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The last decade saw an enormous boost in the field of computational topology:

methods and concepts from algebraic and differential topology, formerly confined to

the realm of pure mathematics, have demonstrated their utility in numerous areas such

as computational biology personalised medicine, and time-dependent data analysis,

to name a few. The newly-emerging domain comprising topology-based techniques

is often referred to as topological data analysis (TDA). Next to their applications in the

aforementioned areas, TDA methods have also proven to be effective in supporting,

enhancing, and augmenting both classical machine learning and deep learning models.

In this paper, we review the state of the art of a nascent field we refer to as “topological

machine learning,” i.e., the successful symbiosis of topology-based methods and

machine learning algorithms, such as deep neural networks. We identify common

threads, current applications, and future challenges.

Keywords: computational topology, persistent homology, machine learning, topology, survey, topological

machine learning

1. INTRODUCTION

Topological machine learning recently started to emerge as a field at the interface of topological
data analysis (TDA) and machine learning. It is driven by improvements of computational
methods, which make the calculation of topological features (via persistent homology, for instance)
increasingly flexible and scalable to more complex and larger data sets.

Topology is colloquially often referred to as encoding the overall shape of data. Hence, as
a complement to localised and generally more rigid geometric features, topological features are
suitable to capture multi-scale, global, and intrinsic properties of data sets. This utility has been
recognised with the rise of TDA, and topological information is now generally accepted to be
relevant in the context of data analysis. Numerous works aim to leverage such information to gain
a fundamentally different perspective on their data sets. We want to focus on a recent “outgrowth”
of TDA, i.e., the integration of topological methods to enhance or augment both classical machine
learning methods and deep learning models.

Our survey therefore discusses this ongoing synthesis of topology and machine learning, giving
an overview of recent developments in the field. As an emerging research topic, topological machine
learning is highly active and rapidly developing. Our survey is therefore explicitly not intended as
a formal and complete review of the field. We rather want to identify, present, and discuss some of
the main directions of developments, applications, and challenges in topological machine learning
as we perceive it based on our own research background. Our aim is to provide newcomers to the
field with a high-level overview of some of the central developments and techniques that have been
developed, highlighting some “nuggets,” and outlining common threads and future challenges. We

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.681108
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.681108&domain=pdf&date_stamp=2021-05-26
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bastian.rieck@bsse.ethz.ch
https://doi.org/10.3389/frai.2021.681108
https://www.frontiersin.org/articles/10.3389/frai.2021.681108/full


Hensel et al. Survey of Topological Machine Learning

focus on publications in major machine learning
conferences (such as AISTATS, ICLR, ICML, and NeurIPS)
and journals (such as JMLR) but want to note that the selection
of topics and papers presented here reflects our own preferences
and knowledge. In particular, we decided against the inclusion of
unpublished work in this area.

The survey is broadly structured as follows: we first provide
a brief mathematical background on persistent homology,
one of the core concepts of topological data analysis, in
section 2. Following the introduction, the main part of the
survey is in section 3. Section 3.2 focuses on what we term
extrinsic topological features in machine learning. These methods
are mainly concerned with the transformation of topological
descriptors of data into feature vectors of fixed dimensionality,
permitting their use as features in machine learning frameworks.
This is in contrast to intrinsic topological features, portrayed
in section 3.3, which employ topological features to analyse
or influence the machine learning model itself, for instance by
architectural choices or regularisation. Finally, section 4 discusses
future directions and challenges in topological machine learning.

2. BACKGROUND ON ALGEBRAIC
TOPOLOGY AND PERSISTENT
HOMOLOGY

This section provides some background on basic concepts
from algebraic topology and persistent homology. For in-depth
treatments of the subject matter, we refer to standard literature
(Bredon, 1993; Hatcher, 2000; Edelsbrunner and Harer, 2010).
Readers familiar with algebraic topology and the concept of
persistent homology may safely skip this section.

A basic hypothesis in data analysis which drives current
research is that data has shape, or put differently, that data is
sampled from an underlying manifold—the so-called “manifold
hypothesis” (Fefferman et al., 2013). Instead of restricting
the analysis to statistical descriptors, topological data analysis
(TDA) aims to analyse data from a fundamentally different
perspective by investigating this underlyingmanifold structure in
an algebraic fashion. Namely, one computes descriptors of data
sets which are stable under perturbation and encode intrinsic
multi-scale information on the their shape. TDA is a rapidly
developing field of mathematics aiming to leverage concepts
of the well-established field of (algebraic) topology toward
applications for real-world data sets and machine learning.

Topology studies invariant properties of (topological) spaces
under homeomorphisms (i.e., continuous transformations); in
the following, we restrict ourselves to topological manifolds, so as
to simplify the exposition. A fundamental problem in topology
is about classification: How can two manifolds be distinguished
from each other? Algebraic topology (Bredon, 1993; Hatcher,
2000) provides sophisticated and powerful tools to study this
question. The basic idea being to associate computable algebraic
structures (e.g., groups or vector spaces) to amanifold that remain
invariant under homeomorphisms. A very important class of
algebraic invariants are the homology groups, which encode a
great deal of information while still being efficiently computable

FIGURE 1 | A simplicial complex modelling a triangle.

in many cases. Homology groups arise from combinatorial
representations of the manifold, the chain complexes.

