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Introduction: Numerous non-motor symptoms are associated with Parkinson’s disease
(PD) including fatigue. The challenge in the clinic is to detect relevant non-motor symptoms
while keeping patient-burden of questionnaires low and to take potential subgroups such
as sex differences into account. The Fatigue Severity Scale (FSS) effectively detects
clinically significant fatigue in PD patients. Machine learning techniques can determine
which FSS items best predict clinically significant fatigue yet the choice of technique is
crucial as it determines the stability of results.

Methods: 182 records of PD patients were analyzed with two machine learning
algorithms: random forest (RF) and Boruta. RF and Boruta calculated feature
importance scores, which measured how much impact an FSS item had in predicting
clinically significant fatigue. Items with the highest feature importance scores were the best
predictors. Principal components analysis (PCA) grouped highly related FSS items
together.

Results: RF, Boruta and PCA demonstrated that items 8 (“Fatigue is among my three
most disabling symptoms”) and 9 (“Fatigue interferes with my work, family or social life”)
were the most important predictors. Item 5 (“Fatigue causes frequent problems for me”)
was an important predictor for females, and item 6 (“My fatigue prevents sustained
physical functioning”) was important for males. Feature importance scores’ standard
deviations were large for RF (14–66%) but small for Boruta (0–5%).

Conclusion: The clinically most informative questions may be how disabling fatigue is
compared to other symptoms and interference with work, family and friends. There may be
some sex-related differences with frequency of fatigue-related complaints in females and
endurance-related complaints in males yielding significant information. Boruta but not RF
yielded stable results and might be a better tool to determine the most relevant
components of abbreviated questionnaires. Further research in this area would be
beneficial in order to replicate these findings with other machine learning algorithms,
and using a more representative sample of PD patients.
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder that
affects over 6 million patients worldwide, as well as their families
and caregivers (GBD 2016 Neurology Collaborators, 2019). PD
features numerous motor and non-motor manifestations across a
diverse patient population (Clarke, 2007). Among these
symptoms, the prevalence of fatigue has been reported to
affect upto 81% of PD patients, and approximately one-third
of PD patients consider fatigue to be their most disabling
symptom (Stocchi et al., 2014).

However, there is a lack of a universally accepted definition for
fatigue, and multiple components of fatigue have been discussed
in the research literature (Kostić et al., 2016). For example, a
subjective component of fatigue involves a sense of exhaustion,
weakness and lack of energy, while an objective component of
fatigue involves an impaired ability to initiate and sustain
voluntary actions (Kostić et al., 2016).

Different measures of fatigue show varying degrees of
emphasis on assessing each component of fatigue.
Consequently, previous researchers have recognized the
difficulties associated with identifying the appropriate method
of measuring fatigue, and evaluated fatigue rating measurement
scales to improve the recognition and treatment of fatigue in PD
patients. For instance, the Movement Disorders Society Task
Force on Rating Scales for PD reviewed the descriptive properties,
psychometric performance, and the overall impression of seven
fatigue rating scales which have been used to assess PD patients
(Friedman et al., 2010).

Amongst the scales that were assessed, the Fatigue Severity
Scale (FSS) received the highest evaluation (Friedman et al.,
2010). The FSS is a unidimensional self-administered 9-item
survey, which requires the respondent to score from 1
(strongly disagree) to 7 (strongly agree) as their degree of
agreement regarding each of the nine statements, such as “I
am easily fatigued” (Krupp et al., 1989). The decision to use the
FSS is up to the discretion of the clinician, and it is not used in all
patients with PD. Once the respondent has answered all of the
questions, the scores for all items are summed up. If the sum is
equal to or greater than the threshold score of 36, the patient is
determined to have clinically significant fatigue (Friedman et al.,
2010). The FSS received the highest evaluation of
“recommended” for both screening and severity rating
(Friedman et al., 2010). This means that the FSS has been
used in clinical studies involving PD and other diseased
populations, and has been found to be a psychometrically
valid and reliable measure (Friedman et al., 2010). In contrast,
scales other than the FSS were assessed to be ‘‘suggested’’ scales,
which failed to meet all the criteria of a ‘‘recommended’’ scale, or
‘‘listed’’ scales, which had little or no psychometric data to assess
(Friedman et al., 2010). The Fatigue Assessment Inventory was
suggested for both screening and severity. The Functional
Assessment of Chronic Illness Therapy-Fatigue was
recommended for screening and suggested for severity. The
Multidimensional Fatigue Inventory was suggested for
screening and recommended for severity. The Parkinson
Fatigue Scale was recommended for screening and suggested

