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Weak gravitational lensing mass maps play a crucial role in understanding the evolution of
structures in the Universe and our ability to constrain cosmological models. The prediction
of these mass maps is based on expensive N-body simulations, which can create a
computational bottleneck for cosmological analyses. Simulation-based emulators of map
summary statistics, such as the matter power spectrum and its covariance, are starting to
play increasingly important role, as the analytical predictions are expected to reach their
precision limits for upcoming experiments. Creating an emulator of the cosmological mass
maps themselves, rather than their summary statistics, is a more challenging task. Modern
deep generative models, such as Generative Adversarial Networks (GAN), have
demonstrated their potential to achieve this goal. Most existing GAN approaches
produce simulations for a fixed value of the cosmological parameters, which limits their
practical applicability. We propose a novel conditional GAN model that is able to generate
mass maps for any pair of matter densityΩm andmatter clustering strength σ8, parameters
which have the largest impact on the evolution of structures in the Universe, for a given
source galaxy redshift distribution n(z). Our results show that our conditional GAN can
interpolate efficiently within the space of simulated cosmologies, and generate maps
anywhere inside this space with good visual quality high statistical accuracy. We perform
an extensive quantitative comparison of the N-body and GAN -generated maps using a
range of metrics: the pixel histograms, peak counts, power spectra, bispectra, Minkowski
functionals, correlation matrices of the power spectra, the Multi-Scale Structural Similarity
Index (MS-SSIM) and our equivalent of the Fréchet Inception Distance. We find a very good
agreement on these metrics, with typical differences are <5% at the center of the
simulation grid, and slightly worse for cosmologies at the grid edges. The agreement
for the bispectrum is slightly worse, on the <20% level. This contribution is a step toward
building emulators of mass maps directly, capturing both the cosmological signal and its
variability. We make the code1 and the data2 publicly available.
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1 INTRODUCTION

The N-body technique simulates the evolution of the Universe
from soon after the big bang, where the mass distribution was
approximately a Gaussian random field, to today, where, under
the action of gravity, it becomes highly non-Gaussian. The result
of an N-body simulation consists of a 3D volume where the
positions of particles represent the density of matter in specific
regions. This 3-dimensional representation can then be projected
in 2 dimensions by integrating the mass along the line of sight
with a lensing kernel. The resulting images are called sky
convergence maps, often referred to simply as the cosmological
mass maps. These maps can be compared with real observations
with the purpose of estimating the cosmological parameters and
testing cosmological models. Their simulation, however, is a very
challenging task: a single large N-body simulation can take from a
few hours to several weeks on a supercomputer (Springel et al.,
2005; Potter et al., 2017; Collaboration et al., 2019; Sgier et al.,
2019).

One approach to overcome this challenge is to use simulation-
based emulators of summary statistics of the maps. Emulators
have so far focused on: (a) the power spectrum, which is
commonly used in cosmology (Knabenhans et al., 2019;
Heitmann et al., 2016; Knabenhans et al., 2020; Angulo et al.,
2020), (b) covariance matrices of 2-pt functions (Sgier et al., 2019;
Taylor et al., 2013; Sato et al., 2011), and (c) non-Gaussian
statistics of mass maps, which can be a source of significant
additional cosmological information (Pires et al., 2009; Petri et al.,
2013; Zürcher et al., 2020; Fluri et al., 2018). These approaches,
however, always considered a specific summary statistic, which
limits the type of analysis that can be performed using the mass-
map data. They typically do not simultaneously capture both the
signal and its variation: the emulators interpolate the power
spectrum across the cosmological parameter space, without
considering the change in its covariance matrix, which is
typically taken from the fiducial cosmology parameter set. This
is a known source of potential error in the analysis (Eifler et al.,
2009) and was shown to have a large impact on the deep learning-
based constraints (Fluri et al., 2018). The solution proposed in this
work address these problems simultaneously.We construct a map-
level probabilistic emulator that generates the mass maps directly,
and can accurately capture the signal and its variability. This
emulator, built for a specific target survey dataset, would be of
great practical use for innovativemap-based cosmological analyses,
additionally capturing the variation of the maps across the
cosmological parameter space.

With a similar goal, multiple contributions have leveraged the
recent advances in the field of deep learning to aid the generation
of cosmological simulations. In particular, recent works (Mustafa
et al., 2017; Rodriguez et al., 2018; Nathanaël et al., 2019; Tröster
et al., 2019) have demonstrated the potential of Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014) for
production of N-body simulations. The work of (Mustafa
et al., 2017; Rodriguez et al., 2018; Nathanaël et al., 2019;
Tröster et al., 2019; Giusarma et al., 2019; He et al., 2019) has
shown deep generative models that can accurately model dark
matter distributions and other related cosmological signals.

