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Knowledge Graphs (KGs) such as Freebase and YAGO have been widely adopted in a
variety of NLP tasks. Representation learning of Knowledge Graphs (KGs) aims to map
entities and relationships into a continuous low-dimensional vector space. Conventional
KG embeddingmethods (such as TransE andConvE) utilize only KG triplets and thus suffer from
structure sparsity. Some recent works address this issue by incorporating auxiliary texts of
entities, typically entity descriptions. However, these methods usually focus only on local
consecutive word sequences, but seldom explicitly use global word co-occurrence
information in a corpus. In this paper, we propose to model the whole auxiliary text corpus
with a graph and present an end-to-end text-graph enhanced KG embedding model, named
Teger. Specifically, we model the auxiliary texts with a heterogeneous entity-word graph (called
text-graph),which entails both local and global semantic relationships amongentities andwords.
We then apply graph convolutional networks to learn informative entity embeddings that
aggregate high-order neighborhood information. These embeddings are further integrated
with the KG triplet embeddings via a gating mechanism, thus enriching the KG
representations and alleviating the inherent structure sparsity. Experiments on benchmark
datasets show that our method significantly outperforms several state-of-the-art methods.
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1 INTRODUCTION

Knowledge Graphs (KGs) such as Freebase Bollacker et al. (2008) and YAGO Suchanek et al. (2007)
have been widely adopted in a variety of NLP tasks. Typically, a KG consists of a set of triplets {(h, r,
t)} where h, r, t stand for the head entity, relationship and tail entity, respectively.

Based on the symbolic representation of KGs with triples, a variety of methods have been designed for
KG applications. As KG size increases, these methods are becoming infeasible on large-scale KGs due to
computation inefficiency and data sparsity. To address the challenge, representation learning for KGs has
been proposed to project the entities and relations into a continuous low-dimensional vector space. The
embeddings in the latent space can significantly promote computations of the semantic distances between
entities and have been proved to be helpful for knowledge graph completion, information extraction and
recommender systems (Hoffmann et al., 2011; Bordes et al., 2013b; Wang X. et al., 2019).

Existing representative methods for KG embedding have achieved promising results (Lin et al., 2015;
Dettmers et al., 2018). Nevertheless, these methods only exploit the structural information (i.e., existing
triplets) within a KG, which is inevitably sparse and incomplete. Many entities only appear in a few triplets,
making it difficult to learn good representations. To address this issue, some researches have incorporated
additional information (e.g., textual descriptions) to enrich theKG representations (Socher et al., 2013;Wang
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et al., 2014a; Xie et al., 2016; Xu et al., 2017; An et al., 2018). For
example, Xu et al. (2017); An et al. (2018) applied LSTM to encode the
semantics of entity descriptions, and further learned knowledge
representations with both triplets and descriptions. However, there
are two limitations of these works: 1) They can only capture the local
semantics in consecutive word sequences of the short entity
descriptions, but may ignore global word co-occurrence
information in the whole corpus. 2) CNN and LSTM models,
widely used to encode auxiliary texts in these methods, are good at
capturing short-range semantics, but are less effective on capturing
long-range semantic relationships (far apart entities or words) in the
texts, which has been confirmed by (Zhang et al., 2018).

To address the above two limitations, we propose to model the
whole auxiliary text corpus with a graph and present a novel end-to-
endText-graph enhancedKG representation learningmodel Teger. In
particular, wemodel the text corpus with a heterogeneous entity-word
graph (called text-graph in this paper), as shown in Figure 1. The edge
between an entity and a word is built if the word occurs in the text
description of the entity (local semantics). The edges between two
words are built according to their global co-occurrence information in
the text corpus (global semantics). In this way, far apart words in a
same entity description can be bridged by the entity, which better
captures the long-range relations. Based on the text-graph, Graph
Convolutional Network (GCN) (Kipf and Welling, 2017), a simple
and effective graph neural networkwhich is able to capture high-order
neighborhood information, is employed to encode the textual
information for entity embeddings. Thus, our model is able to
capture both local and global long-range semantic relationships
among entities and words. Next, the entity representations learned

by GCN are integrated with existing triplet embeddings using a
learnable gating function and form the final entity embeddings.
The whole model can be trained in an end-to-end fashion.