for severity. The Fatigue Severity Inventory was listed for both
screening and severity. The Fatigue Impact Scale for Daily Use
was listed for screening and suggested for severity. Visual
Analogue and Global Impression Scales were listed for
screening and severity.

In terms of validity, the FSS discriminates significantly
between healthy individuals and patients with fatigue-
associated diseases, such as PD, multiple sclerosis, and
postpoliomyelitis (Merkies et al., 1999; Vasconcelos et al.,
2006; Armutlu et al., 2007). Furthermore, the FSS detects
chronic fatigue syndrome (CFS) patients with 90% sensitivity
and 84% specificity, which shows that results from the FSS are
accurate indicators of clinicians’ diagnostic decisions regarding
fatigue (Jason et al., 2011). With respect to reliability, the FSS
demonstrates high internal consistency, with Cronbach’s alpha
values that exceed 0.80 (Krupp et al., 1989; Taylor et al., 2000;
Ziino and Ponsford, 2005; Armutlu et al., 2007). Although
treatment of fatigue in PD continues to be a challenge,
multiple pharmacological and non-pharmacological
interventions, such as Doxepin, Rasagiline and exercise, are
under investigation (Friedman et al., 2010; Elbers et al., 2016).
Effective methods of measuring fatigue, such as the FSS, facilitate
the detection as well as the eventual treatment of fatigue. The
challenge in the clinic, though, is the wide array of potential non-
motor symptoms and the need for their effective and rapid
detection. Developing abbreviated versions of existing
instruments could provide help while the selection of the most
relevant features needs to be determined carefully.

Several statistical methods might be employed to select the FSS
items that most accurately predict whether a patient will have
clinically significant fatigue. A promising machine learning
technique for this purpose is random forest, which has been
applied by numerous clinical studies (Bukhari et al., 2016; Perrin
et al., 2017; Mun and Geng, 2019; Byeon, 2020). Random forest
appeared to be one of the most common algorithm in clinical
studies for supervised classification and variable importance,
hence it was judged to be a good starting point for our
analyses. Random forest is a supervised classification algorithm
(i.e. a statistical model that learns from the training data and
classifies a new unseen test sample into one of multiple predefined
categories) called “random forest” (Fawagreh et al., 2014). As a
part of building its classification structure, a random forest
calculates feature importance, which is a measure of how
much impact a variable has in making the classification
decisions (Fawagreh et al., 2014); if certain variables have
higher feature importance scores, then these variables are
more important predictors of classification.

However, critiques have pointed out that the random forest
procedure can lead to unstable results in prediction and
assessment of feature importance (Calle and Urrea, 2011; Wang
et al., 2016). Feature importance scores generated by random forest
can have problematic intrinsic stability, meaning that the scores are
inconsistent across different iterations of the algorithm on the same
dataset (Wang et al., 2016). While previous medical research using
random forest may have led to valuable findings, it has generally
relied on one iteration of the random forest to derive its conclusions
and inform clinical decision making (Bukhari et al., 2016; Perrin
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et al., 2017; Yekkala et al., 2017; Chicco and Rovelli, 2019; Mun and
Geng, 2019; Byeon, 2020). In fields outside of medicine, researchers
adopted the practice of averaging feature importance scores across
multiple iterations of random forest in order to better account for the
possible fluctuations in results (Fox et al., 2017).

An additional analytical approach to help address the above
weaknesses of random forest would be a modification of the
random forest algorithm, called Boruta, which was used by Leong
and Abdullah (2019) to determine the most important features in
predicting Alzheimer’s disease. Boruta is a statistically grounded
algorithm for automated feature selection (Kursa and Rudnicki,
2010). In addition to generating more robust feature importance
scores compared to the unmodified random forest algorithm,
Boruta can also help discriminate between relevant and irrelevant
features for classification (Kursa and Rudnicki, 2010).

