90% of entries) was applied to construct the mortality
prediction model, and the testing set (10% of entries) was
applied to validate the mortality prediction model. For
datasets with a sample size of less than 100, we used 70% of
the dataset for training and 30% for testing to reduce the
contingency error. This process was iterated 15,000 times to
construct the most accurate model. The most discriminative
clinical feature was used as the root node of this binary
decision tree, and the child nodes were hierarchically formed
according to their distinguishing ability until all samples are
completely distinguished. Finally, the decision tree was visualized
by rpart() function in R (package “party”).

Development of a Prediction Model for
Different Preexisting Diseases
Considering the influence of preexisting diseases on the outcome
in COVID-19 patients, we also used the first samples of patients
with preexisting diseases as a training dataset to build the
mortality prediction models: s/p stroke, CHD, COPD,
diabetes, hypertension, malignant tumor, and those without
preexisting diseases. For a dataset with a sample size larger
than 100, we used 90% of the dataset for training and 10% for
validation. For a dataset with a sample size smaller than 100, we
used 70% of the dataset for training and 30% for testing to
validate the model to reduce the contingency error.

Independent Test of theMortality Prediction
Model Using the Würzburg Cohort
To examine the reliability, interpretability, and foresight of our
mortality prediction model developed based on the Wuhan
cohort, 81 samples at admission from the Würzburg cohort

were used for independent test. Pearson coefficient was also
used to evaluate the association between the four clinical
features (lymphocyte (%), neutrophil count, LDH, and CRP)
and phenotypic characteristics (systolic pressure, diastolic
pressure, temperature, heart rate, SpO2, age, and respiratory rate).

RESULTS

In this study, we have recruited two independent cohorts from
China (the Wuhan cohort) and Germany (the Würzburg cohort)
for building and testing a mortality prediction model,
respectively. The Wuhan cohort contained 1,352 COVID-19
patients from Wuhan Union Hospital, and it has been utilized
for establishing a multi-feature and time-series aware machine
learning models. The Würzburg cohort consists of 81 COVID-19
patients and has been used as an independent validation cohort.

Data Resource and General Profiles of
COVID-19 Patients from Wuhan Cohort
1,352 patients were enrolled in the Wuhan cohort, who had more
than three clinical features (such as neutrophil count, CRP,
lymphocyte count, LDH, albumin, direct bilirubin, and
creatine kinase) (Liang et al., 2020; Xiao et al., 2020) and
detailed medicinal records from January 28, 2020, to March
29, 2020. The distribution of the number of patients with
clinical laboratory tests on a daily basis, as well as the total
number of diagnoses for each patient, is shown in Supplementary
Figure S1. Among them, the mortality rates in patients with
preexisting diseases: s/p stroke, coronary heart disease (CHD),
chronic obstructive pulmonary disease (COPD), diabetes,
hypertension, and malignant tumor were 23.33, 11.00, 14.29,
11.93, 12.82, and 21.13%, respectively (Supplementary Figures
S2A,B). These mortality rates were significantly higher (t-test, p <
0.001) than those in patients without preexisting diseases
(mortality rate: 7.26%). PCoA showed that if we used all
clinical features, these patients cannot be clearly separated
(Supplementary Figure S2C). In addition, these patients could
not be separated by whether they had a preexisting disease or not
(Supplementary Figures S2D–J). This highlights the importance
of clinical feature selection and developing the mortality
prediction models to differentiate patients.

Development and Evaluation of Clinical
Feature Selection and Mortality Prediction
Model for Early Prognosis Based on Wuhan
Cohort
We first developed a mortality prediction model based on
patients’ samples at admission, since such prediction is of
paramount importance in clinics (Risch, 2020). This model
took the clinical features and outcomes into consideration,
aiming to optimize the medical resources, as well as
preemptive therapy.

Before developing a mortality prediction model, we divided
the 130 clinical features into two parts: 101 numerical features
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FIGURE 2 | Clinical feature selection and mortality prediction results utilizing the first samples at admission. (A) Clinical feature selection based on 1,352 samples
and 101 numerical features. Features were ranked by MeanDecreasedAccuracy and MeanDecreasedGini according to their importance. Considering both of these
import RF parameters, we selected five important clinical features: lymphocyte (%), neutrophil count, LDH, CRP, and α-HBDH. (B) Comparison of receiver operating
characteristic (ROC) curves and diagnostic performance of all numerical clinical features, subfeature combinations, as well as each selected single feature, using the
first samples at admission (also referred to as admission-day 0). (C) The binary decision tree for predicting the outcome of COVID-19 patients based on the five selected
clinical features at admission (admission-day 0). Annotations: Num: the number of patients in the predictor; T: the number of correctly matched patients; F: the number of
mismatched patients. Here, the Num above the root node indicates the total samples used for building the binary decision tree.
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and 29 binary features. For numerical features, those features
which are identified with the average abundance ≥0.001 are
shown in Supplementary Figure S3. 101 numerical clinical
features with at least 30 samples’ coverage were considered as
the outcome predictors and were used to build the mortality
prediction model. We used 90% of the samples for model training
and 10% for testing to validate the model.