2.1. Chain Complexes and Homology
The standard k-simplex 1k is defined as the convex hull of the
standard basis vectors in R

k+1, i.e.,

1k
: =







(x0, . . . , xk) ∈ R
k+1

∣

∣

∣

∣

k
∑

i=0

xi = 1, xi ≥ 0 ∀i







.

Similarly, a general k-simplex [v0, . . . , vk] is the convex hull
of k + 1 affinely independent points v0, . . . , vk in a Euclidean
space. Note that deleting one of the vertices vi from a k-simplex
[v0, . . . , vk] yields a (k − 1)-simplex [v0, . . . , v̂i, . . . , vk] which
is determined by the remaining vertices and called the i-th
face of [v0, . . . , vk]. Simplices are the basic building blocks of
chain complexes that are used in algebraic topology for the
computation of homological invariants. Any topological manifold
X can be topologically modelled using simplices (see Figure 1). A
singular k-simplex in X is a continuous map σ :1k → X. It is not
required that σ is an embedding, for instance any constant map,
mapping so a single point in X is a valid singular simplex. The
inclusion of the i-th face of 1k is an important singular simplex
in 1k, which we will denote by Fki :1

k−1 → 1k. To keep the
exposition simple we will restrict ourselves to working over the
two element field F2 : = Z/2Z in what follows. Given any space
X, its singular k-chains are elements of the F2-vector space Ck(X)
generated by the set of all singular k-simplices in X. Elements
in Ck(X) are thus “formal sums” of simplices. The singular chain
complex (C(X), ∂) of X is the sequence of spaces

. . .
∂d+1
−→ Cd(X)

∂d
−→ Cd−1(X)

∂d−1
−→

. . .
∂2

−→ C1(X)
∂1

−→ C0(X)
∂0

−→ 0,

together with the boundary maps ∂k :Ck(X) → Ck−1(X) given by

∂k(σ ) : =
∑

i

σ ◦ Fki

on the basis elements and extended linearly. A crucial property
of the boundary maps is that they compose to 0, that is
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∂k ◦ ∂k−1 = 0. Elements of Zk(X) : = ker(∂k) are called k-cycles
and those of Bk(X) : = im(∂k+1) are called k-boundaries and their
well-defined quotient

Hk(X) : = Zk(X)/Bk(X)

is the k-th singular homology group of X (despite the name,
this is still technically a quotient vector space; however, the
group-theoretical viewpoint is more convenient and prevalent
in algebraic topology). The homology groups are topological
invariants, i.e., they remain invariant under homeomorphisms
and therefore encode intrinsic information on the topology of
X. Thus, homology groups and simpler invariants derived from
them, such as the Betti-numbers βk : = dimHk(X), are useful
in studying the classification question raised above. For example,
the 0-th Betti number β0 is a count of the connected components
of a space, while β1 is a count of the number of cycles.

2.1.1. Brief Example

Using the simplicial complex in Figure 1, we briefly
illustrate some of the aforementioned concepts. Let
X = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}} be the
representation of the simplicial complex. The boundary of
the triangle is non-trivial, i.e., ∂2{a, b, c} = {b, c} + {a, c} + {a, b}
The boundary of this chain of edges is trivial, though,
because duplicate simplices cancel each other out. We get
∂1

(

{b, c} + {a, c} + {a, b}
)

= {c}+{b}+{c}+{a}+{b}+{a} = 0,
which is consistent with the property of compatible boundary
maps to compose to 0. To compute H1(X) : = Z1(X)/B1(X),
we only have to calculate Z1(X); the boundary group B1(X)
does not contain any non-trivial simplices because X
does not contain any 2-simplices. By definition, Z1(X) =

ker(∂1) = span
(

{a, b} + {b, c} + {a, c}
)

. This is the only cycle
in X (which we can easily verify either by inspection or based
on combinatorics). Hence H1(X) = Z1(X) = F2 and β1 = 1;
the triangle therefore exhibits a single cycle, which aligns with
our intuition.

2.2. Persistent Homology
Persistent homology (Edelsbrunner et al., 2000; Zomorodian and
Carlsson, 2005) is the flagship tool of TDA. In the analysis of real-
world data, it is typically not a priori clear at what scale interesting
topological features occur. By using a filtration (connected to
the scale parameter) persistent homology is able to capture
topological changes across the whole range of scales and store this
information in so-called persistence diagrams.

Persistent homology is an extension of homology to the
setting of filtered chain complexes. A filtered chain complex is a
(not-necessarily strictly) ascending sequence of chain complexes
Cε0 ⊂ Cε1 ⊂ Cε2 ⊂ . . . with inclusion maps ιi :Cεi Cεi+1

and ιi,j : = ιj ◦ ιj−1 ◦ · · · ◦ ιi :Cεi Cεj for i < j. Filtered chain
complexes naturally arise in situations where we have a sequence
of inclusions of spaces Xε0 ⊂ Xε1 ⊂ Xε2 ⊂ . . .. Such cases, for
instance, occur if we consider the sublevel sets Xε

: = f−1(R<ε)
of a so-called filtration function f :X → R, or if we consider a
point cloud Y in a metric space (M, d) and set

FIGURE 2 | Different stages of a Vietoris–Rips filtration for a simple “circle”

point cloud. From left to right, connectivity of the underlying simplicial complex

increases as ǫ increases.

