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Memristors show great promise in neuromorphic computing owing to their high-density
integration, fast computing and low-energy consumption. However, the non-ideal update
of synaptic weight in memristor devices, including nonlinearity, asymmetry and device
variation, still poses challenges to the in-situ learning of memristors, thereby limiting their
broad applications. Although the existing offline learning schemes can avoid this problem
by transferring the weight optimization process into cloud, it is difficult to adapt to unseen
tasks and uncertain environments. Here, we propose a bi-level meta-learning scheme that
can alleviate the non-ideal update problem, and achieve fast adaptation and high
accuracy, named Rapid One-step Adaption (ROA). By introducing a special
regularization constraint and a dynamic learning rate strategy for in-situ learning, the
ROA method effectively combines offline pre-training and online rapid one-step adaption.
Furthermore, we implemented it on memristor-based neural networks to solve few-shot
learning tasks, proving its superiority over the pure offline and online schemes under noisy
conditions. This method can solve in-situ learning in non-ideal memristor networks,
providing potential applications of on-chip neuromorphic learning and edge computing.
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INTRODUCTION

Memristors are considered as leading device candidates for neural network accelerators (Yang et al.,
2013; Chen et al., 2015; Tsai et al., 2018; Zidan et al., 2018) due to their ability to physically store
synaptic weights in conductance state, which enable in-memory computing. Implementation of
neural networks in memristor-based hardware exhibits high density integration, low power
consumption and high efficiency (Cai et al., 2019; Yu 2018). It can also greatly promote the
development of brain-inspired computing systems to achieve human-like intelligence (Zhang et al.,
2016). However, memristors possess some non-ideal properties that challenge the hardware
implementations. The weight updates on memristors are asymmetric, nonlinear and low
precision, significantly degrading the learning accuracy (Kataeva et al., 2015; Agarwal et al.,
2016; Wang et al., 2020a). Additionally, the outputs of networks, determined by input currents
and conductance of memristors, are also perturbed by the variability of circuits, including input
currents, reference voltage, output resistance (Yang et al., 2013; Agarwal et al., 2016).

Currently, there are mainly two types of co-optimization learning schemes to overcome these
challenges (Hu et al., 2016; Zidan et al., 2018; Agarwal et al., 2016; Chen et al., 2015). One type is
online learning, which allows training models to be implemented on neuromorphic hardware by
using backpropagation (Yu et al., 2016) or biological local learning, such as spike-timing-dependent
plasticity (STDP) (Guo et al., 2017). For fast online learning, conductance tuning with less operations
on hardware is preferred, which the weights of networks are directly written without verification by
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reading. However, the nonlinearity and asymmetry of memristors
cause the accuracy loss of the neural networks during learning
(Yu et al., 2016; Kataeva et al., 2015). To mitigate the adverse
effects of memristors, various approaches have been reported.
Some work initialized the weights at each update step to achieve
linear and symmetric weights (Li et al., 2019; Geminiani et al.,
2018). Retraining of networks and developing highly robust
algorithms, such as Neural State Machine, have also been
proved to overcome the asymmetric properties of memristors
to a certain degree (Liu et al., 2017; Tian et al., 2020; Tian et al.,
2021). The other type is offline learning, which maps the pre-
trained network to hardware, and only performs inference in
neuromorphic chips (Hu et al., 2016; Shafiee et al., 2016; Chi et al.,
2016). The non-ideality of weight updates can be concealed by
iterative programming with a write-verify technique, reading the
conductance and rewriting for accuracy. However, for a new task,
the entire process must be restarted from scratch through offline
learning. For most algorithms, all tunable parameters in the
neural network must be re-trained for a new task, resulting in
a large number of operations. Therefore, there is usually a trade-
off between speed and performance for memristor networks from
offline learning to online learning.

Different from the current on-chip learning schemes, humans
can quickly adapt to the environment by drawing on prior
experience or learning to learn. In machine learning, this
learning approach is named meta-learning (Thrun and Pratt
1998), which has made significant progress in recent years
(Wang et al., 2020b; Hospedales et al., 2020; Vanschoren,
2018). There are many meta-learning techniques, such as
optimizee (Andrychowicz et al., 2016; Ravi and Larochelle
2017), metric based (Hu et al., 2020; Vinyals et al., 2016; Snell
et al., 2017) and fine-tuning (Antoniou et al., 2018; Li et al., 2017;
Finn et al., 2017; Nichol et al., 2018). Particularly, Model-
Agnostic Meta-Learning (MAML) (Finn et al., 2017) is a
general meta-learning framework that provides a good initial
condition of network for fine-tuning on similar tasks, which can
simplify the optimization to a few steps for new unseen tasks.
MAML can also be applied to fields such as reinforcement
learning (Gupta et al., 2018) and continual learning (Al-
Shedivat et al., 2018). The studies on the silicon-based
neuromorphic chips have proven that meta-learning schemes
can significantly accelerate the learning of new tasks and improve
their performance (Bohnstingl et al., 2019; Stewart et al., 2020).
However, optimization methods for memristor-based networks
with the meta-learning scheme have yet to be developed.