Combined MeanDecreaseAccuracy and MeanDecreaseGini
(Figure 2A), lymphocyte (%), neutrophil count, C-reactive
protein (CRP), lactic acid dehydrogenase (LDH), and
α-hydroxybutyric dehydrogenase (α-HBDH) were selected for
developing an optimized model, where lymphocyte (%) is an
immune disorder indicator (Trowell, 1947), neutrophil count
represents infection (Xie et al., 2020), CRP represents
inflammatory response (Vermeire et al., 2004; Sabrina et al.,
2012), and both LDH and α-HBDH represent tissue lesions
(Sanwald and Kirk, 1966; Kishaba et al., 2014).

We then used these five selected numerical clinical features
(lymphocyte (%), neutrophil count, CRP, LDH, and α-HBDH), as
well as different combinations of the subset of these five clinical
features according to their importance, for prediction
(Figure 2B). Results showed that the performance of these five
clinical features could be comparable to the results predicted by
all numerical features. Considering the F1 score, accuracy, and
AUC, the combination of lymphocyte (%), neutrophil count, and
LDH also showed high performance, especially the performance
of α-HBDH used alone (bold in Figure 2B). Several specified
combinations of three out of these five clinical features, such as
the combination of lymphocyte (%), neutrophil count, and LDH,
also reached more than 91% accuracy and 99% AUC at
admission. However, in clinics, these five features covered
more types of clinical symptoms: lymphocyte (%) is an
immune disorder indicator (Trowell, 1947), neutrophil count
represents infection (Xie et al., 2020), CRP represents
inflammatory response (Vermeire et al., 2004; Sabrina et al.,
2012), and both LDH and α-HBDH represent tissue lesions
(Sanwald and Kirk, 1966; Kishaba et al., 2014). Thus, we
confirmed these five clinical features as credible biomarkers.

To benchmark with other classification algorithms, we also
used FEAST (an expectation–maximization-based unsupervised
learning method) (Shenhav et al., 2019) and JSD
(Jensen–Shannon divergence) methods (Lin, 1991) to predict
the outcome of COVID-19 patients based on all features, the
top five features, and the top three features (Supplementary
Figure S4). Results demonstrated that the RF model was more or
equally credible for constructing the mortality prediction model.
The neural network (Kriegeskorte and Golan, 2019) with two
hidden layers (the first layer has 128 neurons and the second layer
has eight neurons) also illustrated that RF model based on the
combination of lymphocyte (%), neutrophil, LDH, CRP, and
α-HBDH could best predict the outcome of COVID-19 patients
(Supplementary Figure S5). Moreover, all three methods (RF,
FEAST, JSD, and neural network) showed the best distinguishing
power when using the top five clinical features to construct
the model.

We also used the binary clinical features (such as urine occult
blood, blood type, and COVID-19 nucleic acid) to build the

mortality prediction model (Supplementary Figure S6A). Based
on the contribution of each feature, we selected urine protein
(UPRO), urine occult blood (UOB), monospecific antibodies of
blood type (Ab-monospecific-B), ABO blood type (ABO), and
ketones (KET) for further model improvement. Their different
combinations and performance are shown in Supplementary
Figure S6B. Among them, the combination of UPRO, UOB, and
KET (accuracy � 99.61%; AUC � 99.96%) was outstanding from
the others, followed by UPRO, all binary features, and the
combination of these five features.

Finally, we emphasized that all of the above results were based
on the first samples at admission, since it is more important for
the clinical prediction to utilize these samples. It was noticed that
a recently published study used the final samples of COVID-19
patients for predicting their outcome (Yan et al., 2020), and we
also used the final samples in the Wuhan cohort to assess our
model based on five selected features (Supplementary Figure
S7), with results showing high prediction accuracy. Yet, the
prediction accuracy and AUC based on first samples at
admission (Figure 2B) were comparable to those based on
these final samples for the Wuhan cohort. These results
confirmed again that patients with a high mortality rate could
be accurately predicted at admission, which could be used for
prioritizing critically ill patients to potentially reduce the
mortality rate.