Yε
: =

⋃

y∈Y

Bε(y) = g−1(R<ε)

with filtration function g : M→R given by g(m) : =

infy∈Y d(m, y). Here Bε(y) denotes the open ball of radius ε

centred at y and we implicitly identify ε ≃ ε′ if Xε (resp. Yε) is
canonically homeomorphic to Xδ (resp. Yδ) for all δ ∈ [ε, ε′]. An
important property of (singular) homology is that it is functorial
(see e.g., Bredon, 1993), which implies that the inclusion
maps ιi,j induce maps on the respective homology groups
Hk(ι

i,j) :Hk(C
εi ) → Hk(C

εj ). Figure 2 depicts the Vietoris–Rips
complex construction based on a distance filtration, a standard
construction in TDA. The k-th persistent homology groups are the
images of these inclusions, that is

H
i,j

k
: = im Hk(ι

i,j) = Zk(C
εi )/(Bk(C

εj ) ∩ Zk(C
εi )),

and thus precisely consist of the k-th homology classes of Cεi

that still exist after taking the inclusionHk(ι
i,j). A homology class

α ∈ Hk(C
εi ) is said to be born at Cεi if α /∈ Hi−1,i

k
, i.e., if it is

not in the image of Hk(ι
i−1,i). If α is born at Cεi , it is said to die

at Cεj if Hk(ι
i,j−1)(α) /∈ H

i−1,j−1

k
and Hk(ι

i,j)(α) ∈ H
i−1,j

k
. The

persistence of α is given by εj − εi and set to infinity if it never

dies. The persistent Betti-numbers, defined by β
i,j

k
: = dimH

i,j

k
,

carry information on how the homology (and thus the topology)
changes across the filtration.

This information can be captured in a so-called persistence

diagram, a multiset in R
2
: = R

2 ∪ R × {∞}. Specifically, the
persistence diagram of (homological) dimension k is given by the

points (εi, εj) ∈ R
2
with multiplicity

µ
i,j

k
: = (β

i,j−1

k
− β

i,j

k
)− (β

i−1,j−1

k
− β

i−1,j

k
)

for all i< j. The multiplicity µ
i,j

k
counts the number of k-

th homology classes that are born at Cεi and die at Cεj .
Figure 3 depicts a simple persistence diagram, calculated from
the Vietoris–Rips complex in Figure 2. The axes of this diagram
correspond to the ǫ values at which topological features are
created and destroyed, respectively. The single point of high
persistence corresponds to the primary topological feature of the
point cloud, namely its circular shape. Other topological features
occur at smaller scales—lower values of ǫ—and hence form a
small dense cluster in the lower-left corner of the persistence
diagram. The persistent Betti-numbers can be recovered from the
persistence diagram itself; see Edelsbrunner and Harer, 2010.
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A crucial fact that makes persistent homology valuable
for application in data analysis is its stability with respect to
perturbations of the filtration function. This means that persistent
homology is robust to noise and constitutes an encoding of
intrinsic topological properties of the data. More precisely,
the space of persistence diagrams can be endowed with a
metric induced by the bottleneck distance (or the Wasserstein
distances) Edelsbrunner and Harer, 2010. A celebrated stability
theorem (Cohen-Steiner et al., 2007) states that the L∞-distance
of two real-valued functions f and g is an upper bound for the
bottleneck distance W∞ of their respective persistence diagrams
Df and Dg , i.e.,W∞(Df ,Dg) ≤ ‖f − g‖∞. The stability theorem
and its variants (Skraba and Turner, 2020) are highly relevant for
applications because they imply that the behaviour of persistent
homology under noise is known; descriptors such as persistence
diagrams change continuously as the input function is varied, and
the “amplitude” of their change is bounded from above via the
stability theorem.

3. SURVEY

This section comprises the main part of the paper, where we
gather and discuss pertinent methods and tools in topological
machine learning. We broadly group the methods into the
following categories. First, in section 3.2, we discuss methods
that deal with extrinsic topological features. By the qualification
extrinsic, we mean that no analysis of the topology of the machine
learning model or the neural network itself is incorporated.

FIGURE 3 | A persistence diagram containing 1-dimensional topological

features (cycles).

These methods are instead mainly concerned with enabling
the use of topological features, extracted from a given data
set, in downstream machine learning models. This can be
achieved through vectorisation of topological features or by
designing specialised layers of neural networks that are capable
of handling such features. Next, section 3.3 discusses intrinsic
topological features. Those are methods that incorporate the
topological analysis of aspects of the machine learning model
itself. Whenever applicable, we further classify methods into
observational and interventionalmethods. This sub-classification
specifies how the methods are applied in a machine learning
framework. Observational methods “observe” the topology of
the data or model but they do not directly influence the model
training or architecture. Interventional methods, by contrast,
apply topological properties of the data, as well as post-hoc
analysis of topological features of machine learning models, in
order to inform the architectural design and/or model training.
See Figure 4 for an overview of the methods and their categories,
as well as Table 1 for the classification of all papers mentioned in
this survey.

3.1. Limitations
Our paper selection is a cross-section over major machine
learning conferences and machine learning journals. We
refrain from comparing methods on certain tasks—such
as classification—because there is considerable heterogeneity
in the experimental setup, precluding a fair assessment of
such methods.