In this work, we propose a meta-learning scheme for
memristor-based neural networks that can overcome the non-
ideal synapse weights for training and provide improved
performance. Our method consists of two phases, including
pre-training and task adaptation, as shown in Figure 1. Firstly,
a good initial network for a group of tasks is trained in software and
then mapped to hardware by iterative programming with write-
verify. Then, a rapid training in one-step adaption is performed for
an unseen task with a few samples of the in-situ hardware network.
This scheme can free the memristor networks from unnecessary
operations, mitigating the problem of performance degradation in
online learning. It also has the ability to accomplish new tasks

through quick adaptations, which is more powerful than the offline
trained networks. Since only one update step is needed, a new task
requires significantly less training time, only a few samples and
little computation consumption. These merits make our scheme
very suitable for situations with limited computing power and
limited data, such as edge computing. Our main contributions are
as follows:

1. We propose a hybrid learning scheme of offline learning and
online learning for meta-learning on memristor-based neural
networks. It combines the advantages of offline learning and
online learning for the hardware to achieve high accuracy and
fast adaption for unseen tasks.

2. We report the Rapid One-step Adaption (ROA) algorithm,
which enables memristor-based neural networks with meta-
learning capability. It mitigates the effects of non-ideal
characteristics of memristor-based neural networks, and
achieves superior performance by introducing dynamic
learning rate, regularization constraint and one-step adaption.

3. In order to evaluate our model on few-shot tasks, we built a
simulator based on the experimental characteristics of
memristor, which can better support the acceleration of
large-scale network and the quantitative analysis of
networks with noise. On this basis, we comprehensively
evaluate the proposed model on two typical few-shot
learning datasets. Our results reveal a good performance of
memristor networks on few-shot learning task with significant
improvement of accuracy than the baseline.

EXPERIMENTAL SETUP

In this section, we discuss the setup of memristors for the
simulation experiment. In Memristor Model, we introduce the
model of memristors for simulation based on our experimental
data and discuss the properties of memristors in this work. In
Simulator for Memristor Networks, we introduce the simulator for
this work, including weight update, noise setting and mapping.

Memristor Model
In this work, we implemented a two-terminal TaOx/HfO2/Ta bi-
layered resistive switching device (Kim et al., 2018) as a synaptic
device. The electrical conductance of a memristor is generally
determined by the conductive filaments, which are formed and
ruptured due to the electromigration of oxygen vacancies under
an electric field. We adopted the memristor model reported in
Wang et al. (2020b), which uses a state parameter ω ∈ [0, 1] to
describe the area covered by the filaments in memristors. The
dynamic change of ω in response to the external voltage V yields
the following relationships (Choi et al., 2015):

dω

dt
� ⎧⎨⎩ (1 − ω)2k(e−μ1V − eμ2V), V< 0,

ω2k(e−μ1V − eμ2V), V> 0.
(1)

where k, μ1, μ2 are positive parameters determined by the
material properties, k is the ion hopping distance, and μ1 and
μ2 are the hopping barrier heights. In Eq. 1, the change of ω,
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dω/dt, depends on the exponentially dependent dynamics of
voltage V. Thus, the states of ω will only be slightly disturbed
when pulse voltage is low (such as below 0.1 V). This allows the
memristor network to work normally under reading pulses and
maintain consistent weights. The current I through the
memristor is determined by Choi et al. (2015):

I � ωcsinh(δV) + (1 − ω)α(1 − e−βV), (2)

where c is the effective tunneling distance, δ is the tunneling
barrier, α is the depletion width of the Schottky barrier region,
and β is the Schottky barrier height. They are all positive
parameters determined by materials.