Figure 1 shows an example of the text-graph constructed from
the auxiliary texts. The entity “University of San Diego” is related
to the word “california” (contained in the auxiliary texts), which is
then connected to a word “america” based on their similarity.
Bridged by these intermediate words and entities, the relationship
“location/location/contains” between the entities “University of
San Diego” and “United States of America” is more likely to be
predicted. This example verifies the necessity of modeling global
long-range relationships among entities and words.

In contrast to the aforementioned text-enhanced methods for
KG embedding, our model based on a text-graph can better exploit
both the local and global semantics of auxiliary texts. As a consequence,
the entity representations learned by GCN based on the auxiliary text-
graph can better expand the KGs while reducing the KG sparsity.

To summarize, our contributions are threefold:

1) To the best of our knowledge, we are the first to model the whole
auxiliary texts with a text-graph and apply GCN for information
propagation, better preserving both local and global long-range
semantics of the texts.

2) We propose a novel end-to-end text-graph enhanced KG
representation learning model Teger, which alleviates the
structure sparsity of KGs by fully exploiting the text
information represented as a text-graph.

3) After being validated on popular benchmark datasets,
Teger is shown to have achieved the state-of-the-art

FIGURE 1 | An example of text-graph. The entity University of San Diego is connected with the entity San Diego by words in their text descriptions. Leveraging the
semantics in the text-graph could benefit the prediction of the link (United States of America,/location/location/contains, University of San Diego).
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performance, and significantly outperforms previous text-
enhanced models.

The rest of this paper is organized as follows. In Section 2, we
review the related work and Section 3 details our proposed model
Teger. Section 4 presents the experiments and result analysis.
Finally, we conclude our work in Section 5.

2 RELATED WORK

This section reviews the relevant works on KG representation
learning and graph neural networks.

2.1 KG Representation Learning
In recent years, an abundance of methods have been proposed for
representation learning of KG. Translation-based models, as a
powerful paradigm, have achieved promising performance in
downstream tasks. TransE (Bordes et al., 2013b) regards a
relationship as a translation from a head entity to a tail entity.
However, it performs poorly on modeling 1-to-N, N-to-1 and
N-to-N relationships. To mitigate this problem, a lot of variants of
TransE have been proposed. For example, TransH (Wang et al.,
2014b) regards a relationship as a hyperplane and projects head and
tail entities into a relational-specific hyperplane. TransR (Lin et al.,
2015) associates each relationship with a specific space when learning
embeddings. TransD (Ji et al., 2015) further simplifies TransR by
decomposing the projection matrix into a product of two vectors.
TransG (Xiao et al., 2016) models entities as random variables with
Gaussian distributions considering the uncertainty of entities.
Recently, RotatE (Sun et al., 2019) extends translation-based
models by representing relations as rotations in complex vector space.

Apart from translation-based models, semantic matching
models using similarity-based scoring function have been
explored (Yang et al., 2015; Trouillon et al., 2017; Kazemi and
Poole, 2018; Bansal et al., 2019). There are also convolution based
models for knowledge representation learning (Dettmers et al.,
2018; Nathani et al., 2019). ConvE (Dettmers et al., 2018) applies
a multi-layer convolutional network as the scoring function. GCN
based models (Vashishth et al., 2020; Zhang et al., 2020) are
proposed to further cover the hidden information in local
neighborhood surrounding a triplet. Moreover, some recent
works (Qu et al., 2021; Niu et al., 2020) design sophisticated
scoring functions for reasoning on knowledge graphs, based on
logic rules or reinforcement learning paradigm. One of the main
limitations of the above methods is that they only utilize triplets
in the KGs and suffer from the structure sparsity of the KGs.

