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The use of machine learning (ML) has become more widespread in many areas of
consumer financial services, including credit underwriting and pricing of loans. ML’s
ability to automatically learn nonlinearities and interactions in training data is perceived
to facilitate faster and more accurate credit decisions, and ML is now a viable challenger to
traditional credit modeling methodologies. In this mini review, we further the discussion of
ML in consumer finance by proposing uniform definitions of key ML and legal concepts
related to discrimination and interpretability. We use the United States legal and regulatory
environment as a foundation to add critical context to the broader discussion of relevant,
substantial, and novel ML methodologies in credit underwriting, and we review numerous
strategies to mitigate the many potential adverse implications of ML in consumer finance.
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INTRODUCTION

Within the financial services industry, lenders’ use of machine learning (ML) to measure and
identify risk in the provision of credit can benefit both financial institutions (FIs) and the
consumers and businesses that obtain credit from lenders. FIs generally have strong guardrails in
place for model development, validation, and audit that, if appropriately designed, can help
minimize the inherent risks associated with ML technologies (such as discrimination, privacy,
security, and other risks). A robust regulatory regime already mandates transparency,
nondiscrimination, and stability for predictive models.1 Because this governance process is
generally extensively prescribed, changing it to adopt new technology can be slow and arduous.
In this mini review, we first establish uniform definitions of key ML concepts so that market
participants, regulators, policymakers, and other stakeholders can communicate effectively
when moving toward the adoption of ML. To provide a realistic portrayal of the additional
governance required when deploying ML, this mini review then describes current best practices
for mitigating ML-related harms with controls aligned to the current United States legal and
regulatory environment.
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1E.g., The Equal Credit Opportunity Act (ECOA), The Fair Credit Reporting Act (FCRA), The Fair Housing Act (FHA), and
regulatory guidance, such as the Interagency Guidance on Model Risk Management (Federal Reserve Board, SR Letter 11–7).
The E. U. Consumer Credit Directive, Guidance on Annual Percentage Rates (APR), and General Data Protection Regulation
(GDPR) serve to provide similar protections for European consumers.
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DEFINITIONS

Establishing a common language is essential for stakeholders to
discuss issues productively. Since ML is an evolving field of
computational science, new vocabulary arises in the public
dialogue including terms and phrases that may, or may not,
be relevant to the practice of ML in lending. To further adoption
discussions, this section provides specific, uniform definitions for
key concepts.

Discrimination: Protected Classes and
Legal Standards
Since the 1960s, United States laws have prohibited illegal
discrimination and have evolved over time to establish a
strong framework for safeguarding the rights of certain groups
of consumers that have been historically disadvantaged and thus
deemed “protected classes.”2 For example, the Equal Credit
Opportunity Act (ECOA), enacted in 1974, prohibits illegal
discrimination in any aspect of a credit transaction based on
an applicant’s race, color, religion, national origin, sex, marital
status, or age, as well as other “prohibited bases.” Similarly, the
Fair Housing Act (FHA) prohibits illegal discrimination in the
mortgage lending or housing context.3

Discrimination perpetuated by shoddy ML models is often
encoded in data long before algorithms are trained (Hassani,
2020), but biases can also arise from poor experimental design
and other phenomenon not directly associated with ML model
mechanisms. However, compliance efforts relating to mitigation
of any illegal discrimination in lending tend to focus on modeling
outcomes. Two theories of liability under ECOA and FHA for
discrimination against members of protected classes are
“disparate treatment” and “disparate impact.”4 Below we
outline commonly accepted definitions of these terms and
their relationship to ML.

Disparate Treatment: Disparate treatment occurs when a
lender treats an applicant differently based on one of the
prohibited bases (e.g., race or sex) in any aspect of a credit
transaction, including the provision of credit and setting of
credit terms (e.g., pricing). Disparate treatment discrimination
is always illegal in lending in the United States and does not
require any showing that the treatment was motivated by
prejudice or a conscious intent to discriminate.