Clinical Features Have Profound
Association with Phenotypic
Characteristics in the Wuhan Cohort
Notable correlations were observed between phenotypic
characteristics and clinical features associated with COVID-19
(Figure 3 and Supplementary Figures S8, S9). Among 101
numerical clinical features, many of them have shown
significant correlations with age, respiratory rate, and severity
classification of patients. Expect for lymphocyte (%), neutrophil
count, LDH, CRP, and α-HBDH were positively correlated with
age (p < 0.05) along the timeline. Since the above analyses also
confirmed that these five clinical features are tightly associated
with patient outcomes (Figure 2), these associations partially
verified the fact that elder patients were more likely to die from
COVID-19. LDH, CRP, and α-HBDH were also positively
correlated with respiratory rate and severity classification (p <
0.05) in patients (896 were in general, 392 were in severe, and 63
were in critical), illustrating the importance of these phenotypic
characteristics on outcome in COVID-19 patients. The result also
showed dynamic changes in the associations of these clinical
features with phenotypic characteristics over time, especially for
the five clinical features used for model prediction.

Time-Series Analysis Reveals That the
Mortality Prediction Model Is Very Robust
along the Timeline
Evaluation of the mortality prediction model along the timeline
forward from admission day as the start point: Because these
clinical features are dynamic along the timeline, and in clinics, the
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progression and outcome of patients are critical (Liang et al.,
2020; Risch, 2020). Therefore, we used the admission day of each
patient as the start point and built mortality prediction models
day by day after admission along the timeline. The number of
samples enrolled on a daily basis is shown in Figure 4A from
admission-day 0. We used 90% of the dataset for training and
10% for testing. For datasets with a sample size of less than 100,
we used 70% of the dataset for training and 30% as a test set for
validation. Since the sample number was less than 50 for patients
who stayed in the hospital longer than 40 days, we only used the
dataset from admission-day 0 to admission-day 40 to build the
time-series mortality prediction models. Results confirmed that
our mortality prediction model was very robust over time,

suggesting that according to the prediction outcome of
patients, clinics could adjust the treatment plan at any time,
which could provide higher quality treatment for patients.

Evaluation of the mortality prediction model along the
timeline backward from discharge day as the start point: To
prove the robustness of our mortality prediction model and how
many days in advance it could predict the outcome of COVID-19
patients, we used the discharge day of each patient as the start
point. Prediction accuracies were evaluated backward day by day
(Figure 4B) from discharge-day 0. The mortality prediction
model based on five clinical features also reached more than
91% accuracy and 99% AUC (usually 10 days or more in advance
of the outcome) (Figure 4B), confirming this mortality prediction

FIGURE 3 | Associations between clinical features and phenotypic characteristics based on several representative time points. (A) Based on admission day
(admission-day 0). (B) Based on the third day after admission (admission-day 1). (C) Based on the sixth day after admission (admission-day 2). (D) Based on the ninth
day after admission (admission-day 3). (E)Based on the admission day (admission-day 4). (F)Based on the third day after admission (admission-day 5). (G)Based on the
sixth day after admission (admission-day 6). (H) Based on the ninth day after admission (admission-day 9). Note: *represents a significant correlation between a
phenotypic characteristic and a clinical feature (Pearson correlation: p < 0.05).
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model is very robust over time when patients were in the hospital
and indicating the strong association of these five clinical features
with the progression of treatment.

The Highly Accurate and Interpretable
Binary Decision Tree for Clinical Diagnosis
Tomake the prediction interpretable, we also generated a series of
decision trees (along the timeline) for assisting clinical diagnosis
based on the Wuhan cohort. The decision tree is hierarchically
organized by the distinguishing ability of these five clinical
features based on the first samples at admission (Figure 2C).
LDH could distinguish 87% of samples with more than 96%
accuracy and was used as the root node of this decision tree. The
remaining 13% of samples were differentiated by a combination
of these five clinical features. The binary decision tree of the final
samples at discharge was simpler than that of the first samples at
admission (Supplementary Figure S10E). The decision trees
based on other time points are shown in Supplementary
Figures S10A–D, confirming that using these five clinical
features was more comprehensive and precise. These results

also suggested that the mortality prediction model based on
the admission samples, rather than the discharge samples,
could already provide outcome prediction and clinical
guidance for personalized treatment with high fidelity.