However, a practical application of these approaches in an
end-to-end cosmological analysis is yet to be demonstrated. In
this work, we take an essential step toward the practical use of
generative models by creating the first emulator of weak lensing
mass maps as function of cosmological parameters. This step
allows the generate mass maps with any parameters without the
need to retrain the generative model. Our conditional GAN
model generates convergence maps dependent on values of
two parameters that have the largest impact on the evolution
of the Large Scale Structure (LSS) of the Universe: Ωm, which
controls the matter density as a fraction of total density, and σ8,
which controls the strength of matter density fluctuations (see
(Refregier, 2003; Kilbinger, 2015) for reviews). Those are the only
two parameters that can be effectively measured using the
convergence maps data. After training, the conditional model
can then interpolate to unseen values of σ8 andΩm by varying the
distribution of the input latent variable. Other works (Tamosiunas
et al., 2020; Villaescusa-Navarro et al., 2020) have since also
explored such models, although with the emphasis on generating
various cosmological fields themselves, either in 2D or 3D.

To assess that the GAN-generated maps are statistically very
close to the originals, we perform an extensive quantitative
comparison. We evaluate our GAN using both cosmological
and image processing metrics: the power spectral density, mass
map histogram, peak histogram, the bispectrum, Minkowski
functionals, Multi-Scale Structural Similarity (MS-SSIM) (Wang
et al., 2003), and an adaptation of the Fréchet Inception Distance
(FID) (Heusel et al., 2017). We also compare the statistical
consistency of a batch of generated maps by computing the
correlation matrices of power spectra. Moreover, we assess the
agreement as a function of cosmological parameters. This set of
comparisons is the most exhaustive presentation of the capacity of
generative models to learn the dark matter maps, to date. In this
work we use the data generated by (Fluri et al., 2019).

We build a sky convergence map dataset made of 57 different
cosmologies (set of parameters) divided into a training set and a
test set. The test set consists of 11 cosmological parameters sets
was used to asses the capacity of the GAN to interpolate to unseen
cosmologies.

This paper is structured as follows. In Section 2 we present a
new type of generative adversarial network whose generated
output can be conditioned on a set of parameters in the form
of continuous values. Section 3 describes the simulation dataset
used in this work. In Section 4 we describe the metrics used to
evaluate the quality of the generative model. Section 5 shows the
maps generated by our machine learning model, as well as
compares its results to the original, simulated data. We
summarize our findings and discuss the future prospects in
Section 6. Appendix A contains the architectures of the
neural networks used in this work.

2 CONDITIONAL GENERATIVE
ADVERSARIAL NETWORKS

A GAN consists of two neural networks, D and G, competing
against each other in a zero-sum game. The task of the
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discriminator D is to distinguish real (training) data from fake
(generated) data. Meanwhile, the generator G produces samples
with the goal of deceiving the discriminator into believing that the
generated data is real. Both networks are trained simultaneously
and if the optimization process is carried out successfully, the
generator will learn to produce the data distribution (Goodfellow
et al., 2014). Learning the optimal parameters of the discriminator
and generator networks can be formulated as optimizing a min-
max objective. Optimizing a GAN is a challenging task due to the
fact that it consists of two networks competing against each other.
In practice, one often observes unstable training behaviors which
can be mitigated by relying on various types of regularization
methods (Roth et al., 2017; Gulrajani et al., 2017). In this paper,
we rely on Wasserstein GANs (Arjovsky et al., 2017) with the
regularization approach suggested in (Gulrajani et al., 2017). The
model we use conditions both the generator and the
discriminator on a given random variable y, yielding the
following objective function,

min
G

max
D

E(x,y) ∼ Pr

[D(x, y)] − E
z ∼ Pz ,y ∼ Py

[D(G(z, y))]
+ λ E(x,y) ∼ Pr∪Pg

[(����∇xD(x, y)����2 − 1)2] (1)

where Pr and Pz are the data and latent variable distributions. The
parameter λ≥ 0 is the penalty coefficient of the regularization
term that ensures that the gradient norm of the discriminator is
close to 1. This ensures that the discriminator is 1-Lipschitz,
which is a requirement for optimizing the Wasserstein distance
(Gulrajani et al., 2017; Arjovsky et al., 2017). The prior
distribution of the latent variable, e.g., a uniform or a
Gaussian distribution, defines implicitly the generator
distribution Pg by (x, y) � G(z, y), z ∼ Pz , y ∼ Py .