Disparate Impact: Disparate impact occurs when a lender
employs a neutral policy or practice equally to all credit applicants
but the policy or practice disproportionately excludes or burdens
certain persons on a prohibited basis. Disparate impact is not
necessarily a violation of law and may be justified by a business
necessity, such as cost or profitability, and by establishing there is
no less discriminatory alternative to the policy, practice, or model
(See text footnotes5).

Explanation, Interpretable Models, and
Scope Definitions
Transparency into the intricacies of ML systems is achieved today
by two primary technical mechanisms: directly interpretable ML
model architectures and the post hoc explanation of ML model
decisions. These mechanisms are particularly important in
lending, because under ECOA’s implementing regulation,
Regulation B, and the Fair Credit Reporting Act (FCRA), the
principal reasons for many credit decisions that are adverse to the
applicant must be summarized to consumers through a set of
short written explanations known as “adverse action notices.”

Adverse Action Notices: Under Regulation B, lenders must
notify an applicant in writing of the principal reasons for taking
an adverse action on a loan application within a specific time
period.6 When using ML systems to make credit decisions, the
principal reasons included on adverse action notices are
explanations based on ML system input features that
negatively affected the applicant’s score or assessment.

Regulation B provides standards for the factors lenders may
use and how lenders must inform applicants of credit decisions
based on credit scoring models.7 For a rejected application,
lenders must indicate the principal reasons for the adverse
action and accurately describe the features actually
considered. The notice must include a specific considered
input feature but is not required to state how or why this
feature contributed to an adverse outcome. Crucially, adverse
action notices are also part of a broader framework that enables
actionable recourse for consumer decisions based on
inaccurate data.

Interpretability and Explainability: Finale Doshi-Velez and
Been Kim define interpretability as “the ability to explain or to

2Civil rights legislation has a much longer history in the United States, beginning
with the 1866 Civil Rights Act (ratified in 1870), passed in the wake of the
United States Civil War. Modern civil rights legislation, beginning in earnest in the
1960s, initially focused on employment but has been extended to provide broader
protections, including in areas such as credit and housing. Non-discrimination in
the E. U. is enshrined in Article 21 of the Charter of Fundamental Rights, Article 14
of the European Convention on Human Rights, and in Articles 18–25 of the Treaty
on the Functioning of the E. U.
3Prohibited bases under FHA include race, color, religion, national origin, sex,
familial status, and disability. The GDPR, as an example of non-United States
regulation, prohibits use of personal data revealing racial or ethnic origin, political
opinions, and other categories somewhat analogous to protected bases.
4See CFPB Supervision and Examination Manual, Pt. II, §C, Equal Credit
Opportunity Act (Oct. 2015).

5The United States Supreme Court established the disparate impact theory in
Griggs v. Duke Power Co. (1971); however, there have been a number of subsequent
court cases challenging the extent to which disparate impact is cognizable under
ECOA. These issues are outside the scope of this mini review.
6See 12 CFR § 1,002.9. The term “adverse action” is defined generally to include a
“refusal to grant credit in substantially the amount or on substantially the terms
requested” by an applicant or a termination or other unfavorable change in terms
on an existing account. 12 CFR § 1,002.2 (c). Similar requirements for notices exist
in the E. U., although the requirement appears to be less stringent in some
instances. For example, FCRA adverse action notices apply to new and existing
credit lines, while the E. U. Consumer Credit Directive applies only to newly
extended credit. Moreover, commentators continue to debate the nuances of
whether and how the GDPR provides consumers a right to explanation for
decisions made by ML models.
7See 12 CFR § 1,002.9(b) and the Official Commentary thereto included in
Supplement I of Regulation B.
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present in understandable terms to a human” (Doshi-Velez and
Kim, 2017). Professor Sameer Singh of the University of
California at Irvine defines an explanation in the context of an
ML system as a “collection of visual and/or interactive artifacts
that provide a user with sufficient description of a system’s
behavior to accurately perform tasks like evaluation, trusting,
predicting, or improving a system” (Hall et al., 2019).
“Interpretable” usually describes directly transparent or
constrained ML model architectures, and “explanation” is
often applied to a post hoc process that occurs after model
training to summarize main drivers of model decisions8. Both
concepts are important for adverse action notice reporting,
because the more interpretable and explainable an ML system,
the more accurate and consistent the associated adverse action
notices.