The binary decision tree, either based on samples at admission
or based on discharge, was also highly interpretable for clinical
diagnosis. The elevated LDH was associated with patients’ death:
LDH larger than 445 u/l was a significant risk factor related to
death in cases with severe COVID-19 (Zhou et al., 2020b; Li et al.,
2020), which was consistent with our results. The increased level of
α-HBDHwas also found as a critical risk factor associated with the
severity of COVID-19 patients (Dong et al., 2020). The decreased
amount of lymphocyte (lymphopenia) and neutrophil
(neutrophilia), together with the increased number of CRP and
LDH, showed the immunological response to the virus, followed by
severe virus infection (Frater et al., 2020; Lippi and Plebani, 2020).
In summary, current published clinical evidence could well support
our decision tree.

Prediction Power Considering Different
Preexisting Diseases
For different preexisting diseases, the clinical features that can
accurately mark the COVID-19 patients’ outcomes are generally
different. Previous studies have shown that preexisting disease
increases the risk of COVID-19 mortality rate (Williamson et al.,
2020). We also used the six preexisting diseases to evaluate the
mortality prediction model based on the five selected clinical
features (Supplementary Figure S11).

Out of the five selected clinical features, feature combinations
should be different for each of the different preexisting diseases.
Therefore, for each of the preexisting diseases, we performed feature
importance evaluation before mortality prediction model
evaluation. For patients with s/p stroke (Supplementary Figure
S11A), considering F1 score, accuracy, and AUC, the combination
of LDH, CRP, and α-HBDH showed the highest performance,
followed by the combination of LDH and α-HBDH, then all five
features. The results for patients with CHD are illustrated in
Supplementary Figure S11B. Except for using the five features,
the combination of LDH, CRP, and α-HBDH showed the highest
performance. For patients with COPD, a combination of neutrophil
count, lymphocyte (%), and LDH showed the highest performance
(Supplementary Figure S11C). For patients with diabetes, among
all combinations of clinical features, LDH showed the highest
performance (Supplementary Figure S11D), indicating that
LDH could be used to distinguish the outcome of COVID-19
patients. For patients with hypertension, results indicated that a
combination of neutrophil count, lymphocyte (%), and LDH could
be used as biomarkers for predicting the outcome of COVID-19
patients with hypertension (Supplementary Figure S11E). For
patients with malignant tumor, the combination of all five
features showed the highest performance, followed by the
combination of neutrophil count and lymphocyte (%)
(Supplementary Figure S11F). For patients without preexisting
diseases, results showed that we can use lymphocyte (%), LDH,
CRP, and α-HBDH to accurately predict the outcome of these
patients (Supplementary Figure S11G).

FIGURE 4 | Evaluation of prediction results based on time series with five
selected features. The prediction results were evaluated based on time series
using the admission-day 0 (A) and the discharge-day 0 (B) as start points. The
first y-axis represents the number of samples enrolled, while the second
y-axis represents the estimation scores. The purple bar represents the
number of patients discharged from the hospital on that day, while the red bar
indicates the number of patients admitted to the hospital on that day.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6720509

Bai et al. AI-Enabled COVID-19 Mortality Prognosis

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Evaluation of the Mortality Prediction Model
Using the Independent Würzburg Cohort
The reliability, interpretability, and foresight of our mortality
prediction model were further confirmed in another independent
cohort collected from Germany, the Würzburg cohort, with
samples collected from March to September 2020 (Figure 5).
For the patients in the Würzburg cohort, their duration of stay in
the hospital is usually 5–20 days (Figure 5A). All samples used in
the Würzburg cohort were the patient samples at admission.

We used four clinical features (lymphocyte (%), neutrophil count,
LDH, and CRP), as well as their different combinations to test our

mortality prediction model (Figure 5C). Considering F1 score,
accuracy, and AUC, the combination of LDH, lymphocyte (%),
neutrophil count, and CRP (accuracy � 97.33%; AUC � 85.71%)
showed the highest performance among different combinations.
Other combinations, such as the combination of LDH, lymphocyte
(%), and neutrophil count (accuracy � 93.67%, AUC � 87.83%) and
the combination of LDH and lymphocyte (%) (accuracy � 94.81%,
AUC � 84.25%), also performed well.When only one clinical feature
was used, LDH (accuracy � 91.30%, AUC � 85.56%) showed the
highest performance, which was consistent with the results on the
Wuhan cohort and a previous study (Liang et al., 2020).