Practically, there exist many techniques and architectures to
condition the generator and the discriminator (Gauthier, 2014;
Perarnau et al., 2016; Reed et al., 2016; Odena et al., 2017; Miyato
and Koyama, 2018). However, all the architectures in these works
are conditioning on discrete parameters. We instead propose a
different design that works specifically for continuous parameters
and will be shown to have good performance in practice. We note
that our conditioning technique could be used with other
architectures as well. For simplicity we describe the case of a
single parameter, but our technique was implemented for the case
of two parameters. Our idea is to adapt the distribution of the
latent vector according to the conditioning parameters using the
function ẑ � f (z, y). Specifically, the function f simply rescales the
norm of the latent vector according to the parameter y. Given the
range y ∈ [a, b], f reads:

ẑ � f (z, y) � (l0 + l1 − l0
b − a

(y − a)) z

||z||2. (2)

Using this function, the length of the z vector is mapped to the
interval [l0, l1]. In our case, we used l0 � 0.1

��
n

√
and l1 � ��

n
√

,
where n is the size of the latent vector. For the discriminator, the
parameters are concatenated directly after the convolutional
layers as in (Reed et al., 2016). The relation between the
features extracted from the convolutional layers and the

parameters might in general be non-local. We therefore
increase the complexity of the mapping functions of the
discriminator and generator by adding some linear layers (as
in a multi-layer perceptron) at the end of the discriminator and
the beginning of the generator. The proposed model is sketched
in Figure 1 and the architecture is described in more details in
Appendix A. Specific parameters can be found in Table A1.

3 SKY CONVERGENCE MAPS DATASET

The data used in this work is the non-tomographic training and
testing set introduced in (Fluri et al., 2019), without noise and
intrinsic alignments. The simulation grid consists of 57 different
cosmologies in the standard cosmological model: a flat Universe
with cold dark matter (ΛCDM) (Lahav and Liddle, 2019). Each of
these 57 configurations was run with different values of Ωm and
σ8, resulting in the parameter grid shown in Figure 2. The output
of the simulator consists of the particle positions in 3D space. The
mass maps are obtained by the gravitational lensing technique
(see (Bartelmann, 2010) for review). It consists of a tomographic
projection of the particle densities along the radial (redshift)
direction against the lensing kernel. This kernel is dependent on
the relative distances between the observer and the lensed galaxies
that are used to create the mass maps. The source galaxy redshift
distribution n(z) used in this work is the non-tomographic
distribution from (Fluri et al., 2019). The projected matter
distribution is pixelized into images of size 128 px × 128 px,
which corresponds to 5° × 5° of the sky. Eventually, the resulting
dataset consists of 57 sets of 12,000 sky convergence maps for a
total of 684,000 samples. At training time, we randomly rotate
and flip the input image to augment the dataset.

The dataset is split into a training and test set in the following
way: 11 cosmologies (132,000 samples) are selected for the test
set, and the remaining 46 cosmologies (552,000 samples) are
assigned to the training set, as depicted in Figure 2. This split is
used to ensure that the model could interpolate to unseen
cosmologies. At evaluation time, we use the cosmologies from
the test set to validate the interpolation ability of our network. In
the following sections, we show detailed summary statistics for
the cosmologies marked with letters A, B, C, and D. We make the
dataset publicly available.3

4 QUANTITATIVE COMPARISON METRICS

Wemake a quantitative assessment of the quality of the generated
maps using both cosmological summary statistics and similarity
metrics used in computer vision. We focus on the following
statistics:

1. the power spectral density Cℓ , which describes how
strongly the maps are correlated as a function of pixel
separation ℓ,

3https://zenodo.org/record/4646764
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2. the distribution of mass map pixelsNpixels, compared using
Wasserstein-1 distance and histograms,

3. the distribution of mass map peaks Npeaks, which describes
the distribution of values at the local maxima of the map,
compared also compared using Wasserstein-1 distance
and histograms,

4. the bispectrum Bℓ , which describes the three-point
correlation of the folded triangles of different size,

5. Minkowski functionals, which are morphological measures of
the map, and consist of three functions: V0, which describes
the area of the islands after thresholding of the map at some
density level, V1, their perimeter, and V2, their Euler
characteristic (their number countminus the number of holes),

6. the Pearson’s correlation matrices Rℓℓ’ between the Cℓ of
maps at different cosmologies,

7. the Multi-Scale Structural Similarity Index (MS-SSIM)
(Wang et al., 2003; Odena et al., 2017), which is an image
similarity measure commonly used in computer vision,

8. the Fréchet Distance between the output of a CNN
regressor trained to predictΩm, σ8, similarly to the Fréchet
Inception Distance calculated using the Google Inception
v3 network (Heusel et al., 2017).

The mass map histograms and the peak counts are simple
statistics used to compare the maps and constrain cosmological
models (see Gatti et al., 2020; Kacprzak et al., 2016 for examples).
These metrics, however, ignore the spatial information in the
maps. The angular power spectrum Cℓ or its real-space
equivalent, the angular correlation function, is the most
common statistic for constraining cosmology with LSS (see
(Kilbinger, 2015) for review). The 2-pt functions capture only
the Gaussian part of the fluctuations. The 3-pt correlation
function, or the bispectrum, probes higher order information
and has also been used for constraining cosmological models

(Takada and Jain, 2003; Fu et al., 2014). Similarly, the Minkowski
functionals have also been used for cosmological measurements
(Petri et al., 2015) as an alternative statistic that extracts
topological information from the maps.