Another approach that might elucidate how the variance of the
FSS dataset can be captured by FSS items is principal components
analysis (PCA). PCA reduces the dimensionality of large datasets
while minimizing information loss, hence making them easier to
work with (Joliffe and Cadima, 2016). This is done by creating
new uncorrelated variables while maximizing variance (i.e. useful
statistical information), which act as summaries of the original
variables (Joliffe and Cadima, 2016). These new variables are
referred to as principal components (PCs), and PCs are
numbered in the order of descending variance (i.e. PC1 has
the largest variance, PC2 has the second largest variance, etc.)
(Joliffe and Cadima, 2016). A medical application of PCA was
demonstrated by Witteveen et al. (2017), where a high-
dimensional dataset of inflammatory markers was simplified to
three principal components, which facilitated data analysis.

In addition to statistical approaches, research has suggested that
analyzing male and female PD patients separately may yield
noteworthy findings. Biological sex appears to play a significant
role in Parkinson’s disease, as various differences in the presentation
of PD and its comorbidities formales vs. females have been reported,
including aspects such as rapid eye movement sleep behavior
disorder, verbal fluency, depression, dyskinesia and visuospatial
function (Fernandez et al., 2000; Scott et al., 2000; Locascio et al.,
2003; Baba et al., 2005; Ozekmekci et al., 2005; Accolla et al., 2007;
Davidsdottir et al., 2008; Yoritaka et al., 2009). Furthermore, studies
have shown the incidence of PD in men are 1.5 times higher than
that of women (Wooten et al., 2004).

The primary aim of this study is to identify which items of the
FSS best predict clinically significant fatigue in male and female
PD patients comparing three different statistical analysis
methods: random forest, Boruta and PCA. The secondary aim
of this project is to discover additional statistical differences
between males and females in the presentation of PD and its
comorbidities, with the ultimate purpose of assisting clinicians to
better recognize and treat these symptoms and comorbidities.

METHODS

Data Collection
Two hundred and seventy-two participants with PD were
enrolled through the Parkinson’s Research Centre (PPRC) at

the University of British Columbia (UBC), Canada. All patients
provided informed consent and the studies received research
ethics approval. The following data was extracted: patient ID, visit
number, disease status, sex, age, and FSS scores (items 1−9 and
total score, with a total score of 36 or greater indicating clinically
significant fatigue).

Prediction Problem
This is a retrospective diagnostic study involving the
categorical classification of patients into clinically significant
fatigue or non-clinically significant fatigue using a clinical
database of PD patients. The independent variables are each
of the FSS items, and the dependent variable is clinically
significant fatigue status.

Preparation for Model Building
Preprocessing consisted of removing incomplete records,
duplicate records and records of control patients.
Furthermore, only records from the first clinic visit were
used, since most patients did not have data associated with
subsequent visits and thus the sample size appeared inadequate
for analysis. The remaining dataset of 182 PD patients’ records
contained no redundant independent variables with a
predominant single value. Patient demographics of the pre-
screening and post-screening datasets were displayed in the
results section.

Quality metrics to assess the validity of the results were
accuracy, sensitivity, specificity, positive predictive value, and
negative predictive value, and these metrics are discussed in the
results section.

Building the Predictive Model
This project features three analytical approaches using random
forest, Boruta and PCA. The methodology for each approach is
discussed separately below. Furthermore, for transparency and
reproducibility, the code used to perform the analyses can be found
at https://github.com/dg2lee/Data-driven-prediction-of-PD.

Methodology – Random Forest
Random forest is a supervised classification algorithm (i.e. a
statistical model that learns from the training data and classifies a
new unseen test sample into one of multiple predefined categories)
(Fawagreh et al., 2014). As a part of building its classification
structure, a random forest calculates feature importance, which is
a measure of how much impact a variable has in making the
classification decisions (Fawagreh et al., 2014); if certain variables
have higher feature importance scores, then these variables are more
important predictors of classification.