3.2. Extrinsic Topological Features in
Machine Learning
This section gives an overview of methods that aim at suitably
representing topological features in order to use them as input
features for machine learning models. We will refer to this class
of methods as extrinsic topological features in machine learning,
as they take topological information of the data sets into account,
as opposed to intrinsic topological information of the machine
learning framework itself (see section 3.3). A large class of such
methods is comprised of vectorisation methods, that aim to
transform persistent homology information into a feature vector
form in order to make use of it in machine learning models.

FIGURE 4 | This overview figure shows examples of methods discussed in the survey and their range of influence. Green (red) boxes signify

observational (interventional) methods. Table 1 provides a more in-depth classification of all methods.
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TABLE 1 | The categorisation of the approaches discussed in the present survey.

Extrinsic Intrinsic

Observational Interventional Observational Interventional

Adams et al., 2017 Carrière et al., 2020 Gabrielsson and Carlsson, 2019 Chen et al., 2019

Bubenik, 2015 Kim et al., 2020 Khrulkov and Oseledets, 2018 Hofer et al., 2017

Carrière et al., 2015 Zhao and Wang, 2019 Zhou et al., 2021 Hofer C. et al., 2019

Carrière et al., 2017 Hofer et al., 2020a

Kusano et al., 2018 Hofer et al., 2020b

Reininghaus et al., 2015 Moor et al., 2020

Rieck et al., 2020a Ramamurthy et al., 2019

Rieck et al., 2020b Rieck et al., 2019b

Umeda, 2017 Zhao et al., 2020

It is interesting to note that intrinsic features tend to be used more in interventional settings, whereas extrinsic features remain observational for the most part.

However, alternative representations of topological descriptors,
such as kernels or function-based representations, are also
discussed in this section.

3.2.1. Vector-Based and Function-Based

Representations

Persistence diagrams (see section 2) constitute useful descriptors
of homological information of data. However, being multisets,
they cannot be used directly as input data for machine
learning models in the usual sense (recent paradigm shifts in
machine learning, namely the introduction of deep sets (Zaheer
et al., 2017), challenge this assumption somewhat, as we
will later see in section 3.2.3). One first needs to suitably
represent—or vectorise—persistence diagrams (PDs) in order to
use them for downstream machine learning tasks. There are
two predominant strategies for facilitating the integration of
topological features into machine learning algorithms, namely
(i) different representations that ideally give rise to feature
vectors, and (ii) kernel-basedmethods that permit the integration
into certain classifiers. Notice that these two strategies are not
necessarily exclusionary; some representations, for example, also
give rise to a kernel-based method.

Representations and kernel-based methods should ideally be
efficiently computable, satisfy similar stability properties as the
persistence diagrams themselves—hence exhibiting robustness
properties with respect to noise—as well as provide some
interpretable features. The stability of such representations
is based on the fundamental stability theorem by Cohen-
Steiner et al. (2007). In recent years, a multitude of suitable
representation methods have been introduced; we present a
selection thereof, focusing on representations that have already
been used in machine learning contexts. As a somewhat
broad categorisation, we observe that persistence diagrams
are often mapped into an auxiliary vector space, e.g., by
discretisation (Anirudh et al., 2016; Adams et al., 2017), or by
mapping into a (Banach- orHilbert-) function space (Chazal et al.,
2014; Bubenik, 2015; Di Fabio and Ferri, 2015). Alternatively,
there are several kernel methods (Reininghaus et al., 2015;
Carrière et al., 2017; Kusano et al., 2018) that enable the efficient
calculation of a similarity measure between persistence diagrams.
Representations and kernel-based methods fall into the category

of what we denote “observational” methods. The only exception
is given by PersLay (Carrière et al., 2020), which informs the
layers of the model and thus is an “interventional” method.

Arguably the most simple form of employing topological
descriptors in machine learning tasks uses summary statistics,
such as the total persistence of a persistence diagram (Cohen-
Steiner et al., 2010), its p-norm (Chen and Edelsbrunner, 2011),
or its persistent entropy (Atienza et al., 2019), i.e., the Shannon
entropy of the individual persistence values in a diagram. While
all of these approaches result in scalar-valued summary statistics,
they are often not directly applicable to complex machine
learning tasks, which require more expressive representations.
We note, however, that such statistics give rise to hypothesis
testing (Blumberg et al., 2014) based on topological information
and we envision that this field will become more prominent
as topological features find their use case for data analysis. A
simple and stable representation of persistence diagrams, suitable
for machine learning tasks, is provided by what are commonly
called Betti curves. Given a persistence diagram D, and a weight
function w :R

2 → R, its Betti curve is the function β :R → R

defined by

β(t) : =
∑

(b,d)∈D

w(b, d) · 1[b,d](t), (1)

where

1[b,d](t) : =

{

1, if t ∈ [b, d]

0, else
(2)

is the indicator function. The Betti curve was often informally
used to analyse data (Umeda, 2017); recently, Rieck et al.
(2020a) provided a summarising description of their features.
Figure 5 depicts a simple illustration of the calculation of Betti
curves. Betti curves are advantageous because they permit the
calculation of amean curve, next to providing an easy-to-evaluate
distance and kernel method. Chevyrev et al. (2018) used this
representation—and related “paths” derived from a persistence
diagram and its representations—to solve classification tasks,
using random forests and support vector machine classifiers. One
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drawback of the Betti curves is their limited expressive power.
Being a summary statistic of a persistence diagram, the mapping
from a diagram to a curve is not injective; moreover, the curve
only contains counts of topological features and does not permit
tracking single features, for example.