The agreement between the pixel and peak values of N-body
and GAN-generated images is quantified using the Wasserstein-1
distance W1(P, Q). This distance corresponds to the optimal
transport of probability mass to turn the distribution P into Q. As
it is scale-dependent, we calculate it after normalizing the pixel
values: we subtract the mean and divide by the standard
deviation. We use mean and standard deviation of all N-body
generated images for a given cosmology, for both samples. This

FIGURE 1 | Sketch of the proposed GAN model, where z is a latent variable and y is a parameter vector (yr � real, yf � fake).

FIGURE 2 | The cosmological parameter grid used in this work, from
(Fluri et al., 2019). The circles and diamonds show the training and the test
sets, respectively. The total number of models was 57, of which 46 were used
as the training set and 11 as the test set. Themodels labeled A, B, C, and
D are investigated in more detail in Section 5.
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way, the W1 distance is easily interpretable: for a Gaussian with
μ � 0, σ � 1, a 1σ shift of the mean corresponds to W1 � 1, and
scaling its variance by ×2 lead to W1 ≈ 0.8.

For Bℓ , Cℓ , and V0,1,2 we calculate the simple fractional
difference between the original and generated samples, defined
as fx � (xGAN/xN−body)/xN−body. We quantify the agreement
between correlation matrices by comparing their Frobenious
norms ‖·‖F . For a N-dimensional, diagonal covariance matrix
with elements σ2i , the Frobenious norm scales linearly with σ/

��
N

√
.

This way, it can be interpreted as a linear proxy for information
content. We define the fractional difference between the
Frobenious norm of GAN and N-body correlation matrices as:

fR �
����RGAN

����F − ����RN−body����F
‖RN−body‖F

. (3)

The Multi-Scale Structural Similarity Index (MS-SSIM) is useful
in order to detect the problem commonly known as mode
collapse, where the generator produces only a small subset of
the training data distribution. Detecting this undesirable behavior
is non-trivial as summary statistics can still agree during mode
collapse. Taking inspiration from (Odena et al., 2017), one
solution is to leverage the MS-SSIM score from (Wang et al.,
2003) to quantify this effect. This metric was first proposed for
prediction of similarity in human perception of images. Taking
two images as inputs, it returns a value between 0 and 1, where 1
means “identical” and 0 means “completely different.” As the
mass maps are stochastic and only similar in a statistical way, we
are not interested in the similarity between a pair of specific
images, but in the average similarity of a large set of images. We
calculate the significance of the difference in the SSIM measures
in the following way:

sSSIM � 〈SSIMGAN〉 − 〈SSIMN−body〉
(σ[SSIMGAN] + σ[SSIMN−body])/2 (4)

where 〈SSIM〉 is the mean score, and σ[SSIM] is the standard
deviation. Large differences in the SSIM score indicate a
significant difference in the samples generated by the GAN,
thus pointing out to potential problems with the quality of the
generated samples. On the other hand, a small difference will
be an indicator that the generative model preserve the data
statistics.

Finally, we calculate an adaptation of the Fréchet Inception
Distance (FID) (Heusel et al., 2017) between N-body and GAN
-generated images. The Inception Score (IS) (Salimans et al.,
2016) and FID have become standard measures for GANs. The
idea consists to compare statistics of the output of the Google
Inception-v3 network (Szegedy et al., 2016) for the ImageNet
dataset (Deng et al., 2009). This has proven to be well correlated
with human score. As the reference Inception network used for
the FID was trained with the ImageNet dataset, its output
statistics are meaningless for cosmological mass maps. To
solve this challenge, we create our own reference network that
is well suited for cosmological mass maps. This network is a CNN
trained to perform a regression task and predict the true σ8, Ωm

parameters, similarly to (Fluri et al., 2018; Schmelzle et al., 2017;
Gupta et al., 2018). Its parameters and detailed explanations of its

construction can be found in Table A2 and in Appendix B. The
adapted FID score is obtained by comparing the regressor outputs
for the N-body and GAN images. As regressor is composed of
seven layers, this comparison depends on high order moments.
Naturally, we expect that a well working conditional GAN should
generate samples with similar output distribution to the one of
the real samples. To estimate the distance between the two
statistics distributions, we first approximate the network
predictions with a normal distributions μr ,Σr and μg ,Σg , for
the N-body and GAN -generated input, respectively. The FID is
then calculated as:

FID �
∣∣∣∣∣∣∣∣∣∣μr − μg

∣∣∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣∣∣Σ1/2
r − Σ1/2

g

∣∣∣∣∣∣∣∣∣∣2. (5)

Note that this formula also correspond to the Wasserstein-1
distance between the two Gaussian distributions (Dowson and
Landau, 1982). Eventually, before calculating FID, we normalize
the network outputs for each true cosmology: we subtract the
mean and divide by the standard deviation of the N-body sample.
For the ease of interpretation, we report the square root of FID.
This way, a 1σ difference in the mean CNN predictions will
correspond to FID1/2 � 1. Similarly, a change of 1σ in the
covariance matrix also leads to FID1/2 � 1.