Global and Local Scope: A closely related concept to
explanation is “scope.” ML systems can be summarized
“globally” (across an entire dataset or portfolio of
customers) and “locally” (for only a subset of a dataset or
a smaller group of customers, including a single customer).
Both global and local explanations are important to FIs when
deploying ML. Global explanation results are often
documented as part of an FI’s model governance
processes to meet regulatory standards on model risk
management,9 while local customer-specific explanations
are likely to be a primary technical process behind
adverse action notice generation for FCRA and ECOA
compliance.

CONSIDERATIONS AROUND
DISCRIMINATION

There are many ways that analysts and data scientists can
define and mitigate discrimination in ML (Barocas et al.,
2018).10 However, only a subset of the discrimination
measurement and mitigation techniques available today are
likely to be appropriate for fair lending purposes. This
subsection describes a few established discrimination
measurements, discusses some newer measures and
mitigation techniques, and explains why, if some newer
approaches are used, fair lending regulations must be
carefully considered in order to properly mitigate
noncompliance risk.

Traditional Methods for Identifying
Discrimination
Given the recent interest in fairness and ethics in ML, it may
appear that algorithmic discrimination is a new issue. On the
contrary, testing outcomes in education, lending, and
employment for discrimination is a decades-old discipline
(Hutchinson and Mitchell, 2019). For example, marginal effect
(ME)11 provides one way to measure disparate impact in ML
lending models. Other techniques, such as the adverse impact
ratio (AIR)12 and the standardized mean difference (SMD, which
is also known as “Cohen’s d”) (Cohen, 1988), which have a long
history of use in employment discrimination analyses, can also be
used for measuring disparate impact in lending.

Recently Proposed Discrimination
Definitions and Discrimination Mitigation
Techniques
Over recent years, ML and fair lending experts have explored
ways to measure and mitigate discrimination in ML. These
discrimination mitigation techniques come in three forms:
pre-processing, in-processing, and post-processing. Pre-
processing techniques [e.g., reweighing (Kamiran and Calders,
2012)] diminish disparities in the data used to train ML models.
In-processing methods [e.g., adversarial de-biasing (Zhang et al.,
2018)] are ML algorithms that themselves remove disparities
from their predictions as the models learn. Post-processing
techniques [e.g., reject option classification (Kamiran et al.,
2012)] change the predictions of an ML model in order to
minimize discrimination.13

Regulatory Compliance
It is imperative that FIs employ the appropriate use of
discrimination testing and mitigation methods for regulated
applications in fair lending because some methods may lead to
counterproductive results or even to noncompliance with anti-
discrimination statutes.

It is difficult to optimize on multiple metrics of fairness at one
time—there is necessarily a trade-off where making a model fairer
by onemeasure oftenmakes it appear less fair by another (See text
footnote 10). While academic literature on ML fairness has
focused on balancing error rates, regulators and courts have
generally focused on minimizing differences in favorable
outcomes between groups, regardless of the underlying
distribution of true outcomes within each group. Certain open
source and commercially available software have followed the

8In the text of this mini review, the authors use early definitions of interpretability
and explainability that have become accepted trade jargon. However, the authors
also note important work initiated by the United States National Institute of
Standards and Technology (NIST) that will likely shape these definitions in future
years (Phillips et al., 2020; Broniatowski 2021). In particular, Broniatowski’s work
based in Fuzzy-Trace Theory gives perhaps the most authoritative treatment to
date of the fundamental differences between interpretability, or high-level
contextualization based on purpose, values, and preferences, versus low-level
technical explanations.
9See Interagency Guidance onModel RiskManagement (Federal Reserve Board, SR
Letter 11–7).
10See also Twenty-one Fairness Definitions and Their Politics.