A more fundamental technique, developed by Carrière et al.
(2015), directly generates a high-dimensional feature vector from
a persistence diagram. The main idea is to obtain a vector
representation of some persistence diagram D based on the
distribution of pairwise distances of its elements, including
points on the diagonal 1 : = {(x, x) | x ∈ R} ⊂ R

2. More
precisely, for each pair (p, q) of points in D, they compute
m(p, q) : = min{d∞(p, q), d∞(p,1), d∞(q,1)} and associate to
D the vector of these values, sorted in descending order. As
persistence diagrams may be of different sizes, they enlarge
each of these vectors by zeros so that its length matches the
length of the longest vector in the set. Hence, the set of
persistence diagrams one considers needs to be fixed a priori. This
vectorisation does not necessarily scale well to large data sets, but
it can provide a good baseline to furnish any machine learning
classifier—including a neural network—with simple topology-
based feature vectors. The use of this technique appears to be
restricted at present; we hope that our article will help increase
its adoption.

As a somewhat more complicated, but also more expressive,
representation, Bubenik (2015) introduced topological
descriptors called persistence landscapes that map persistence

FIGURE 5 | A persistence diagram (A), its persistence barcode (B), and its

corresponding Betti curve (C). Notice that the interpretation of the axes of

different plots is different, hence we exclude labels for the

barcode representation.

diagrams into a (Banach or Hilbert) function space in an
invertible manner that satisfies stability properties with respect
to the bottleneck distance of PDs. The persistence landscape
λ : N × R → R of a PD D = {(bi, di)}i∈I can be defined in the
following way. For b < d, we consider the auxiliary function
f(b,d)(t) : = max{0,min{t − b, d − t}} and define the persistence
landscape as

λ(k, t) : = kmax{f(bi ,di)(t)}i∈I ,

where kmax denotes the k-th largest element of the set.
In addition to injectivity and stability, persistence landscapes
do not require any choice of auxiliary parameters in their
construction (see Figure 6 for a depiction of the persistence
landscape computation process). They also afford various
summary statistics, such as a norm calculation as well the
calculation of both a kernel and a distance measure, making
them a versatile representation of topological features. While,
persistence landscapes have seen applications in time series
analysis (Stolz et al., 2017), their most successful integration into
machine learning algorithms is provided in the form of a new
layer: persistence landscapes form the basis of a robust (with
respect to noise) topological layer for deep neural networks,
which is differentiable with respect to its inputs, the so-called
PLLay (persistence landscape based topological layer) established
in Kim et al. (2020). This layer exhibits good performance in
image classification tasks as well as orbit classification, where it
is shown to provide new state-of-the-art performance. We note
that persistence landscapes are often considered in a vectorised
form, which is obtained through binning their domain. While
this is possible and useful for certain applications, we want to
stress that the persistence landscape, as a lossless representation,
should ideally be treated as such. The calculation of persistence
landscapes imposes additional computational complexity, but the
empirical performance reported by Kim et al. (2020) suggests that
the landscapes are well-suited as a feature descriptor.

The persistence images (PIs), introduced by Adams et al.
(2017), constitute an elegant hierarchical vectorisation step,
representing a PD as a vector through the following steps. First
the PD D is transformed from “birth–death”-coordinates into
“birth–persistence”-coordinates via the transformation

T :R
2 −→ R

2
: (x, y) 7−→ (x, y− x).

FIGURE 6 | Computing a persistence landscape involves calculating the “area of influence” of each topological feature in a persistence diagram. Each connected

shaded region with at least k intersections forms the basis of the k-th persistence landscape, which can be obtained by “peeling off” layers in an iterative fashion.
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FIGURE 7 | A persistence image arises as a discretisation of the density function (with appropriate weights) supported on a persistence diagram. It permits the

calculation of an increasingly better-resolved sequence of images, which may be directly used as feature vectors.

Next, for each u ∈ R
2 a differentiable probability density φu on

R
2 is chosen (the standard choice being a normalised symmetric

Gaussian with E[φu] = u), as well as a weighting function
f :R2 −→ R

2
≥0 satisfying f |{0}×R ≡ 0. Additionally one chooses

a discretisation of a relevant subdomain ofR2 by a standard grid.
Each region R of this grid then corresponds to a pixel in the
persistence image with value given by

∫

R

∑

u∈T(D)

f (u)φu(z)dz.

In the process of generating persistence images, there are
three non-canonical choices to be made. First, the choice of
the weighting function, which is often chosen to emphasise
features in the PD with large persistence value, next the
distributions φu, and lastly the resolution of the discretisation
grid. Adams et al. (2017) prove that PIs are stable with respect
to the 1-Wasserstein distance between persistence diagrams.
Figure 7 illustrates their calculation. Persistence images are
highly flexible and are often employed to make a classifier
“topology-aware” to some extent (Zhao andWang, 2019; Carrière
and Blumberg, 2020; Rieck et al., 2020b). A paper by Zhao
and Wang (2019), for instance, showcases their utility for graph
classification. Interestingly, this paper constitutes also one of the
few interventional approaches that employ extrinsic topological
features; specifically, the authors use pre-defined filtrations to
obtain graph-based persistence diagrams, and learn task-based
weights for individual “pixels” (or “cells”) in the diagram.
This approach is seen to surpass several graph classification
algorithms on standard benchmark data sets—a remarkable
feat, considering that the method does not employ any label
information. The main drawbacks of persistence images are their
quadratic storage and computation complexity, as well as the
choice of appropriate parameters. While recent work found them
to be remarkably stable in practice with respect to the Gaussian
kernel parameters (Rieck et al., 2020b), there are no guidelines for
picking such hyperparameters, necessitating a (cross-validated)
grid search, for instance.