To address the KG sparsity, text-enhanced KG representation
has been extensively studied as a powerful augmentation method.
For example, Socher et al. (2013) proposed a neural tensor
network model exploiting the average word embeddings of an
entity’s name to enhance its representation. Wang et al. (2014a)
utilized entity names and Wikipedia anchors to align the
embeddings of entities and words in the same space. Malaviya
et al. (2020) exploited BERT to encode the entity names of
commonsense KG. Zhong et al. (2015); Zhang et al. (2015);
Veira et al. (2019) improved the model of (Wang et al., 2014a)

with a new alignment model based on entity descriptions without
utilizing anchors. However, these methods struggle with ambiguity
within entity names. Hence Xie et al. (2016); Wang Z. et al. (2019)
learned knowledge representations using concise descriptions of
entities instead of entity names. Xu et al. (2017) proposed a gating
mechanism to integrate both structure and textual representations. An
et al. (2018) leveraged both entity descriptions and relationships
mentions (Riedel et al., 2013; Toutanova et al., 2015) to further
improve KG embedding. Qin et al. (2020) utilized generative
adversarial networks to generate KG embeddings for unseen
relations merely with noisy descriptions as input. Although these
methods achieve improved performance, they fail to fully exploit the
semantics of auxiliary texts. In these methods, each entity can only
exploit the semantic information in the local consecutive word
sequence of the short description, and ignore global relationships
among entities and words. Moreover, the majority of them use CNN
or LSTM-based for encoding texts, which are good at modeling
semantic composition but less advantageous on capturing long-
range correlations between entities and words within the descriptions.

Different from the existing works, in this work, we propose to
model the whole auxiliary texts of entities as a text-graph and
present a novel end-to-end text-graph enhanced KG
representation learning model.

2.2 Graph Neural Networks
Graph Neural Networks have received wide attention recently.
GCN (Kipf and Welling, 2017) has shown its power in embedding
graph structures by enabling information propagating from
neighboring nodes. The recent works utilize GCNs to encode
more complicated pairwise relationships between entity/tokens. It
has been proven that there is a rich variety of NLP problems that can
be best expressed with a graph structure (Wu et al., 2021). Yao et al.
(2019) proposed a GCN-based model viewed documents and words
as nodes of a graph, allowing word and document embeddings
jointly learned. Zhang et al. (2018) improved the performance of
relationship extraction by utilizing GCN over dependency trees.
Bastings et al. (2017) employedGCN to encode syntactic structure of
sentences formachine translation. Some recent studies (Schlichtkrull
et al., 2018) start to explore graph neural networks for knowledge
base completion task, considering only the structural information of
the KGs.

In this paper, we model the texts of entities as a graph and
apply GCN for obtaining informative entity embeddings that
encode textual information, in order to expand the KGs and
alleviate the structure sparsity.

3 THE PROPOSED METHOD

This section depicts our proposed text-graph enhanced KG
representation learning model Teger. Teger improves tradional KG
embeddings (e.g., TransE) by fully exploiting the auxiliary texts of
entities (e.g., entity descriptions) which are represented as a text-graph,
capturing both local and global long-range semantics of the texts.

Specifically, Teger consists of three components: (1) Triplet
embedding. The triplet embedding aims to obtain structural entity
embeddings (We use TransE as an exmaple in this work). (2)
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Auxiliary text encoding, which is to encode the semantics from
auxiliary texts to enrich the KG. To capture both the local and
global semantic relationships among entities and words, we first
construct a text-graph from the auxiliary texts and then apply
GCN to get entity embeddings by aggregating neighboring
semantic information. (3) KG representation fusion. The GCN-
yielded embeddings are furhter integrated with triplet embeddings
through a gating mechanism, which alleviates the structure sparsity of
the KGs. Figure 2 illustrates the three components of Teger.

3.1 Triplet Embedding
Teger is a general framework to enhance existing triplet
embedding methods. In this paper, we take TransE (Bordes
et al., 2013b) as an example.

Formally, given a triplet (h, r, t), TransE maps entities h, t and the
relationship r to embedding vectors h, t, r in the same space, and
requires that the embedding t to be close to h + r if (h, r, t) holds. The
score function of TransE is defined as the distance between h + r and t:

f (h, r, t) � −‖h + r − t‖22, (1)

where h and t are subject to the normalization constraint that the
magnitude of each vector is 1. In this form, relationships are
represented as translations in the embedding space: if (h, r, t)
holds, the embedding of the tail entity t should be close to the
embedding of the head entity h plus relationship vector r.