5 RESULTS

We trained the GANmodel described in Section 2 andAppendix
A. We used RMSPROP as an optimizer with an initial learning rate
of 10− 5 and a batch size of 64. The discriminator was updated
5 times more than the generator. The gradient penalty was set to
10 and the negative slope of the LeakyRelu α � 0.2. It took a week
to train the model for 40 epochs on a GeForce GTX 1080 GPU.
Similar to (Reed et al., 2016; Odena et al., 2017; Miyato and
Koyama, 2018; Mirza and Osindero, 2014), we use batches
composed of samples from different parameter sets. Note that
the batches were composed of samples from different
cosmologies from the training set. The summary statistics are
computed using 5,000 real and fake samples for every pair of
parameters of the test set. The peaks are extracted by searching for
all pixels greater than their 5 × 5 patch neighborhood, i.e. their 24
neighbors. Then, the histogram of the extracted peaks values is
computed. We rely on LENSTOOLS (Petri, 2016) to compute the
power spectra, bispectra and the Minkowski functionals. For the
bispectrum, we use the folded configuration, with the ratio
between one of the triangle sides and the base is set to the
default value of 0.5. The SSIM is computed using the SCIKIT-

IMAGE packge4 (Van der Walt et al., 2014). We make our code
is publicly available.5

Figure 3 shows images generated by the conditional GAN and
as well as original ones, for several values of Ωm and σ8
parameters. They are visually indistinguishable. Furthermore,
the image structure evolves similarly with respect of the

4https://scikit-image.org/
5https://renkulab.io/gitlab/nathanael.perraudin/darkmattergan
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cosmological parameters change. As predicted by the theory,
increasing Ωm results in convergence maps with additional mass
and increasing σ8 in images with higher variance in pixel
intensities. In Figure 4 the same latent variable z is used to
generate different cosmologies. The smooth transition from low
to high mass density hints that the latent variable control the
overall mass distribution and the conditioning parameter its two
cosmological properties σ8, Ωm.

Figure 5 shows the histograms of pixels (top) and peaks
(bottom) of the original maps simulated using N-body
simulations (blue), and their GAN-generated equivalents (red),
for the four models A,B,C,D shown in Figure 2. The peak counts
were selected as maxima of the surrounding 24 neighbors. The
solid line corresponds to the median of the histograms from 5,000
realisations, and the bands to 32% and 68% percentiles. The
bottom part of each panel shows the fractional difference between
the statistics, defined as fx � (xGAN/xN−body). The normlized
Wasserstein-1 distance of the pixel values distribution (see
Section 4) is: Wpixel

1 � 0.04, 0.02, 0.02, 0.02, for models A, B, C,
and D, respectively. That indicates that the histograms differ on
the level of <5%. Similarly, the Wasserstein-1 distances of the
peak value distribution for models A, B, C, and D is: Wpeak

1 �
0.04, 0.03, 0.01, 0.02. The agreement here is also very good, on
<5% level.

The 2-pt and 3-pt statistics are shown in Figure 6. The power
spectra Cℓ overlap almost perfectly for all the cosmologies lying
inside the parameter grid used for training. Again, the agreement
is better than 5%. The agreement for the bispectrum Bℓ is good for
models B and C, but worse for A and B; the GANmodel seems to
underestimate the strength of the 3-pt correlations for these
models, which differ by ≈20%. We note that the 3-pt signal is

very weak and has a large variation, which may be difficult to
model for the GANs.

The Minkowski functionals are presented in Figure 7. They
were calculated using LENSTOOLS (Petri, 2016). The functional V0

(first line) corresponds to the area of the emerging “islands,” V1

(second line) to their circumference, and V2 (third line) to their
Euler characteristic (their number count minus the number of
holes in them). The value of threshold κ, above which the
functional values, i.e. the “islands” are calculated, is shown on
the x-axis. Here the agreement is typically better than 10%, with
some model D agreeing much better, to ≈2%. The large
differences in the fractional difference plots are due to
instability close to value of V � 0. The confidence limits of the
summary statistics shown in these figures overlap very well,
which indicates that the variability of these statistics is also
captured very well by the GAN system.