In the measurement of the device, we applied negative pulses
in increasing amplitudes from −0.8 to −3.8 V (in 0.1 V
increments) and 100 µs width for the potentiation process, and
positive pulses in decreasing amplitudes from 3.5 to 0.8 V (in
0.1 V decrements) and 100 µs width for the depression process. A
model of the memristor behavior was built based on the
experimental data. As shown in Figure 2B, the simulation
results of the memristor are in good agreement with the
experimental data, indicating that the model can properly
reproduce the behavior of the device.

Memristors have a strong non-linear conductance.
Particularly, the conductance change is more subtle when the
conductance state is approaching its maximum or minimum
value. Memristors also have an asymmetric conductance change
behavior. The potentiation and depression pulses cause the
conductance to change with different magnitudes depending
on the direction of change. On the other hand, the variation
in memristor devices is inherently a stochastic process due to the
movement of atoms or oxygen vacancies. This process is
interfered by various noises, and usually modeled using
normal distribution (Agarwal et al., 2016). In addition, the

updated states of memristor synapses are discrete because of
the limited conductance levels and discrete programming pulse
width. All these features will be considered in our simulation.

Simulator for Memristor Networks
We built a simulator using Pytorch (Paszke et al., 2019) for the
simulation of training and inference processes, and further
quantitatively analyzed the effects of the non-ideal
characteristics of the device. The simulator supports the GPU
acceleration for large-scale network in Pytorch. The pulses of
potentiation and depression were set with fixed amplitude and
duration. The parameters of the memristor are shown in
Table 1.

Normally, a crossbar structure is adopted in memristor
networks, as shown in Figure 2A. The conductance state of a
memristor represents the synaptic value in neural networks. The
inputs are mapped to the input voltages and the outputs are
represented by currents. In a crossbar structure, the transmitted
signal is determined by the product of input signals and synaptic
weights through Ohm’s law and Kirchhoff’s law. Thus, multiply-
accumulations (MACs) can be physically performed at the weight
locations, greatly reducing computing operations and energy
consumption. For multilayer networks, the output currents of
the previous layer can be converted to voltage for the input of the
next layer. Each layer follows the configuration in the inference
process until the final layer.

According to Eq. 2, the relation between voltage and current of
a memristor is approximately linear when voltage is low (such as
below 0.1 V). Then the conductance of a synapse in the crossbar
can be read with read voltage Vr by:

Gij �
[ωijcsinh(δVr) + (1 − ωij)α(1 − e−βVr)]

Vr
. (3)

FIGURE 1 | The framework of ROA (Rapid One-step Adaption). In the pre-training phase: (1) we train a good initial network across tasks with parameters gij0; (2) we
load it into the memristor array asGij

0 with iterative programming with write-verify. In the task adaptation phase: (3) we map the task into voltage input of the memristor for
prediction ŷi , then we calculate the loss function with true label yi ; (4) we calculate the gradient descent Δgij with loss by backpropagation; (5) we convert Δgij into update
pulse period tij and update the hardware network; (6) we evaluate the network on the testing dataset. The color and its brightness of the matrix indicate different
forms of data and its value.
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The state ωij of the memristor yields

ωij �
GijVr − α(1 − e−βVr)

csinh(δVr) − α(1 − e−βVr). (4)

During the updating process, the expected changing state Δωij

of the memristor yields

Δωij � ΔGijVr

csinh(δVr) − α(1 − e−βVr). (5)

The (potentiation/depression) update pulses are defined as
identical with fixed amplitudes (Vp/Vd) and widths (Tp/Td) in

the programming process. Thus, the programming pulse number
nij should be rounded to an integer. The time of the programming
pules, tij, can be obtained as

tij � nij · Tp/d � ⎡⎢⎣ Δωij

λk(e−μ1Vp/d − eμ2Vp/d)(λ − Δωij)Tp/d

⎤⎥⎦ · Tp/d

λ �
⎧⎪⎨⎪⎩

(1 − ωij) , V � Vp,

−ωij , V � Vd.

(6)

To simulate the variation in real devices, we introduce write
noise at each step of weight change following the work of Agarwal
et al. (2016):

G � G0 + ΔG +N(σ)
σ �

����������������
ΔG × ( �Gmax − �Gmin)√

× σWN ,
(7)

where G0 is the initial conductance of synapse, ΔG is the change
of conductance, and N(σ) is a Gaussian distribution with

FIGURE 2 | (A) Memristor Crossbar. The weights of neural network are mapped to memristor crossbar arrays as conductance Gij . The inputs and outputs are
represented by the voltages Vi and the currents Ii . (B) Experimental and simulated updates of TaOx/HfO2/Ta bi-layered memristors. (C) Standard variation of simulated
updates with write noise.