3.2 Auxiliary Text Encoding
This section presents our proposed auxiliary text encoding scheme.
We first detail how a text-graph is constructed from the auxiliary
texts of entities in a given KG, and then present the graph
convolutional encoder for obtaining entity embeddings that
encode the textual information.

Text-Graph Construction. To better exploit global and long-
range semantic relationships in the auxiliary texts, we build a
heterogeneous entity-word graph (called text-graph) from the
texts,G � {V, E} where V represents the nodes including entities E

and wordsW, and E denotes the edges. As shown in Figure 1, the
text-graph ecodes both local and global long-range semantic
relationships among entities and words.

Specifically, for each entity e ∈ E, we first select K words w1,
. . ., wK with the highest TF-IDF values in the description of e as
word nodes, and build edges between the entity e and w1, . . ., wK.
To incorporate global semantics among entities and words, we
further build edges between word pairs if their similarity score is
above a predefined threshold δ. In this work, we compute the
similarity score between a word pair based on the pre-trained
word embeddings using Word2Vec on Google News dataset1.
Figure 1 is an example of entity-word graph G � {V, E}
constructed from the auxiliary texts.

Graph Convolutional Encoder. After constructing the text-
graph from the auxiliary texts, GCN which is effective in
capturing high-order neighborhood information, is applied to
learn the representations of entities that aggregate high-order
semantic information. Note that we apply TransE to obtain pre-
trained entity embeddings e, and then initialize the embedding w
of a word by averaging the its 1-hop neighboring entity
embeddings in the graph G. In this way, the input embeddings
of entities and words are in the same semantic space, thus we can
directly apply GCN on the text-graph.

Formally, consider the text-graph G � {V, E} where V and E
represent the set of nodes (including entities and words) and
edges respectively. We introduce an adjacency matrix A of G and
its degree matrix D, where Dii � ΣjAij, where the diagonal
elements of A are set to 1 with self-loops. Let X ∈ RM×N be
the matrix containing the pre-trained embeddings of all the nodes
(each row is a feature vector xv for a node v), the embeddings
H(l+1) of all the nodes are updated as follows:

H(l+1) � σ D−12A
̃
D−12H(l)W(l) +H(l)( ), (2)

FIGURE 2 | Illustration of Teger for text-graph enhanced KG embedding.

1https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/
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where H(l) is the hidden states of nodes in the lth layer, σ(·) is a non-
linear activation function. Initially, H(0) is set to X. Intuitively,
multiplication with D−1

2A
̃
D−1

2 means that, for every node, we
smooth its feature with all the feature vectors along graph structure.
The addition of H(l) represents a simple skip-connection, further
encouraging preservation of information about the central node.

After going through an L-layer GCN, we get a new set of entity
embeddings which aggregate semantics from their neighbors in
the text-graph. The entity embeddings encode both local and
global semantics from the auxiliary texts, which will enrich the
KG and alleviate its structure sparsity.

3.3 KG Representation Fusion
In this section, we describe how to obtain final KG embeddings
that combine both the textual information of the auxiliary texts
and the structural information of triplets in the KG.

Specifically, as we have ed encoding the auxiliary texts and es (based
on TransE/ConvE) encoding the structural information (i.e., triplets)
in the KG, we adopt a learnable gating function (Xu et al., 2017) to
integrate entity embeddings from the two sources. Formally,

e � ge⊙ es + (1 − ge)⊙ ed , (3)

where ge is a gating vector to trade-off information from two
sources with all elements in [0, 1], and ⊙ is element-wise
multiplication. We assign a gate vector ge to each entity e, which
means each dimension of es and ed for entity e are summed by
different weights. To constrain that the value of each element is in [0,
1], we compute the gate with the sigmoid function:

ge � σ( g̃e), (4)

where g̃e is a real-value vector and is learned in the training process.
After fusing the two types of embeddings with the gating

function, we obtain the final entity embeddings which encode
both textual information from the auxiliary texts and structural
information from triplets in the KG. Compared to existing triplet
embedding methods, Teger expands the KG by exploiting both local
and global semantic relationships extracted from the auxiliary texts,
with the aim to alleviate the KG sparsity problem.