The Pearson’s correlation matrices R of the power spectra are
shown in Figure 8. Those correlations were created from a
coarsely-binned Cℓ in range ℓ ∈ [300, 3000]. The upper and
lower triangular parts of the matrix show the original N-body
correlations and the GAN correlations, respectively. We calculate
the Frobenious norms of these matrices and compare their ratios
using Eq. 3. For the models A, B, C, D this difference is: fR � 0.02,
0.14, 0.06, 0.06. This agreement is overall very good, with model B
being slightly worse. As the precision requirements for covariance
matrices are not as strict as for the summary statistics, this level of
agreement can be considered satisfactory for upcoming
applications (Taylor et al., 2013).

We calculate the mean and standard deviation of MS-
SSIM score between 5,000 randomly selected images for each
cosmology, both for GAN and original N-body maps. We test

FIGURE 3 | The original N-body images and GAN-generated images for four cosmological parameter sets.
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if the mean SSIM score is consistent between the N-body and
GAN data using Eq. 4. The SSIM difference significance for
the four models A, B, C, and D are: sSSIM � 0.08, 0.23,−0.27, 0.42,.
This indicates very good statistical agreement for these
models.

Figure 9 shows the prediction of a regressor CNN trained
on the N-body images with true σ8, Ωm values. For each
category, we make the prediction with 500 randomly
selected maps. The shaded areas show the 68 and 95%
probability contours for the N-body image input (blue) and
the GAN image input (red). The agreement is relatively good,
but differences in the spread of these distributions is
noticeable. The Fréchet Distance (FID) computed using the
reference cosmological CNN, as described in Section 4, is:
FID1/2 � 1.26, 1.44, 1.00, 1.19, for models A,B,C, and D. This
indicates a slight difference according to this metric and agree
with the distributions in Figure 9.

We compare the summary statistics as a function of
cosmological parameters for both the training and the test set.
We used the training and test sets displayed in Figure 2.
Figure 10 shows the six quantities as a function of
cosmological parameters:

top left: significance of the difference sSSIM in Multi-Scale
Structural Similarity Index (Eq. 4),

top center: Fréchet distance using a CNN regressor (Eq. 5).
Note that for a Gaussian distribution, a difference
of FID1/2 � 1 corresponds to either a 1σ shift in
the mean or 1σ difference in standard deviation,

top right: normalized Wasserstein-1 distance of the pixel
value distribution. For a Gaussian distribution, a
1σ change in the mean corresponds to W1 � 1,
and an increase in standard deviation of ×2
to W1 ≈ 0.8,

bottom left: average fractional differences in the power
spectrum fCℓ

,
bottom center: fractional differences in the power bispectrum fBℓ

,
bottom left: fractional difference in the Frobenious norm of

the correlation matrices fR (Eq. 3).

Overall, we notice that the agreement between the N-body
simulations and GAN-generated maps is the best in the center of
the grid for both the training and test set. The fact that the
differences in neighboring cosmologies are similar indicates that
the GAN system can efficiently learn the latent interpolation of

FIGURE 4 | Images generated with the same random seed but with different input cosmology parameters Ωm and σ8.
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the maps. The agreement worsens at the edges of the grid. We
observe the biggest deterioration in the realism of the GANmodel
for the high Ωm and low σ8 parameters. This is most prominent

for the correlation matrix and the SSIM differences. Conversely,
the biggest difference for the bispectrum is present for low Ωm

and high σ8.

FIGURE 5 | Comparison of histogram of pixel values (top) and peaks (bottom) between the original N-body and the GAN-generated maps. Models A, B, C, D
correspond to the ones marked in Figure 2. The x-axis value κ is the map pixel intensity. The solid line is the median histogram from 5,000 randomly selected maps. The
bands correspond to 32 and 68% confidence limits of the ensemble of histograms. The lower panels show the fractional difference between the median histograms.

FIGURE 6 |Comparison of the 2-pt and 3-pt functions between the original N-body maps and GAN-generated maps. The structure of this figure is the same as for
Figure 5.
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FIGURE 7 | Comparison of the Minkowski functional between the original N-body maps and GAN-generated maps. The value of threshold κ, above which the
functional value is calculated, is shown on the x-axis. The functional V0 corresponds to the area of the emerging “islands,” V1 to their circumference, and V2 to their Euler
characteristic (their number count minus the number of holes in them). The structure of this figure is the same as for Figure 5.