FIGURE 5 | Independent test results on theWürzburg cohort utilizing the first samples at admission. (A) The number of patients categorized by their duration of the
hospital stay. (B) The associations between clinical features (LDH, CRP, lymphocyte (%), and neutrophil count) and phenotypic characteristics. (C) Comparison of
receiver operating characteristic (ROC) curves and diagnostic performance of four clinical features, the combinations of a subset of features, as well as each selected
single feature, using the first samples at admission. Note: * represents a significant correlation between a phenotypic characteristic and a clinical feature (Pearson
correlation: p < 0.05).
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From the Pearson correlation analysis (Figure 5B) between these
four clinical features (LDH, lymphocyte (%), neutrophil count, and
CRP) and the phenotypic characteristics (systolic pressure, diastolic
pressure, temperature, heart rate, SpO2, age, and respiratory rate), we
could observe that there was a significantly negative correlation
between lymphocyte (%) and age (p < 0.05), which was consistent
with the general pattern of COVID-19 patients. CRP was
significantly positively correlated with temperature (p < 0.05),
which was consistent with the result in the Wuhan cohort.

Furthermore, as the duration of stay in the hospital of patients
is usually 5–20 days, the strong foresight of the mortality
prediction model has again been validated on the Würzburg
cohort. Furthermore, one male patient aged 54 has a hospital stay
of 93 days before recovery, and our mortality prediction model
has successfully predicted his outcome.

DISCUSSIONS AND CONCLUSION

Our study enrolled two independent cohorts of COVID-19
patients for reliable, interpretable, and universal mortality
model evaluation. Through multiple analyses including RF
analysis, association analysis, time-series analysis, etc., the
mortality prediction model was established, evaluated, and
achieved clinically creditable prediction power on the Wuhan
cohort and Würzburg cohort.

The mortality predictionmodel proposed in this study could help
identify critically ill patients early and provide preferential treatment
for each individual. Firstly, the five important clinical features
(lymphocyte (%), neutrophil count, CRP, LDH, and α-HBDH)
were identified. These five features could reflect several important
aspects of disease development, such as viral infection (Trowell,
1947), coexistence of other infections (Xie et al., 2020), immune
reaction during pneumonia (Sabrina et al., 2012), the severity of
inflammatory response (Vermeire et al., 2004), tissue/cell damage,
and cardiac injury (Sanwald and Kirk, 1966; Kishaba et al., 2014),
which could provide more information to monitor the progression
of patients. Secondly, these five features could be used for predicting
the outcome of COVID-19 patients with high accuracy. Thirdly, the
foresight of the mortality prediction model was strong up to as early
as 40 days or more before discharge. This indicates that our model
could allow resource optimization to be conductedmany days ahead,
and physicians can make a preliminary judgment on the prognosis
of patients according to this model to prompt the choice of clinical
intervention in later stages.

Our mortality prediction model shows superior prediction power
at different time points during the course of the disease. Robust
prediction power at different time points (Figure 4) also suggests that
the mortality prediction model provides important indicators for
disease monitoring, indicating early clinical intervention for clinical
treatment. Our mortality prediction model also shows superior
prediction power for different preexisting diseases of patients,
indicating the robustness of the mortality prediction model. These
results could serve well as the basis for personalized treatment of
COVID-19 patients.

Our finding in the Wuhan cohort (model development) has also
been tested in an independent cohort from Germany (Würzburg

cohort). Although the international aspects such as the ethnicities,
healthcare systems, hygienic measures, local regulations, and
management strategies, as well as their average age (t-test, p �
0.0005), are different in these two cohorts, our mortality prediction
model has also shown the high prediction power in tens of days
ahead of patients’ discharge, underlining the robustness and the
foresight of this model.

The second COVID-19 wave in Europe is ongoing. This
mortality prediction model has been validated at a European
center and might provide a useful instrument for triaging the
patients and optimizing the resources. Because we have a series of
mortality prediction models with constant high accuracy along
with the whole duration of patients’ stay in the hospital, we could
adjust treatment for possibly serious patients on a day-to-day
basis to reduce the mortality rate of patients with COVID-19 as
much as possible. In addition, our study also provides new insight
into the mortality prediction model’s application value in other
infectious disease outbreaks in the future.

In conclusion, this study has established a mortality prediction
model that allowed early classification of COVID-19 towards
personalized treatment in these patients, not only at admission
but also along the treatment timeline. This model may represent a
valuable tool for triaging and optimizing the resources in patients
with COVID-19 infection worldwide.
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