TABLE 1 | List of the parameters used in the memristor model.

Parameter Value Parameter Value Parameter Value

k 1e-4 δ 0.5 Vp −1.1 V
μ1 19.25 α 1.58e-3 Tp 3 µs
μ2 13 β 0.5 Vd 1.4 V
γ 3.01e-3 Vr 0.05 V Td 30 µs
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standard variance σ. The variance of noise σ2 is proportional to
the range of conductance ( �Gmax − �Gmin) and ΔG. σWN is a
dimensionless standard deviation. The standard deviation of
the simulated conductance for σWN � 0.8 is shown in Figure 2C.

The input voltage Vin in Figure 2A is in the range [0, 0.1],
which is low enough to stabilize the conductance states. The input
vector xin is normalized to [0, 1]. Thus, the xin is mapped into
voltage pulse Vin by

Vin � 0.1xin. (8)

The synaptic weights, gij, of the neural network are mapped
into the conductance values, Gij, of the memristor by:

gij � aGij − b

a � 2/( �Gmax − �Gmin)
b � �Gmax − �Gmin

�Gmax + �Gmin

�Gmax � csinh(δVr)
Vr

�Gmin �
α(1 − e−βVr)

Vr
,

(9)

where �Gmax and �Gmin are mean values of maximum and
minimum conductance, respectively. Obviously, the value of
gij is limited in the range of [1,−1].

The current collected at the output of each column j in the
network array under the input voltage Vi of each row i can be
obtained as:

Ij � ∑
i
[ωijcsinh(δVi) + (1 − ωij)α(1 − e−βVi)]

≈ ∑
i
ViGij,

(10)

The output results yj of MAC should be mapped by the
current:

yj � ∑
i

gijxi ≈ 10 · aIj − b∑xin· (11)

In the configuration of the simulation, the initial weights gij are
implemented to the memristor networks through iterative
programming to ensure high precision. Then, the weight update
values gij corresponding to gij are calculated for each memristor
through the error backpropagation algorithm. The programming
pulse time tij can be calculated by Eq. 6 and implemented to
hardware after obtaining gij. The variations are considered in these
training steps and subsequent test processes.

METHODS

In this section, we introduce ROA, the proposed meta-learning
algorithm for memristor neural networks, and MAML, a typical
meta-learning algorithm, together with its derivatives that are the
basis of our algorithm.

Model-Agnostic Meta-Learning
Considering a supervised learning task T , it consists of training
set Dtrain � (xtrain

1 , ytrain
1 ), (xtrain

2 , ytrain
2 ), . . . , (xtrain

k , ytrain
k )}{ and

testing set Dtest � (xtest
1 , ytest

1 ), (xtest
2 , ytest

2 ), . . . , (xtest
n , ytest

n )}{ , in
(input image, output label) pairs. One solution to task T is to
train model f with parameter θ by solving:

θ* � arg min
θ

∑
i

L(ytest
i , fθ(xtest

i ), η) � arg min
θ

L(Dtest; θ, η),
(12)

whereL is the loss function that measures the distance between
the prediction of fθ and the true labels ytest

i }{ , η represents the
choice of optimization of θ, which is usually stochastic gradient
descent in neural networks. Consistently, we assume that Dtrain

and Dtest share the same distribution so that Eq. 12 can be
approximately equivalent to:

θp � arg min
θ

L(Dtrain; θ, η). (13)

Generalization power of the model is the key to the realization
of this hypothesis.

In conventional deep learning, the optimization of each task
T i starts from scratch, which requires hundreds of data samples
and iterations. After optimization, a well-trained network is only
effective for task T i corresponding to the distribution of the
training data. In contrast, the goal of meta-learning is to train a
model that can rapidly adapt to a new task T i using a small
number of samples and a few training epochs. More specifically, it
optimizes the meta-optimization method η using previous tasks,
which significantly reduces the sample requirements and
computation cost for the subsequent new tasks. The
generalization power of meta-learning has been shifted from
data distribution to tasks. For a distribution of tasks p(T ), the
target of meta-learning can be expressed as:

η* � arg min
η

L(p(T ); θ, η). (14)

MAML (Finn et al., 2017) is a typical meta-learning
framework for few-shot learning tasks, which can be rapidly
updated for a few-shot task by learning good initialization
parameters θ*0 for a network. In other words, it optimizes the
initial parameters θ0 of neural network as meta-optimizer η. In
general, there are two phases of MAML: meta-testing and meta-
training. In the meta-testing phase, it updates network weights
θ by stochastic gradient descent after i-step on training data from
support task Sa � D(a)

train,D(a)
test}{ , which can be expressed as:

θ(a)i � θ(a)i−1 − α∇θL(D(a)
train, θ

(a)
i−1), (15)

where α is the inner learning rate, and θ(a)i is the network weight
after i-step towards task a. After n-step updating, the testing result
can be displayed by testing dataset D(a)

test with parameters θ(a)n .
In the meta-training phase, it updates the initial parameters θ0

using the result in themeta-testing phase by gradient descent. The
update for the meta-parameters θ0 can be expressed as:

θ*0 � θ0 − β∇θ ∑
a

L(D(a)
test, θ

(a)
n ), (16)
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where β is the outer learning rate. The target of optimization is to
learn the model parameters so that a new task can be effectively
learned with a small number of gradient updates.

Compared to other meta-learning frameworks (Vinyals et al.,
2016; Ravi and Larochelle 2017; Snell et al., 2017), the fine-tuning
based framework, such as MAML, can be more easily applied to
other optimization methods. It has been proved that fine-tuning
can improve the performance of other few-shot learning
methods, such as transfer learning (Sun et al., 2019). Besides
the supervised learning for classification, MAML also has the
potential for rapid adaptation in reinforcement learning (Gupta
et al., 2018) and imitation learning for robots (Yu et al., 2018).
Hence, fine-tuning based meta-learning is expected to be applied
to more fields than other meta-learning approaches. There are
many studies to improve the performance of MAML (Li et al.,
2017; Nichol et al., 2018; Antoniou et al., 2018). Here, our work is
essentially developed from MAML++(Antoniou et al., 2018),
including batch normalization, layer-wise learning rate, etc.

ROA: Rapid One-Step Adaption
Our proposed ROA method is a hybrid approach that
implements offline learning in software and online learning in
memristor hardware by introducing a special regularization
constraint and a dynamic learning rate strategy for in-situ
learning. Like most meta-learning methods, the learning
scheme has two phases. In the pre-training phase, the network
is trained from scratch in software. By learning from a group of
tasks, it builds a good initial network, which can be rapidly
updated for a new task. Then we map the initial network to the
hardware through iterative programming with a write-verify
technique to achieve high precision. This is inspired by the
initial structure formed through evolution to provide a good
foundation for the rapid learning ability of human beings (Jeong
and Hwang 2018). The learned initial network is expected to
provide the hardware with a rapid learning ability. In the task-
adaptation phase, in-situ learning is performed in the memristor
arrays. The hardware system would solve a new task with fewer
data points in one update. We map the input samples to the input
voltage of the memristor network and make predictions based on
the output currents. Then we calculate the gradient descent by
backpropagation and convert them into the number of update
pulses for the specific task in the program. Finally, the hardware
network is updated by one step for testing.

In our learning scheme, the initial network would be prepared
in advance for the targeted tasks. Pre-training of the network can
be completed before applications, such as in cloud. Therefore, for
on-chip task-adaptation, only a few training samples are needed
due to the previous experience gained from the pre-training. This
way, the computation costs and time consumption are greatly
reduced as compared to the previously reported methods. It can
also be easily deployed on local or edge servers. It is worth noting
that our ROA approach can also be transferred to other rapid
learning strategies with fine-tuning, such as transfer learning (Pan
and Yang 2010), which uses a previously trained back-bone
network to quickly adapt to unseen domain.

The proposed ROA method thereby combines the advantages
of offline and online training of the memristor networks. As

compared to the inference-only memristor network, it achieves a
similar performance due to the write-verified initial network with
high precision that is implemented on hardware, and a more
powerful generalization due to adaption for a new task.
Meanwhile, the fast in-situ adaptation of ROA reduces the
entanglement between the network and the hardware, thereby
mitigating the accuracy loss caused by the nonlinearity and
asymmetry of online learning of the memristor hardware. In
the cases of limited resources, the performance of ROA is
expected to exceed both online and offline methods.