FIGURE 8 | Pearson’s correlation matrices for the four models highlighted in Figure 2. The upper triangular corresponds to the original N-body power spectra,
while the lower triangular to the power spectra of GAN-generated images. The fractional difference of the Frobenious norms (Eq. 3) of these matrices is fR � 0.02, 0.14,
0.06, 0.06, for models A, B, C, and D, respectively.
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6 CONCLUSION

We proposed a new conditional GAN model for continuous
parameters where conditioning is done in the latent space. We
demonstrated the ability of this model to generate sky
convergence maps when conditioning on the cosmological
parameters Ωm and σ8. Our model is able to produce
samples that resemble samples from the test set with good
statistical accuracy, which demonstrates its generalization
abilities. The agreement of the low order summary statistics
(pixel and peak histograms and power spectrum) is very good,
typically on the <5% level. Higher order statistics (Minkowski
functionals, bispectrum) agree well, but with larger differences,
generally around ≈10%, and in some cases ≈20%. The
comparison of the Multi-Scale Structural Similarity Index
(MS-SSIM) shows a good agreement in this metric, with the
exception of the low σ8 and high Ωm edge of the grid.
Moreover, the GAN model is able to capture the variability
in the conditioned dataset: we observe that the scatter of the
summary statistics computed from an ensemble is very similar

FIGURE 9 | Predictions of a regressor CNN trained to predict theΩm, σ8
from input images. The details of this experiment are described in Section 4
and the network architecture in Table A1 inAppedix A. The contours encircle
the 68 and 95% samples for the N-body maps (blue) and GAN-
generated maps from the test set. The black stars show the true values of the
test set parameters.

FIGURE 10 |Differences between summary statistics of the original N-body and the GAN-generated images. The left panel shows the significance of the difference
in Multi-Scale Structural Similarity Index (MS-SSIM), defined inEq. 4. The upper middle panel presents the Fréchet Distance, computed using a regressor CNN andEq. 5
(see Section 4). The upper right panel shows the normalizedWasserstein-1 distance in the pixel value distributions (see Section 4). The lower left panel shows the mean
absolute fractional difference of the power spectra Cℓ . The lower middle panel shows the fractional difference in the Frobenius norms of correlation matrices,
defined in Eq. 3. The lower right panel present the mean absolute fractional difference of the bispectrum Bℓ . The circles and squares indicates parameters from the
training and the test sets.
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between the original and generated images. The investigation
of the correlation matrices of the power spectra also shows a
good agreement, with a quality deteriorating close to the edges
of the grid, especially for low σ8 and high Ωm. This is not
unexpected, as the training set contains less information near
the edges of the grid. More investigation is needed to more
close inspect the behavior of the generative model in these
areas. As generative models are rapidly growing in popularity
in machine learning, we anticipate to be able to solve these
problems in the near future.

Our results offer good prospects for GAN-based
conditional models to be used as emulators of cosmology-
dependent mass maps. As these models efficiently capture both
the signal and its variability, the map-level emulators could
potentially be used for cosmological analyses. They can
accurately predict the power spectrum and its covariance,
which is often unattainable in standard cosmological
analyses (Eifler et al., 2009). It can also be used for non-
Gaussian analyses of lensing mass maps, such as, for example,
in (Zürcher et al., 2020; Parroni et al., 2020). Further
experiments will be needed, however, to bring the
generative models to a level where they can be of practical
use in a full, end-to-end cosmological analysis.

In this paper, we have demonstrated the ability of generative
AI models to serve as emulators of cosmological mass maps for
a given redshift distribution of source galaxies n(z). Generative
models have also been shown to work directly on the full or
sliced 3D matter density distributions (Nathanaël et al., 2019;
Tröster et al., 2019; Villaescusa-Navarro et al., 2020). The three
dimensional generation of cosmological fields proves to be
particularly difficult. As most of the survey experiments
publish their lensing catalogs and their corresponding
redshift distributions, the generation of projected maps, as
shown in this work, could be of direct practical use. Another
challenge will be posed by the large sky area of the upcoming
surveys and their spherical geometry. Spherical convolutional
neural networks architectures have been proposed (Perraudin
et al., 2018; Krachmalnicoff and Tomasi, 2019; McEwen et al.,
2021). These architectures are expected to be easy to
implement with generative models, which offers good

prospect for the development of spherical mass map
emulators.
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APPENDIX A. GENERATIVE ADVERSARIAL
NETWORK ARCHITECTURE

Model Table A1 summarizes the architecture of the GAN system,
i.e. the generator and the discriminator. From the latent variable z
and the cosmological parameters σ8 and Ωm, the generator starts
by computing ẑ using Eq. 2. As a second step, ẑ is transformed
with three linear layers. i.e. a Multi Layer Perceptron (MLP), that
outputs a 32768 tensor (g0 to g2). The data is then reshaped to
8 × 8 × 512 (h3) and further transformed with four
deconvolutional layers with stride 2 and kernel sizes of 3 × 3
or 5 × 5 (g4 to g7). The last generator layer consists of a
deconvolution with stride 1 and kernel size 7 × 7 and it is
intended to generate fine-grained details (g8). The
discriminator is symmetric to the generator with two
exceptions. First the parameters σ8 and Ωm are concatenated
in d5 just before the first linear layer. Second, an extra linear
layer is added at the end of the discriminator (d9) in order to
recover a single output. All layers are separated by a LeakyRelu
activation function with the parameter α � 0.2 (Maas et al.,
2013).