11See Consumer Financial Protection Bureau, Supervisory Highlights, Issue 9, Fall
2015, p. 29.
12See Part 1,607—Uniform Guidelines on Employee Selection Procedures (1978) §
1,607.4.
13We cite these specific references because they have influenced academic and
popular debates about algorithmic discrimination and are relevant for predictive
modeling practitioners in general. However, these techniques sometimes fail to
meet the requirements set forth by applicable regulations in fair lending as
addressed in the following section.
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academic practice and focused on measures of relative error
rates.14 While these are important and often useful measures
of fairness, if a lender were to choose among models based on
error rates alone, then they may cause traditional measures of
disparate impact, such asME (discussed above), to become worse.
Therefore, focusing on more traditional discrimination measures
may be the safer route for practitioners in fair lending.

Similar scenarios can also arise for other potential
discrimination mitigation techniques. Since ECOA generally
prohibits the use of protected class status when making a
lending decision—arguably even if the lender intends to use it
to make its lending decisions fairer—discrimination mitigation
methodologies that require explicit consideration of protected
class status in training or inference are unlikely to be considered
acceptable. In fact, because FIs are explicitly prohibited from
collecting information such as race and ethnicity (apart from
mortgage lending), these techniques may also simply be
infeasible.

Given such restrictions, mitigation approaches that perform
feature selection and hyperparameter searches may be
considered natural extensions of traditional approaches and
are likely to be subject to less concern. Figure 1 presents the
results of a multi-objective evolutionary search procedure in
which several lending models are found that retain the
performance quality and decrease disparate impact of an
example lending model, without the inclusion of protected
class information in any considered models. Using results
like those in Figure 1, FIs can select the most accurate
(highest on y-axis) and least discriminatory (rightmost on

x-axis) model that meets business and legal requirements.
Other methods that do not rebalance data or decisions and
that do not explicitly consider protected class status may gain
wider acceptance as they are used more frequently and are
shown to be effective ways to decrease discrimination
(Miroshnikov et al., 2020).

CONSIDERATIONS AROUND
TRANSPARENCY

Like discrimination testing and mitigation approaches, many
new techniques for understanding ML models have been
introduced in recent years, which can create both
transparent models and summaries of model decisions. They
are already being used in the financial services industry today15

and are likely to be deployed for lending purposes. This
subsection introduces some of these techniques and
important considerations for their use in lending.

Examples of Interpretable Machine
Learning Models
In the past, ML researchers and practitioners operated under
what appeared to be a natural trade-off: the more accurate a
model, the more complex and harder to understand and
explain. Today, the landscape has changed for predictive

FIGURE 1 | Results from a multi-objective evolutionary search procedure in which several lending models are found that retain the performance quality, but
decrease disparate impact, in a realistic lending model.

14E.g., aequitas and H2O Driverless AI.

15E.g., see, New Patent-Pending Technology from Equifax Enables Configurable AI
Models; see also, Deep Insights into Explainability and Interpretability of Machine
Learning Algorithms and Applications to Risk Management.
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modelers in credit lending with the advent of highly accurate
and highly interpretable model architectures that appear to
break the so-called “accuracy-interpretability trade-off.” In
fact, some leading scholars have posited that for structured
tabular data used most commonly in lending models, black
boxes are likely not more accurate than interpretable ML
models (Rudin, 2019).16 Interpretable ML models include:
variations of linear models [e.g., explainable boosting
machines (EBMs, also known as GA2Ms) (Lou et al.,
2013)]; constrained tree-based models [e.g., optimal sparse
decision trees (OSDTs) (Hu et al., 2019), monotonic gradient
boosting machines (MGBMs)17]; constrained neural networks
[e.g., Explainable Neural Networks (XNNs) (Vaughan et al.,
2018)]; novel or constrained rule-based models [e.g., scalable
Bayesian rule lists (SBRLs) (Yang et al., 2017) and CORELS
(Angelino et al., 2018)]; and several others. Levels of
interpretability vary from results understood only by
advanced technical practitioners (e.g., MGBMs or XNNs),
to results that business and legal partners could likely
consume directly (e.g., OSDTs or SBRLs), to something in-
between (e.g., EBMs). Beyond their obvious advantages for
adverse action notice requirements, interpretable ML models
may also assist practitioners in model governance and
documentation tasks, such as understanding which input
features drive model predictions, how they do so, and
which feature behavior under the model aligns with human
domain knowledge. Moreover, interpretable models may help
in discrimination testing and remediation by transparent
weighting and treatment of input features.