To further mitigate the effects of discrete weight updates with
asymmetric nonlinearity in hardware network, we develop the
following two measurement methods for training:

Regularization Constraint
Because of the nonlinearity, the changes of memristor
conductance are not proportional to the number of input
pulses. As shown in Figure 2B, the conductance change close
to the extreme value is more subtle than the change along the
opposite direction. In other words, the precision of memristor
weights depends on the state of the memristor and updating
direction. In addition, compared with the simulation results, the
range of weights in hardware is limited. A good initial state by
limiting the weight update is expected to make the update of
memristor synapses more stable. Hence, we propose a
regularization constraint of the initial weights in the loss
function of the meta-training as follows:

θ*0 � θ0 − β∇θ ∑
a

L(D(a)
test, θ

(a)
n ) − c∇θg(θ0), (17)

where c is the rate of constraint. An example of the regularization
constraint g(θ0) is

g(θ0) �
∣∣∣∣θ0 − ρ

∣∣∣∣ + ∣∣∣∣θ0 + ρ
∣∣∣∣ − 2ρ, (18)

which restricts the initial weights in the range of [−ρ, ρ]. The
experimental results show best performance in different tasks is
achieved when ρ is around 0.5.

Learning Rate Adjustment
The duration and amplitudes of pulses are fixed in the simulation.
So, there is a number rounding to convert weight updating to
integer numbers. However, the weight updating in the fine-tuning
is usually too small to be retained in the rounding pulse number.
The good news is that we can increase the inner learning rate to
neutralize the influence partially. On the other hand, when the
variation of devices is too large, the excessive change of weights
would cause larger noises, which will adversely affect the
performance. Thus, we set the inner learning rate according to
the device properties, which expands at low noise levels and
shrinks at high noise levels. The learning rate of the inner loop
follows the setup in Antoniou et al. (2018), which is learnable for
each step and each layer. We multiply the inner learning rate by a
factor, called the relative learning rate. The best relative learning
rate is determined by the noise level and task complexity as shown
in Figure 3, which was based on experience. The details are
reported in the next section.
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EXPERIMENT

In this section, we describe the implementation details of the
experiments and the results of our ROA model on few-shot
learning tasks. A supervised few-shot learning task can be
defined as an N-way k-shot learning task. Each task provides
k labeled samples in each of the N classes, which have never
been trained before. There are k ·N labeled examples in total
(called a support set) in a single task. The task is to classify the
unlabeled samples (called a query set) into one of these N
classes. Thus, the accuracy of the random classifier in this task is
1/N. The main challenge of a few-shot learning task is that only
a few samples are given. Usually, k is a small number, such as 1
or 5. This is common in applications. For example, we do not
need hundreds of photos of dogs to recognize what a dog is. It
requires the agent to have sufficient prior experience in
performing tasks.

Experiment Details
We conducted experiments on the Omniglot dataset (Lake et al.,
2011) and miniImageNet (Ravi and Larochelle 2017). The
Omniglot dataset is composed of 1,623 handwritten character
classes from different alphabets. In each class, there are 20
instances in the dataset. We shuffled all classes and randomly
split them into three parts: 1,150 for the training set, 50 for the
validation set and 423 for testing. 15 samples are randomly picked
in each class as the query set, and the rest are used as the support
set according to the setting of the task. TheMiniImageNet dataset
is composed of 64 training classes, 12 validation classes, and 24
test classes, which is a subset of ImageNet. We evaluated our
method on 5way-1shot, 10way-1shot and 20way-1shot learning
tasks on the Omniglot and 5way-1shot learning task on the
MiniImageNet.

The base model follows the same architecture in Antoniou
et al. (2018), which has a 4-layer convolutional neural network
with a 3 × 3 convolutions and 64 filters in each layer, followed by
a batch normalization, a ReLU nonlinearity, and a 2 × 2 max-
pooling. The last layer is a fully connected layer, which has the
number of output channels corresponding to the task classes. The
softmax function is applied to convert them into probability
distributions over the classes. The Omniglot images are
downsampled to 28 × 28. For the MiniImageNet, the images
are down sampled to 84 × 84. The loss function is the cross-
entropy error between the predicted and true classes. The training
consists of 100 epochs and 500 iterations in each epoch. At the
end of each epoch, we evaluated the model on the validation set.
The model with the best performance on the validation set in all
epochs is chosen as the final model for testing. The pre-training is
done by precise computations. We assume that the process of
mapping the network to memristors has enough steps to reduce
the deviation of the initial network to zero. The task adaptation is
in-situ learning on the memristor performed by simulation. In
each step of the weight update, the write noises as described in Eq.
7 are added to the synapse. For comparison, the results with ideal
weights are reported as the origin in the green dashed line. All
experimental results were repeated four times, and then the
average value was taken.