To train a random forest, the data is initially divided into a
training set and a testing set. Then, the algorithm uses random
subsets of the training set to build decision trees, which are
flowcharts for deciding how to classify information (Reis et al.,
2018). Decision trees, after having been generated using the training
set’s features and data, can categorize given input data into the
desired output categories. After the training phase is complete,
random forest uses the created decision trees in order to predict
the output categories of the data in the testing set (Breiman, 2001).
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In this case, the dataset of 182 PD patients was randomly
divided into a training (70%) and test (30%) set using the holdout
method. The holdout method is a cross-validation approach used
to assess the results of a classifier algorithm such as random
forest. After partitioning the dataset into a training set and test
set, the classifier is trained using only the training set, and then
predicts the output values for the data in the testing set, which it
has not yet seen (Koul et al., 2018). After partitioning, the training
set was used to generate decision trees, which then predicted the
classification of clinically significant vs. non-clinically significant
fatigue for each patient in the testing set.

The RandomForestClassifier from the sklearn package
running in Python 3.7 was used. Random stratified sampling
was used to create training and test sets which were 70 and 30% of
the original dataset, respectively (test_size � 0.3, stratify � y).
10,000 decision trees were created for every iteration of the
algorithm (n_estimators). Changes were also made to allow for
exact reproduction of results (fixed random state).

The algorithm performed 20,000 iterations, and the means
and standard deviations for prediction accuracy, sensitivity,
specificity, and feature importance scores were calculated.
Prediction accuracy indicated the fraction of times that the
algorithm correctly predicted whether a patient suffered from
clinically significant fatigue. Sensitivity indicated the fraction of
times that the algorithm correctly predicted disease status in
patients with clinically significant fatigue. Specificity indicated the
fraction of times that the algorithm correctly predicted non-
disease status in patients without clinically significant fatigue.
Feature importance scores indicated the impact of each FSS item
in making the classification prediction.

Methodology – Boruta
Boruta is a feature-selection algorithm run as a modification of
the random forest algorithm. The Boruta algorithm computes
average feature importance values based on numerous iterations
of the random forest algorithm (100 by default) in order to
increase the robustness of the feature importance results (Kursa
and Rudnicki, 2010). For each iteration of random forest, Boruta
generates shadow features, which are randomly mixed values
copied from the original dataset. A variable is considered relevant
for classification if its feature importance score is greater than that
of the best shadow (randomly assigned) feature, and any variable
that cannot satisfy this condition is deemed tentative or
irrelevant.

Boruta was implemented in R version 4.0.0 using RStudio as the
integrated development environment. Default parameters of the
function Boruta were altered. In order to facilitate decision making
about which variables are relevant or irrelevant for classification, the
maximal number of importance source runs was increased to 500
(maxRuns � 500) and the function TentativeRoughFix was applied.
Changes were also made to allow for exact reproduction of results for
both functions [set.seed (1 . . . 10)].

The algorithm performed 20,000 iterations, and the means
and standard deviations for feature importance scores were
calculated. Unlike random forest, Boruta does not directly
predict classification outcomes but rather assigns a value of
importance for each feature, thus prediction accuracy was not

reported. Feature importance scores indicated the impact of each
FSS item in making the classification prediction.

Methodology – PCA
PCA is defined as an orthogonal linear transformation that
employs a scalar projection to transform the existing dataset to
a new coordinate system, so that the greatest variance lies on the
first coordinate (called the first principal component), the second
greatest variance lies on the second coordinate (called the second
principal component), and so on (Joliffe and Cadima, 2016).

One useful application of PCA is generating a loadings plot,
which is a visualization of how strongly each feature or variable in
the original dataset influences the first and second principal
components. A loadings plot is a convenient method for
holistically viewing the relationships between variables in a
dataset: the vectors of positively correlated variables are close
together and form acute angles, while uncorrelated variables’
vectors are close to orthogonal, and the vectors of negatively
correlated variables form obtuse angles (Santos et al., 2019). In
other words, strongly related variables will appear as clusters on
the loadings plot (David and Jacobs, 2014).