3.2.2. Kernel-Based Representations

As an alternative to the previously-discussed representations, we
now want to briefly focus on persistence diagrams again. The
space of persistence diagrams can be endowed with metrics,
such as the bottleneck distance. However, there is no natural
Hilbert space structure on it, and such metrics tend to be
computationally prohibitive or require the use of complex

approximation algorithms (Kerber et al., 2017). Kernel methods
provide a way of implicitly introducing such a Hilbert space
structure to which persistence diagrams can be mapped via the
feature map of the kernel. This then allows for a downstream use
in machine learning models. To be more specific, given a set X, a
function k :X×X → R is called a (positive definite) kernel if there
exists a Hilbert spaceHk together with a feature map φ :X → Hk

such that k(x1, x2) = 〈φ(x1),φ(x2)〉Hk
for all x1, x2 ∈ X. Thus, by

defining a kernel on the set of persistence diagrams, one obtains
a vector representation via the feature map. However, in order
for such a kernel to be useful in practice, it should additionally
preserve the metric stability properties of persistence diagrams.
Some pertinent examples of the kernel method are the following.
Reininghaus et al. (2015) define a kernel on the set of persistence
diagrams that is stable with respect to the 1-Wasserstein distance
(Villani, 2009). The kernel is based on the idea of heat diffusion
on a persistence diagram and offers a feature map that can be
discretised (in fact, there are interesting similarities to persistence
images). It was subsequently shown to satisfy universality (Kwitt
et al., 2015), a desirable property for a kernel to have because it
implies suitability for hypothesis testing. The sliced Wasserstein
kernel, which is metric-preserving, was introduced by Carrière
et al. (2017). It is based on the idea of the sliced Wasserstein
distance (Kolouri et al., 2016), which ensures positive definiteness
of the kernel through low-dimensional projections. Kusano
et al. (2018) propose persistence weighted Gaussian kernels that
incorporate a weighting and satisfy stability results with respect
to the bottleneck distance and the 1-Wasserstein distance. The
expressive power of kernels is in contrast to their computational
complexity. Naïve implementations scale quadratically in the
number of points, thus impeding the use of kernels for
persistence diagrams with a large number of points. Some
mitigation strategies exist (Greengard and Strain, 1991; Rahimi
and Recht, 2008), but have not been adopted by implementations
so far (moreover, their use is not always applicable, necessitating
additional research). Nevertheless, such kernels are attractive
because they are not limited with respect to the input data. Most
of the papers exhibit good performance for shape classification or
segmentation tasks, as well as in orbit classification.

While most of the aforementioned kernels are used to
directly compare persistence diagrams, there are also examples
of kernels based on topological information. An interesting
example is provided by Rieck et al. (2019a), who introduce
the Persistent Weisfeiler–Lehman (P-WL) kernel for graphs. It
computes topological features during aWeisfeiler–Lehman (WL)
procedure. The WL procedure refers to an iterative scheme in
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which vertex label information is aggregated over the neighbours
of each vertex, resulting in a label multiset. A perfect hashing
scheme is now applied to every multiset and the graph is
relabelled with the ensuing hashes. This process can be repeated
until a pre-defined limit has been reached or until the labels do
not change any more. While originally intended as a test for
graph isomorphism, it turns out that there are non-isomorphic
graphs that cannot be distinguished by the WL procedure.
However, it turns out to be an exceptionally useful way of
assessing the dissimilarity between two graphs in polynomial
time, leading to the WL kernel framework (Shervashidze and
Borgwardt, 2009; Shervashidze et al., 2011), which enjoys great
popularity for graph learning tasks (Borgwardt et al., 2020; Kriege
et al., 2020). The P-WL extension of WL is characterised by its
capability to extract topological information of the graph with
respect to the current node labelling for each WL iteration. This
kernel is particularly notable since it constitutes the first (to
our knowledge) method that imbues data-based labels into the
calculation of persistent homology.

3.2.3. Integrating Topological Descriptors Into Neural

Networks

One of the seminal methods that built a bridge between modern
machine learning techniques and TDA is a work by Hofer
et al. (2017). Using a differentiable projection function for
persistence diagrams (with learnable parameters), the authors
demonstrate that persistence diagrams of a data set can be
easily integrated into any deep learning architecture. While the
primary focus of the paper lies on developing such a projection
function, the authors demonstrate the general feasibility of
topological descriptors in both shape and graph classification
tasks. A follow-up publication (Hofer C. D. et al., 2019) discusses
more theoretical requirements for learning representations of
topological descriptors.