Examples of Post Hoc Explanations
Post hoc explanation techniques create summaries of varying
types and accuracy about ML model behavior or predictions.
These summaries can provide an additional, customizable layer
of explanation for interpretable ML models, or they can be used
to gain some amount of insight regarding the inner workings of
black-box ML models. Summary explanations can have global
or local scopes, both of which are useful for adverse action
notice generation, model documentation, and discrimination
testing. Post hoc explanations can be generated through
numerous approaches, including direct measures of feature
importance [e.g., gradient-based feature attribution (Ancona
et al., 2018), Shapley values (Roth, 1988; Lundberg and Lee,
2017)], surrogate models [e.g., decision trees (Craven and
Shavlik, 1996; Bastani et al., 2019), anchors (Ribeiro et al.,
2018), local interpretable model-agnostic explanations
(LIME) (Ribeiro et al., 2016)], and plots of trained model
predictions [e.g., accumulated local effects (ALE) (Apley and
Zhu, 2019), partial dependence (Friedman et al., 2001), and
individual conditional expectation (ICE) (Goldstein et al.,
2015)].

The Importance of Dual Scope Explanations
An important and often discussed aspect of ML interpretability
is the scope of an explanation—whether an explanation is local
or global. Many new research papers focus on local explanations
for evaluating the impact of a feature at the individual customer
level. However, seeing both a global and local view presents a
more holistic picture of model outcomes. For example, it is
important for actionability that a customer understand which
global factors resulted in an adverse action on their credit
decision (e.g., length of credit history), while also
understanding the local factors that are within their control
to achieve a favorable outcome in the near future (e.g., lower
utilization of credit limit).

Grouping Correlated Features for
Explanation
Many explanatory techniques are less accurate in the presence of
correlated input features (Altmann et al., 2019; Kumar et al.,
2020) as post hoc explanation methods do not often account for
dependencies between features. Grouping involves treating a
group of correlated features (with strong correlations between
features in the group and weak correlations with features
outside of the group) as one from an explanation standpoint.
Grouping can help produce consistent explanations by unifying
conditional and marginal explanations (Miroshnikov et al.,
2021) potentially addressing a point of contention in the
recent literature (Frye et al., 2020; Janzing et al., 2020). By
increasing the fidelity of post hoc explanations and
summarizing larger numbers of input features, grouping may
also help provide more meaningful adverse action notices to
customers.

Additional Concerns for Post Hoc
Explanations
Like all other ML techniques post hoc explanation approaches
have pros and cons, and they should never be regarded as a
perfect view into complex model behaviors. Well-known
pitfalls include partial dependence failing in the presence of
correlated or interacting input features, inaccurate surrogate
models that do not truly represent the underlying complex
model they seek to summarize, and inconsistencies in feature
importance values (Altmann et al., 2019; Hall, 2020; Kumar
et al., 2020). This subsection will briefly outline some of the
most fundamental issues for post hoc explanations:
inconsistency and problems with human comprehension of
explanations.

Inconsistent Explanations
Since many ML explanation techniques are inconsistent,
different ML models, different configurations of the same
ML model, or refreshing the same ML model with new data
can result in different explanations for the same consumer if
not controlled. Inconsistency bears special consideration in
financial services, especially for the generation of adverse

16See comparisons of EBMs with other interpretable and black-box models by
Microsoft Research: https://github.com/interpretml/interpret.
17Monotonic GBMs, as implemented in XGBoost or H2O.
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action notices for credit lending decisions, where two similar
models giving different explanations to the same applicant
may raise questions, if not lead to regulatory noncompliance
or reputational harm for the FI. To mitigate risks associated
with inconsistent explanations, FIs may consider pairing post
hoc explanations with constrained and stable ML models,
explicitly test for explanation stability, group correlated
features where appropriate for explanation, and/or

consider using explanation techniques with consistency
guarantees (Miroshnikov et al., 2021). As an example of
pairing constrained models with consistent explanations,
Figure 2 displays the global architecture of an XNN model
and associated Shapley value contributions for several
customer predictions on publicly available mortgage data.
(Figure 2 also provides an example of how so-called black-
box models can be re-architected and constrained to create