PCA was implemented in IBM SPSS Statistics version 20. The
Varimax rotation was used and loadings plots were generated.

RESULTS

Preparation for Model Building
The initial data collection yielded 272 patients’ records, which
included incomplete records, duplicate records and records of
control patients. 37.1% of records were female, and the remainder
were male. The mean age was 58.6 years.

TABLE 1-0 | Pre-screening and post-screening patient demographics.

Pre-screening Post-screening

n 274 182
Age 64.90179 64.97802
%Female 0.370536 0.379121
PD disease duration (years) 6.325893 6.236264
Age of PD onset 58.57589 58.74176

FIGURE 1 | FSS random forest prediction accuracy, NPV, PPV,
sensitivity, and specificity for 20,000 iterations.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6786784

Lee et al. Prediction of Fatigue in PD

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


After preprocessing, the remaining dataset consisted of 182 PD
patients, and each patient record had 10 features: scores on FSS
items 1–9 and total FSS score. 37.9% of patients were male, and the
remainder were female. The mean age was 58.7 years. A total of 78
patients (48 males, 30 females) had clinically significant fatigue.
This information is reported in Table 1-0.

Results – Random Forest
Predictive Performance
The predictive performance of random forest in terms of accuracy,
NPV, PPV, sensitivity and specificity are reported in Figure 1 and
Table 1. The algorithm took into account all 9 FSS items and showed
good and consistent overall predictive performance across 20,000
iterations. For males, the mean predictive accuracy, NPV, PPV,
sensitivity, and specificity were 0.93 (SD � 0.042), 0.93 (SD � 0.050),
0.93 (SD � 0.065), 0.90 (SD � 0.082) and 0.95 (SD � 0.051),
respectively. For females, the mean predictive accuracy, NPV, PPV,
sensitivity, and specificity were 0.95 (SD � 0.065), 0.95 (SD � 0.065),
0.96 (SD � 0.058). 0.92 (SD � 0.103) and 0.97 (SD � 0.046),
respectively.

Feature Importance Scores
The feature importance scores generated by random forest for
each FSS item are reported in Figure 2 andTable 2. For bothmale
and female PD patients, Q8 and Q9 were among the three most
important predictors and Q1 and Q2 were among the least
important predictors. Interestingly, Q5 was an important
predictor for females, but Q6 was an important predictor for
males. The mean feature importance score trends for each FSS
item are shown by Figure 3 and confirm that these findings are
stable beyond the 1000th iteration.

The instability of feature importance scores generated by
random forest was demonstrated by relative standard
deviation (RSD) values in Table 2. An FSS item’s RSD is
the proportion of its standard deviation to the mean value,
expressed as a percentage (SD/Mean Feature Importance
Score*100%). RSD values ranged from 16 to 46%, with an
average of 31%. This reflected the magnitude of instability of
feature importance scores and feature importance rankings
across different iterations.

Results – Boruta
Feature Importance Scores
The feature importance scores generated by Boruta for each FSS item
are reported in Figure 4 and Table 3. The results were nearly
identical to those obtained from random forest. For both male and
female PD patients, Q8 andQ9were among the threemost important
predictors and Q1 andQ2were among the least important predictors.
Furthermore, Q5 was an important predictor for females, but Q6 was
an important predictor formales. All itemswere deemed to be relevant
for classification. The mean feature importance score trends for each
FSS item are shown by Figure 5 and confirm that these findings are
stable beyond the 1000th iteration.

Boruta clearly outperformed random forest with respect to
stability of feature importance scores. RSD values ranged from 0
to 5%, with an average of 2%. In contrast to random forest, Boruta
has robust feature importance scores and feature importance
rankings across different iterations.

Results – PCA
Loadings Plot
The loadings plot generated a visualization of the relationships
between FSS items. Strongly related variables appear as clusters
on the loadings plot since the vectors of positively correlated FSS
items form acute angles. In contrast, uncorrelated variables’ vectors
are approximately perpendicular, and the vectors of negatively
correlated variables form obtuse angles. For both males and
females, it was apparent that Q1 and Q2 were the furthest apart
from the cluster formed by other items, meaning that Q1 and Q2
were the least related to other questions (Figure 6).