Training The cosmological dataset described in Section 3 is
used to train the GAN, where the batches are composed of
samples from different cosmologies. We select a Wasserstein
loss, with a gradient penalty of 10 (Arjovsky et al., 2017). We
use RMSProp as an optimizer with an initial learning rate of
10− 5, and a batch size of 64. The discriminator is updated

5 times more often than the generator. The model is trained for
10− 5 epochs on a GeForce GTX 1080 GPU, which takes around
170 h.

APPENDIX B. REGRESSOR TRAINING

Given real and generated images, the general idea of the Frechet
Inception Distance (FID) is to compute the distance between
some of their complex statistics. For natural images, these
statistics are given by the last layer, i.e. the logits, of a pre-
trained Inception-V3 network (Szegedy et al., 2016). As these
statistics are meaningless for our cosmological data, we build new
ones using a carefully designed regressor. Given an image, the
regressor is trained to predict the two parameters Ωm and σ8. We
provide the regressor weights with the code to make our FID
metric reusable.

Data Naturally, we use the training dataset described in
Section 3, i.e. 46 different cosmologies composed by 12000
images each. This training dataset is further randomly split
into a regressor training set (80%) and a restressor test set (20%).

Model The architecture of the regressor is described in
Table A2. It shares the same structure as the GAN
discriminator. It consists of a four convolutional layers
followed by three linear layers with leaky relu non-linearity.
The last layer is a linear layer with two outputs and it is
responsible for producing the predicted parameters. We select
the LeakyRelu activation functions for better gradient
propagation.

Training We use the mean squared error between the
predicted and true parameters as a loss function. The
model was trained for 20 epochs using an Adam (Kingma
and Ba, 2014) optimizer with an initial learning rate of
3 · 10− 5, β1 � 0.9, β2 � 0.999 and ϵ � 10− 8 and a batch size
of 64. The mean squared error evaluated on the test set
corresponds to 8.93e−5, which is low enough for the
purpose of computing the FID.

APPENDIX TABLE A1 | Conditional GAN architecture.

Layer Operation Activation Dimension

Generator
ẑ Eq. 2 b × 128
g0 Linear Relu b × 256
g1 Linear Relu b × 512
g2 Linear Relu b × 32768
g3 Reshape b × 8 × 8 × 512
g4 Deconv (k � 3 × 3, s � 2) Relu b × 16 × 16 × 256
g5 Deconv (k � 5 × 5, s � 2) Relu b × 32 × 32 × 128
g6 Deconv (k � 5 × 5, s � 2) Relu b × 64 × 64 × 64
g7 Deconv (k � 5 × 5, s � 2) Relu b × 128 × 128 × 32
g8 Deconv (k � 7 × 7, s � 1) Relu b × 128 × 128 × 1
Discriminator
X b × 128 × 128
d0 conv (k � 7 × 7, s � 1) LeakyRelu b × 128 × 128 × 32
d1 conv (k � 5 × 5, s � 2) LeakyRelu b × 64 × 64 × 64
d2 conv (k � 5 × 5, s � 2) LeakyRelu b × 32 × 32 × 128
d3 conv (k � 5 × 5, s � 2) LeakyRelu b × 16 × 16 × 256
d4 conv (k � 3 × 3, s � 2) LeakyRelu b × 8 × 8 × 512
d5 Reshape + concatenate b × 32770
d6 Linear LeakyRelu b × 512
d7 Linear LeakyRelu b × 256
d8 Linear LeakyRelu b × 128
d9 Linear LeakyRelu b × 1

d5 is a layer that reshapes the tensor to a vector and then concatenates the conditioning
parameters to it. Here b is the batch size, k the convolutional kernel size and s the stride.
The number of filters (convolution layer) and the number of neurons (linear layers) is
shown in blue.

APPENDIX TABLE A2 | Architecture of the regressor.

Layer Operation Activation Dimension

X b × 128 × 128
h0 conv (k � 7 × 7, s � 1) LeakyRelu b × 128 × 128 × 32
h1 conv (k � 5 × 5, s � 2) LeakyRelu b × 64 × 64 × 64
h2 conv (k � 5 × 5, s � 2) LeakyRelu b × 32 × 32 × 128
h3 conv (k � 5 × 5, s � 2) LeakyRelu b × 16 × 16 × 256
h4 conv (k � 3 × 3, s � 2) LeakyRelu b × 8 × 8 × 512
h5 Reshape b × 32768
h6 Linear LeakyRelu b × 512
h7 Linear LeakyRelu b × 256
h8 Linear LeakyRelu b × 128
h9 Linear Linear b × 2

Here b is the batch size, k the convolutional kernel size and s the stride. The number of
filters (convolution layer) and the number of neurons (linear layers) is shown in blue. The
LeakyRelu activation uses the parameter α � 0.2.
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