This approach, as well as the development of the “DeepSets”
architecture (Zaheer et al., 2017), which makes deep learning
methods capable of learning sets, i.e., unordered sequences of
varying cardinalities, spurred the development of layers that can
be easily integrated into a deep learning workflow. An excellent
example of such a layer is Carrière et al. (2020), which employs
extended persistence (Cohen-Steiner et al., 2009) and heat kernel
signatures to learn a vectorisation of persistence diagrams suited
to the learning task at hand. PersLay is a neural network layer,
defined by

PersLay(D) : = op({w(p) · φ(p)}p∈D),

whereD is a persistence diagram, op is and permutation invariant
mapping, w :R

2 −→ R is a weight function and φ :R
2 −→ R

d

is a vector representation function. Its generic definition allows
PersLay to subsume and recover many existing representations
by appropriate choices of op and φ (Carrière et al., 2020).

3.3. Intrinsic Topological Features in
Machine Learning
This section reviews methods that either incorporate topological
information directly into the design of a machine learning model

itself, or leverage topology to study aspects of such a model. We
refer to such features as intrinsic topological features. The primary
examples are regularisation techniques as well as techniques for
analysing neural network architectures.

3.3.1. Regularisation Techniques

As a recent example, Moor et al. (2020) propose a topological
autoencoder, which aims to preserve topological features of the
input data in low-dimensional representations. This is achieved
via a regularisation term that incentivises the persistence
diagrams of both the latent and input space to be topologically
similar. This method acts on the level of mini-batches, treating
each of them as a point cloud. Persistence diagrams are obtained
from the Vietoris–Rips complex of each space. By tracking the
simplices that are relevant for the creation and destruction of
topological features, and by consistently mapping simplices to
a given edge in the Vietoris–Rips complex, each filtration can
be interpreted as a selection of distances from the full distance
matrix of the point cloud. The proposed regularisation term
then compares the “selected” distances in the data space with
the corresponding distances in the latent space (and vice versa).
Finally, this regularisation is differentiable under the assumption
that the persistence diagram is discrete (i.e., for each of its points,
there is an infinitesimal neighbourhood containing no other
points). The scheme can thus be directly integrated into the
end-to-end training of an autoencoder, making it aware of the
topology in the data space. This work can also be considered as
an extension of previous work by Hofer C. et al. (2019), who
introduced a differentiable loss term for one-class learning that
controls the topology of the latent space; in effect, their loss term
enforces a preferred “scale” for topological features in the latent
space. It does not have to harmonise topological features across
different spaces. It turns out that an autoencoder trained with this
loss term on unlabelled data can be used on other data sets for
one-class learning. This hints at the fact that enforcing a certain
topological structure can be beneficial for learning tasks; we will
later see that such empirical observations can also be furnished
with a theoretical underpinning.

An approach by Chen et al. (2019) takes a different
perspective. The authors develop a measure of the topological
complexity (in terms of connected components) of the
classification boundary of a given classifier. Said topological
information is then used for regularisation in order to force the
topological complexity of the decision boundary to be simpler,
containing fewer features of low persistence. Thus, topological
information serves as a penalty during classification such that
training the classifier itself can be improved. In contrast to the
aforementioned approach, differentiability is obtained through
a “surrogate” piecewise linear approximation of the classifier.
The method is seen to yield competitive results and the authors
observe that the method performs well even in the presence of
label noise. Analysing the decision boundary of a classifier also
turns out to be advantageous for model selection, as we will later
see in section 3.3.2.

Hofer et al. (2020a) analyse more fundamental principles
of regularisation by means of topological features. Specifically,
they study regularisation in a regime of small sample sizes
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with over-parametrised neural networks. By developing a
new topological constraint for per-class probability measures,
mass concentration effects in the vicinity of the learned
representations of training instances are observed, leading
to overall improvements of generalisation performance. The
authors observe that controlling topological properties of learned
representations presents numerous avenues for future research.
These theoretical findings validate the empirical improvements
observed in previous works of this domain.

As a more involved example of methods that make use
of intrinsic features, Zhao et al. (2020) include topological
features of graph neighbourhoods into a standard graph neural
network (GNN) architecture. Their method combines a shortest-
path filtration with persistence images, which are subsequently
compressed to a single scalar value using a multilayer perceptron.
The resulting scalar is then used to re-weight the message
passing scheme used in training the GNN, thus obtaining
topologically-based representations of graph neighbourhoods. In
contrast to the previously-described loss terms, this method is
not end-to-end differentiable, though, because the conversion
from persistence diagrams to persistence images involves non-
continuous parameters, i.e., the image dimensions. Zhao et al.
(2020) primarily propose this method for node classification
tasks, but we hypothesise that other graph tasks would profit from
the integration of topological features.

Last, to provide a somewhat complementary perspective to
preceding work, a paper by Hofer et al. (2020b) discusses how to
employ graph neural networks (GNNs) to learn an appropriate
filtration in an end-to-end fashion. The authors demonstrate
that a GNN can be used to successfully initialise a scalar-
valued filtration function, which can then subsequently be trained
under mild assumptions (specifically, injectivity at the vertices
of the graph needs to hold). The learned filtration turns out to
surpass fixed filtrations combined with a persistent homology
baseline, thus demonstrating the benefits of making topological
representations differentiable—and thus trainable.