DISCUSSION

While PD is widely known as a movement disorder, a challenge in
the clinic about seeing PD patients is the wide variety of potential
non-motor symptoms, such as fatigue, and the need for the effective
and rapid detection of these symptoms. PD patients can come with
many non-motor symptoms and there is a need to prioritize which
symptoms should be examined more closely.

TABLE 1 | FSS male and female random forest prediction accuracy, NPV, PPV, sensitivity, and specificity for 20,000 iterations.

Males Females

Accuracy NPV PPV Sensitivity Specificity Accuracy NPV PPV Sensitivity Specificity

Mean 0.92776 0.933181 0.929232 0.898279 0.948398 0.947052 0.945801 0.959659 0.918789 0.96825
SD 0.041793 0.050311 0.064836 0.081978 0.05066 0.049742 0.065439 0.057706 0.102778 0.046305

FIGURE 2 | FSS male and female random forest mean feature
importance scores and standard deviations for 20,000 iterations. Error bars
represent 1 SD.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6786785

Lee et al. Prediction of Fatigue in PD

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Currently, to measure these non-motor symptoms, patients
are given numerous questionnaires which can be time consuming
and burdensome. However, many of these questionnaires,
including the Fatigue Severity Scale, are not a mandatory part
of assessing a Parkinson’s disease patient.

The aim of this study was to improve the clinical detection of
fatigue in PD by determining which items of the FSS best
predict clinically significant fatigue. These questions could be
quickly asked in a patient interaction to help decide whether to
further investigate a PD patient’s fatigue. Furthermore, these
questions may used to make condensed versions of existing

questionnaires. Additionally, the findings of this project may
support the development of new treatments for fatigue in PD by
facilitating the creation of abbreviated versions of existing
instruments such as the FSS. Abbreviated questionnaires
may be quicker to administer and be less burdensome to
patients, so this could allow clinicians to use these tools
more frequently. Furthermore, increased frequency of
administration may bolster data collection for research,
which may facilitate the development of new treatments.
This is particularly significant at a time more research is
required regarding treatments; there is no currently agreed
upon gold standard treatment of fatigue in PD, and multiple
pharmacological and non-pharmacological interventions, such
as Doxepin, Rasagiline and exercise, are under investigation
(Friedman et al., 2010; Elbers et al., 2016).

To achieve this purpose, random forest, which has been
applied by clinical studies to determine the most important
predictors of various disorders such as mild cognitive
impairment and depression, was applied on the FSS
dataset (Perrin et al., 2017; Byeon, 2020). Past studies
used predictive accuracy as a performance metric to
evaluate the credibility of the generated feature
importance scores (Fox et al., 2017). Past medical
applications of random forest demonstrated a wide range
of prediction accuracy values, from 0.25 to 0.925 (Bukhari
et al., 2016; Perrin et al., 2017; Yekkala et al., 2017; Mun and
Geng, 2019; Byeon, 2020). In the current study, the
algorithm showed high overall predictive performance
across 20,000 iterations (Figure 1). For males, the mean
predictive accuracy, NPV, PPV, sensitivity, and specificity
were 0.93 (SD � 0.042), 0.93 (SD � 0.050), 0.93 (SD � 0.065),
0.90 (SD � 0.082) and 0.95 (SD � 0.051), respectively. For
females, the mean predictive accuracy, NPV, PPV,
sensitivity, and specificity were 0.95 (SD � 0.065), 0.95
(SD � 0.065), 0.96 (SD � 0.058). 0.92 (SD � 0.103) and
0.97 (SD � 0.046), respectively. These results support the
legitimacy of the generated feature importance scores for
each FSS item.

However, feature importance scores generated by random
forest are inherently unstable (Calle and Urrea, 2011; Wang
et al., 2016). To better account for the possible fluctuations in
results, feature importance scores were averaged across 20,000

TABLE 2 | FSS male and female random forest mean feature importance scores for 20,000 iterations.