FIGURE 2 | An XNN trained to predict high-priced loans from publicly available mortgage data and local Shapley feature contributions for three specific customer
predictions (Vaughan et al., 2018): (A). XNN output layer—global weighting of nk subnetworks for XNN output; (B). Internal subnetworks—nk subnetworks associated
with a specific weighting in projection layer βk,j weights; (C). Projection layer—input layer weights that project data into the next layer of the XNN; and (D). Shapley value
local feature contributions for customers at the 10th, 50th, and 90th percentiles of model output, calculated with the DeepSHAPmethod (Lundberg and Lee, 2017;
Gill et al., 2020).
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transparent models that are more amenable to debugging by
technical practitioners).

Human Comprehension of Explanations
Concerns have been raised that nontechnical audiences (e.g.,
most credit applicants) cannot easily understand ML models
and explanations (Tomsett et al., 2018; Kumar et al., 2020;
Poursabzi-Sangdeh et al., 2021). In financial services, there are
several less technical audiences to consider, including
validation and audit personnel, business partners, legal and
compliance professionals, and consumers. The success of an
explainable ML project often hinges on the comprehension of
model behavior by less technical audiences, and specific user-
interaction modalities must be considered during system
design, implementation, and deployment.

Explanations for Discrimination Testing
Recent work has shown that explanation techniques can be used
to guide an understanding of both the discriminatory and
predictive impacts of each feature (Miroshnikov et al.,
2020).18 With this information, a model builder can structure
a search for alternative models more efficiently by removing
features with low importance and large contributions to
disparate impact, and by including important features that
contribute less toward disparate impact. In combination with
ever-increasing computing resources, the ability to apply
explanation techniques to understand specific drivers of
disparate impact makes testing a large number of possible
alternative models feasible, enabling model builders and
compliance professionals to perform a more robust search
for less discriminatory models that maintain their predictive
ability (Schmidt and Stephens, 2019; Schmidt et al., 2021).19

Regulatory Compliance
ECOA and Regulation B do not prescribe a specific number of
adverse action notices to share with consumers, nor do they
prescribe specific mathematical techniques.20 However,
regulatory commentary indicates that more than four
reasons may not be meaningful to a consumer. FIs also
have flexibility in selecting a method to identify principal
reasons. Regulation B provides two example methods for
selecting principal reasons from a credit scoring system but
allows creditors the flexibility to use any method that produces
substantially similar results. One method is to identify the
features for which the applicant’s score fell furthest below the
average score for each of those features achieved by applicants
whose total score was at or slightly above the minimum passing
score. Another method is to identify the features for which the
applicant’s score fell furthest below the average score for each
of those features achieved by all applicants. Both examples

appear to be generally aligned with high quality Shapley value,
gradient-based, or counterfactual explanations (Wachter et al.,
2017), and interpretable ML models. Such technologies can
also assist in compliance with model documentation
requirements.

CONCLUSION

This mini review provides a simplified, yet substantive,
discussion of key definitions and considerations for using ML
within the United States lending context. While questions
remain as to which methods will be most useful for ensuring
compliance with regulatory requirements, variants of
constrained models, Shapley values, and counterfactual
explanations appear to be gaining some momentum in the
broader lending community (Bracke et al., 2019; Bussman
et al., 2019). From the fair lending perspective, there are
well-established discrimination testing and mitigation
methodologies that have been used for decades. Fair lending
practitioners must now work with legal and compliance
colleagues to leverage recent ML advances without
unintentionally violating existing regulatory and legal
standards. Of course, discrimination and interpretability are
only two of many concerns about ML for first-, second-, and
third-line personnel at United States FIs. As models become
more sophisticated and FIs become more dependent upon them,
and as data privacy and artificial intelligence (AI) regulations
grow in number and complexity—as exemplified by the recent
E. U. proposal for AI regulation and increased saber-rattling by
the United States Federal Trade Commission (FTC), proper
model governance, and human review, and closer collaboration
between legal, compliance, audit, risk, and data science
functions will likely only increase in importance.
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