3.3.2. Model Analysis

Shifting our view from regularisation techniques, topological
analysis has been applied to evaluate generative adversarial
networks (GANs). A GAN (Goodfellow et al., 2014) is comprised
of two sub-networks, a generator and a discriminator. Given
a data distribution Pdata, the generators objective is to learn
a distribution Pmodel with the same statistics, whereas the
discriminator learns to distinguish generated samples from
actual data samples. The topological evaluation of GANs is
motivated by the manifold hypothesis (Fefferman et al., 2013),
which poses that a data distribution Pdata is sampled from an
underlying manifold Mdata. The idea is to assess the topological
similarity of Mdata and the underlying manifold Mmodel of the
model generated distribution Pmodel. Based on the persistent
homology of witness complexes, Khrulkov and Oseledets (2018)
introduce the Geometry Score, which is a similarity measure of
the topologies of Mdata and Mmodel and can be used to evaluate
generative models. Later work by Zhou et al. (2021) generalises
this approach and additionally extends it to the disentanglement
evaluation of generative models in unsupervised settings.

In a different direction, the topological analysis of the intrinsic
structure of a classifier, such as a neural network, makes it
possible to improve a variety of tasks. This includes the analysis
of training behaviour as well as model selection—or architecture
selection in the case of neural networks.

While the literature dedicated to the better understanding
of deep neural networks has typically focused on its functional
properties, Rieck et al. (2019b) took a different perspective to
focus on the graph structure of a neural network. Specifically,
they treat a (feed-forward) neural network as a stack of bipartite
graphs. From this view, they propose “neural persistence,”
a complexity measure which summarizes topological features
that arise when calculating a filtration of the neural network
graph where the filtration weights are given by the network
parameters. They showed that neural persistence can distinguish
between well-trained and badly-trained (i.e., diverged) networks.
This measure is oblivious to the functional behaviour of the
underlying network, but only focuses on its (weighted) structure.
Nevertheless, Rieck et al. (2019b) showed that it can be used for
guiding early stopping solely based on topological properties of
the neural network, potentially saving validation data used for the
early stopping decision.

Ramamurthy et al. (2019) employ labelled variants of
simplicial complexes, such as a labelled Vietoris–Rips complex,
to analyse the decision boundary (i.e., classification boundary)
of a given classifier. The authors are able to provide theoretical
guarantees that the correct homology of a decision boundary can
be recovered from samples, thus paving the way for an efficient
approximation scheme that incorporates local scale estimates
of the data set. Such a construction is required because the
density of available samples is not guaranteed to be uniform,
leading to simplicial complexes with spurious simplices in high-
density regions, while running the risk of “undersampling” low-
density regions. Next to “matching”models based on theDecision
Boundary Topological Complexity (DBTC) score, Ramamurthy
et al. (2019) also enable matching data sets to pre-trained models.
The underlying assumption is that a model that closely mimics
the topological complexity of a data set is presumably a better
candidate for this particular data set.

Gabrielsson and Carlsson (2019) utilise topological data
analysis to analyse topological information encoded in the
weights of convolutional neural networks (CNNs). They show
that the weights of convolutional layers encode simple global
structures which dynamically change during training of the
network and correlate with the network’s ability to generalise to
unseen data. Moreover, they find that topological information on
the trained weights of a network can lead to improvements in
training efficiency and reflect the generality of the data set on
which the training was performed.

4. OUTLOOK AND CHALLENGES

This survey provided a glimpse of the nascent field of
topological machine learning. We categorised existing work
depending on its intention (interventional vs. observational)
and according to what type of topological features are being
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calculated (extrinsic vs. intrinsic), finding that most extrinsic
approaches are observational, i.e., they do not inform the
choice of model afterwards, while most intrinsic approaches are
interventional, i.e., they result in changes to the choice of model
or its architecture.

Numerous avenues for future research exist. Of the utmost
importance is the improvement of the “software ecosystem.”
Software libraries such as GUDHI (Maria et al., 2014) and
giotto-tda (Tauzin et al., 2021) are vital ingredients for
increasing the adoption of TDA methods, but we envision
that there is a specific niche for libraries that integrate directly
with machine learning frameworks such as pytorch. This
will make it easier to disseminate knowledge and inspire more
research. A challenge that the community yet has to overcome
involves the overall scalability of methods, though. While certain
improvements on the level of filtrations are being made (Sheehy,
2013; Cavanna et al., 2015), those improvements have yet to
be integrated into existing algorithms. A more fundamental
question is to what extent TDA has to rely on “isotropic”
complexes such as the Vietoris–Rips complex, and whether scale-
dependent complexes that incorporate sparsity can be developed.

On the side of applications, we note that several papers
already target problems such as graph classification, but they are
primarily based on fixed filtrations (with the notable exception
of Hofer et al. (2020b), who learn a filtration end-to-end). We
envision that future work could target more involved scenarios,
such as the creation of “hybrid” GNNs, and the use of end-to-
end differentiable features for other graph tasks, such as node
classification, link prediction, or community detection.

As another upcoming topic, we think that the analysis of time-
varying data sets using topology-based methods is long overdue.
With initial work by Cohen-Steiner et al. (2006) on time-varying
topological descriptors providing a theoretical foundation, there
are nevertheless few topology-based approaches that address time
series classification or time series analysis. Several—theoretical
and practical—aspects for such an endeavour are addressed by
Perea et al. (2015), who develop a persistence-based method for
quantifying periodicity in time series. The method is based on
the fundamental embedding theorem by Takens (1981) and is
combined with a sliding window approach. Future work could
build on such approaches, or find other ways to characterise
time-series, for instance based on complex networks (Lacasa
et al., 2008). This could pave the road toward novel applications
of TDA such as anomaly detection.
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