FSS male RF FSS female RF

Item Mean Feature Importance
Score (20,000 Iterations)

Standard
Deviation

Relative Standard
Deviation (%)

Mean Feature Importance
Score (20,000 Iterations)

Standard
Deviation

Relative Standard
Deviation (%)

Q1 0.03761 0.01193 31.72358 0.01467 0.00555 37.83603
Q2 0.02230 0.00605 27.12389 0.04641 0.01855 39.96235
Q3 0.11110 0.03748 33.73266 0.10312 0.03891 37.72974
Q4 0.06701 0.02102 31.37262 0.07185 0.02672 37.19138
Q5 0.06515 0.02164 33.21931 0.16261 0.04137 25.44369
Q6 0.19859 0.04044 20.36445 0.08359 0.03609 43.17085
Q7 0.10116 0.02922 28.88751 0.07248 0.03308 45.64427
Q8 0.22752 0.04434 19.48748 0.15471 0.04199 27.13994
Q9 0.16956 0.04081 24.06811 0.29056 0.04552 15.66794

FIGURE 3 | FSS male and female random forest mean feature
importance score trends.
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iterations of random forest. In addition, this study measured the
standard deviation of feature importance scores as a measure of
stability. Furthermore, Boruta, a modification of the random
forest algorithm, was reported to generate more robust feature
importance scores compared to random forest, as well as to
discriminate relevant and irrelevant features for classification
(Kursa and Rudnicki, 2010).

The averaged feature importance scores generated by random
forest for each FSS item were reported in Figure 2, while Boruta’s
feature importance scores were reported in Figure 4. The results
obtained from random forest and Boruta were nearly identical.
For both male and female PD patients, Q8 (“Fatigue is among my
three most disabling symptoms”) and Q9 (“Fatigue interferes
with my work, family or social life”) were among the most
important predictors and Q1 (“My motivation is lower when I
am fatigued”) and Q2 (“Exercise brings on my fatigue”) were
among the least important predictors. Interestingly, Q5 (“Fatigue
causes frequent problems for me”) was an important predictor for
females, but Q6 (“My fatigue prevents sustained physical
functioning”) was an important predictor for males. These
findings suggest that, in the clinic, assessing how disabling
fatigue is compared to other symptoms and interference with
work, family and friends may be the most informative.
Furthermore, it may be most helpful for clinicians to assess
frequency of fatigue-related complaints in females and
endurance-related complaints in males.

Feature importance scores’ SD were very large for RF and
extremely small for Boruta. The instability of an FSS item’s
feature importance score was shown by the relative standard
deviation (RSD � SD/Mean Feature Importance Score*100%).
For random forest, RSD values ranged from 14 to 66%, with an
average of 35%. In contrast, Boruta clearly outperformed the
unmodified random forest with respect to stability of feature
importance scores, with RSD values ranged from 0 to 5%, with an
average of 1%, which was expected since the Boruta algorithm
utilized average feature importance values based on numerous
iterations of the random forest algorithm (maximum 500) for
more robust results. These results suggest that it is possible to
compensate for the inherent instability of random forest by
running multiple iterations, using mean scores, and reporting
SD values. Furthermore, future researchers are encouraged to
consider supplementing random forests with Boruta, or other
feature-selection algorithms, which yielded much more stable
results. Considering that previous medical research has relied on
findings from one iteration of the random forest, adopting these
suggested changes may lead to improved clinical decision-making
recommendations (Bukhari et al., 2016; Perrin et al., 2017;
Yekkala et al., 2017; Chicco and Rovelli, 2019; Mun and Geng,
2019; Byeon, 2020).

PCA, which is generally used to reduce a dataset’s
dimensionality, was applied in this study in order to
holistically view the relationships between FSS items

TABLE 3 | FSS male and female Boruta mean feature importance scores for 20,000 iterations.