Result Analysis
In this section, we compare ROA with offline learning and online
learning. The task of the traditional learningmethod formemristor
networks is quite different from the few-shot learning, which is
usually a supervised task with a large training dataset. For offline
learning, we write a well-trained network on few-shot task by using
MAML to the memristor array with limited write-verify steps.
More inner update steps in meta-learning are believed to help to
improve performance. Here, more update steps are added on
memristors as an online learning scheme for comparison.

Comparison With Hardware Inference
In the comparison between offline learning and ROA, we used the
same few-shot task but trained a network with ideal conditions in
the simulator as the offline network. The parameters in the initial
network for an offline learning follow a Gaussian distribution,
while the initial network is the pre-trained network in ROA.
Obviously, the offline inference can achieve results comparable
to software, and there are enough of iterative writing steps to
eliminate the variations in memristors. For comparison, they have
the same number of update steps on hardware. Then, the trained
network ismapped to thememristor array by one step writing. The
ROA also updates its weights in the memristor array in one step.
The tasks and training settings of the two networks are identical.
The results are shown in Figure 4. We can see that due to the
limitation of the iterative update steps, the offline schemes could
not achieve similar performance when the write noise is zero. The
accuracy rapidly drops when the noise increases. When the write
noise ismore than 0.3, its performance is close to random guessing.
For a new unseen task, ROA only needs one update step, which is
much more efficient than the offline scheme.

Comparison With -More Update Steps
Here, we compare the results of 1-step update and 5-step update.
The weights are updated in one step with ROA while the weights
are updated in five steps with online learning schemes. The initial
networks are pre-trained for their schemes separately. The results
are shown in Table 2, Figure 3. There is no significant
discrimination between the two different conditions when the
noise level is at low. The greater the noise, the lower the accuracy.
Depending on the task, the accuracy of 5-step update will drop
significantly when the noise reaches a certain level. The accuracy
of 1-step update decreases more slowly. The more classes in the
task, the smaller the decrease in the threshold of 5-step update.
Their best learning rate under different write noises also has a
similar declining trajectory. The intuitive explanation is that the
accumulation of errors in multiple steps causes the rapid decline.
Multi-step updates are not suitable for noisy hardware networks,
especially in the case of complex tasks. In other words, it is not a
good choice to train a network entirely on the memristor with
hundreds of updates in accordance with the online learning
methods.

Ablation Study
In this section, we further conduct several ablation experiments to
demonstrate the functionality of our method. We compare ROA
with ROA without constraint (ROA-WC), no adjustment on
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learning rate (ROA-FLR) and MAML baseline (ROA-WC-FLR)
in different write noise, respectively. The results are shown in
Figure 5.

Impact of Constraint
We investigated the impact of constraints on the accuracy of one-
shot tasks in different ways. The comparisons of accuracy are

shown in Figure 5, Table 2. The constraint used is Eq. 18 with
ρ � 0.5.When ρ � 1, the range of constraint is the same as the range
of synaptic weights. We treat it as ROA without the constraint. As
shown in Figures 5A,B,E, the constraint improves the accuracy by
more than 3% when σWN increases to 4. But the accuracy of these
two approaches is similar in the task of 20-way 1-shot in Figure 5C.
We further evaluated the wider network with 128 filters for this task

FIGURE 3 |Comparison of the accuracy of 5-step update and 1-step update in different write noise and their best relative learning rate in different write noise. (A, E)
5way-1shot on Omniglot. (B, F) 10way-1shot on Omniglot. (C, G) 20way-1shot on Omniglot. (D, H) 5way-1shot on MiniImageNet.

TABLE 2 | Comparison of the accuracy of ROA, 5-step update, ROA without constraint (ROA-WC) and fixed learning rate (ROA-FLR) in different write noise.

σWN 0.0 (%) 1.0 (%) 2.0 (%) 4.0 (%)

5-step 99.20 98.67 91.33 48.77
ROA-WC 99.41 99.06 95.17 75.19

5way-1shot ROA-FLR 99.51 98.47 92.39 74.09
ROA-FLR-WC 99.30 98.19 91.67 60.25
ROA 99.53 99.21 96.39 79.57

5-step 99.04 96.25 63.66 42.80
ROA-WC 99.00 97.55 87.23 52.06

10way-1shot ROA-FLR 98.79 96.02 82.74 56.96
Omniglot ROA-FLR-WC 98.93 95.13 77.14 35.09

ROA 98.87 97.71 90.25 62.39

5-step 96.58 78.07 34.31 27.65
ROA-WC 97.85 91.90 66.83 32.15

20way-1shot ROA-FLR 96.95 85.41 55.12 28.22
ROA-FLR-WC 97.77 86.67 57.68 21.24
ROA 97.21 92.74 70.70 33.39

20way-1shot wider ROA-WC 97.97 89.60 64.87 32.57
ROA 97.68 92.25 72.91 40.99

5-step 48.04 38.94 28.09 23.56
ROA-WC 49.42 44.46 37.66 30.64

MiniImageNet 5way-1shot ROA-FLR 46.26 39.46 33.93 29.81
ROA-FLR-WC 42.64 36.53 31.37 27.56
ROA 50.33 46.84 40.13 32.38
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in Figure 5D. It shows that the accuracy of ROA is improved by
about 2% for wider networks, but the accuracy of ROA without
constraint is even slightly reduced in a high-noise setting. The results
suggest that the network capacity can help improve performance
only when the network is constrained under noises. The constraint is
only effective under noises, otherwise there is no obvious
improvement under ideal conditions.

Impact of Learning Rate Adjustment
The best learning rate is determined by the validation set in the
experiment. Figure 3 plots the learning rates against write noises.
As the noise increases, the best learning rate increases slightly at the
beginning, σWN < 1, and then decreases as the accuracy decreases.
The best learning rate would drop below 1 (about 0.5). The
unexpected effect is too noisy for the network. Furthermore, we
also compared the results between the original learning rate (keep
at 1) and the best learning rate in Figure 5, Table 2 to illustrate the
superiority of our method. Similar to the previous item, their
difference at low noise is very small, and increases with the increase
in write noise, especially in more complex tasks. The accuracies of
5way-1shot, 10way-1shot and 20way-1shot tasks on Omniglot and
5way-1shot tasks onMiniImageNet are improved by about 4, 7, 15,
and 5%, respectively, when the σWN is greater than 2. The impact of
learning rate and write noise in 5way-1shot Omniglot tasks is
plotted in a heatmap as shown in Figure 6. The result suggests that
the best learning rate is about 2 for Omniglot and 4 for
MiniImageNet under acceptable noise.

DISCUSSION AND CONCLUSION

In this work, we developed a bi-level meta-learning scheme, ROA,
for memristor neural networks. It is a hybrid approach that
combines online learning and offline learning, which can
effectively alleviate the impact of the non-ideal properties of
memristors through one update step. A simulator was built
based on the parameters extracted from our memristor devices
and evaluated using the Omniglot dataset and MiniImageNet
dataset. Our experimental results demonstrate that the ROA
method can significantly improve data efficiency and training
speed, thereby achieving better performance than multi-step
adaption and offline learning under similar conditions. In
addition, our method shows a strong robustness to noise,
which facilitates the real-world applications of memristor
networks. The results suggest that, with the proposed, the
memristors are suitable as an accelerator for rapid learning
hardware rather than just a hardware inference or in-situ
learning with massive updates.

Moreover, memristor networks and the ROA method can
benefit from each other. The rapid adaption of ROA requires
that the weights in the neuromorphic hardware have on-chip
plasticity, which can be easily achieved by memristor
networks. On the other hand, the one-step adaption allows
the hardware network to extricate the weight update from the
non-ideal properties of memristors, thereby reducing the
accuracy loss in the mapping process. Collectively,

FIGURE 4 | Comparison of the accuracy of 5-step update offline and ROA in different write noise. (A) 5way-1shot on Omniglot. (B) 10way-1shot on Omniglot. (C)
20way-1shot on Omniglot. (D) 5way-1shot on MiniImageNet.

FIGURE 5 | Comparison of the accuracy of ROA, ROA without constraint (ROA-WC), no adjustment on learning rate (ROA-FLR) and baseline (ROA-WC-FLR) in
different write noise. (A) 5way-1shot on Omniglot. (B) 10way-1shot on Omniglot. (C) 20way-1shot on Omniglot. (D) 20way-1shot with the wider network on Omniglot.
(E) 5way-1shot on MiniImageNet.
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memristors are very suitable for accelerators to achieve
learning-to-learn capability. Our ROA scheme can improve
the performance of memristors, and facilitate broad
applications in neuromorphic architecture. The rapid
adaptation process could be implemented in a local mode
without the support of cloud servers, indicating a low
adaptation latency. Hence, the users’ personal data do not
need to be uploaded to server, ensuring privacy and security.
Furthermore, the flexible learning scheme can benefit
hardware neural networks to handle uncertain
environments and individual demands.
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