FSS male Boruta FSS female Boruta

Item Mean Feature Importance Score
(20,000 Iterations)

Standard
Deviation

Relative Standard
Deviation (%)

Mean Feature Importance Score
(20,000 Iterations)

Standard
Deviation

Relative Standard
Deviation (%)

Q1 6.73852 0.09649 1.43192 3.35856 0.18180 5.41291
Q2 2.70242 0.12120 4.48495 7.13703 0.15366 2.15294
Q3 13.32298 0.07694 0.57750 10.09510 0.13804 1.36735
Q4 10.37314 0.07883 0.75998 10.02586 0.13516 1.34812
Q5 10.19065 0.08300 0.81444 13.65371 0.13858 1.01499
Q6 18.89240 0.08789 0.46524 8.92959 0.14322 1.60390
Q7 11.92685 0.07753 0.65009 7.01361 0.15484 2.20775
Q8 20.24304 0.09252 0.45704 13.42091 0.14033 1.04563
Q9 15.90572 0.08266 0.51966 19.41678 0.16477 0.84861

FIGURE 4 | FSS male and female Boruta mean feature importance scores for 20,000 iterations. Error bars represent 1 SD.
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(Witteveen et al., 2017). The PCA loadings plot visualized the
relationships between variables in a dataset, grouping highly
related FSS items together (David and Jacobs, 2014). These
groups can then be compared to the results of the random
forest and Boruta algorithms, consisting of groups of FSS items

which are the strongest predictors of clinical fatigue. If the
groupings generated by PCA, random forest and Boruta align,
the strongest predictors of clinically significant fatigue in the
FSS would be clearly supported by three data-driven
approaches. For both males and females, it was apparent
that Q1 (“My motivation is lower when I am fatigued”) and
Q2 (“Exercise brings on my fatigue”) were the furthest apart
from the cluster formed by other items, meaning that Q1 and
Q2 were the least related to other questions (Figure 6). This
supported the results obtained from both the random forest
and Boruta algorithms, which revealed that Q1 and Q2 were
among the least important predictors of clinically significant
fatigue.

Limitations
This study used the random forest and Boruta algorithms for data
analysis, and these findings may not be replicable with other
machine learning algorithms. Distinct algorithms have
contrasting methods of identifying the most important
predictors in a dataset, and thus place variable amounts of
emphasis on what defines an important predictor.

Additionally, the results obtained from this study may not
be generalizable to the general population of PD patients. With
respect to sample size, there have been clinical papers using
random forest that used a wide range of participant numbers,
both less and greater than our sample size of 182. For example,
Bukhari et al. (2016), Perrin et al. (2017), Yekkala et al. (2017),
Mun and Geng (2019), and Byeon (2020) used sample sizes of
37, 270, 307, 212 and 96, respectively. Nevertheless, a smaller
sample size decreases the external validity of the findings in
this study in comparison with studies with a greater
sample size.

Further research is required to replicate these findings with
other machine learning algorithms, and using a larger and more
representative sample of PD patients.

FIGURE 5 | FSS male and female Boruta mean feature importance
score trends.

FIGURE 6 | Loadings plots for males and females.
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CONCLUSION

Random forest, Boruta and PCA results converged to demonstrate
that Q8 (“Fatigue is among my three most disabling symptoms”)
and Q9 (“Fatigue interferes with my work, family or social life”)
may be among the most important predictors and Q1 (“My
motivation is lower when I am fatigued”) and Q2 (“Exercise
brings on my fatigue”) may be among the least important
predictors. Q5 (“Fatigue causes frequent problems for me”)
may be an important predictor for females, and Q6 (“My fatigue
prevents sustained physical functioning”) may be an important
predictor for males. Therefore, when assessing fatigue in PD
patients, it may be most informative for clinicians to assess how
disabling fatigue is compared to other symptoms and
interference with work, family and friends. Furthermore, it
may be most helpful for clinicians to assess frequency of
fatigue-related complaints in females and endurance-related
complaints in males. Although the same conclusion was
reached across the three data-driven approaches, it may be
beneficial to consider supplementing random forests with
Boruta, which yielded much more stable results. Adopting
these suggested changes may lead to improved clinical
decision-making recommendations. However, further
research in this area would be beneficial in order to replicate
these findings with other machine learning algorithms, and
using a larger and more representative sample of PD patients.
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