3.4 End-to-End Model Training
We train the model parameters, including the weight matrices of
GCN, the gating vectors and the word, entity and relation
embeddings in an end-to-end fashion by minimizing the
following loss function L:

L � Σ
(h,r,t)∈S

Σ
(h′ ,r,t′)∈S′

max(c + f (h, r, t)
− f (h′, r, t′), 0), (5)

where S is the collections of correct triplets, S′ is the set of
incorrect triplets, and c is the margin between correct and
incorrect triplets. The triplet set S′ is the negative sampling set
of S by replacing the head or tail entity in correct triplets.We follow
the sampling strategy “bern” in (Wang et al., 2014b) to generate
negative samples. Such a margin-based ranking loss can encourage
discrimination between golden triplets and incorrect triplets. The
scoring function f (h, r, t) for a triplet (h, r, t) is defined as:

f (h, r, t) � ‖(gh ⊙ hs + (1 − gh)⊙ hd)+
r − (gt ⊙ ts + (1 − gt)⊙ td)‖22, (6)

where gh and gt are the gating vectors of entity h and t respectively.
We use Adam (Kingma and Ba, 2014) for model optimization.

4 EXPERIMENTS

In this section, we evaluated the performance of our proposed
method Teger on the tasks of link prediction and triplet
classification, against state-of-the-art baseline methods.

4.1 Experimental Setup
Datasets. We evaluated our method Teger on two knowledge bases:
FB15K which is a subset of Freebase Bollacker et al. (2008) andWN18
(Bordes et al., 2013b)which is a subset ofWordNet. Both datasets come
with textual descriptions of each entity, which we use as the auxiliary
texts. Specifically, WordNet is a large lexical database of English with
each entity as a synset which consists of several words and corresponds
to a distinct word sense. Freebase is a large knowledge graph of general
world facts. The dataset FB15K2 is offered by (Xie et al., 2016), which
extracts a short description for each entity from its corresponding wiki-
page. In FB15K, the average length of the entity descriptions is 69 after
removing stop words.While for the datasetWN18, the length of entity
descriptions is smaller, containing 13 words in average. The statistics of
the datasets are detailed in Table 1. Note that for KGs where entity
descriptions are absent, one can take the entities as queries and extract
short text snippets describing the queries with search engines.

Baselines. We compared Teger with the state-of-the-art KG
embedding methods as follows:

• Basic Models: We compared Teger with some basic models,
learning KG representation without text information. Among
which, TransE (Bordes et al., 2013b) is a classic translation-based
knowledge graph embeddingmodel. UnS (Unstructuredmodel)
(Bordes et al., 2012) is a simplified version of TransE by setting
all r � 0. TransH (Wang et al., 2014b) improves TransE by
introducing relationship-specific hyperplanes. TransR (Lin et al.,
2015) introduces relationship-specific spaces. TransD (Ji et al.,
2015) further simplifies TransR by decomposing the projection
matrix into a product of two vectors. SME (Bordes et al., 2013a)
uses similarity-based scoring functions with neural network
architectures. There are two versions of SME: a linear version
SME (linear) and a bilinear version SME (bilinear). We also
generalize our model Teger to the state-of-the-art method
ConvE (Dettmers et al., 2018) which employs a convolutional
network model as scoring function, and compare it
(i.e., Teger_ConvE) with ConvE.

• Text-Enhanced Models: Text-enhanced models incorporate
textual information for KG representation learning. We
compared our model Teger with state-of-the-art text-
enhanced models based on TransE including J (LSTM)/J
(A-LSTM) Xu et al. (2017) and AATE_E (An et al., 2018). J
(LSTM)/J (A-LSTM) uses LSTM or attention-based LSTM to

2https://github.com/xrb92/DKRL
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encode the descriptions. AATE_E uses mutual attention based
LSTM to learn textual embeddings from both entity descriptions
and English Wikipedia pages.

Parameter Settings. We selected the threshold δ among {0.2,
0.4, 0.6, 0.8}, the topKwords for each entity among {5, 10, 15, 20},
the margin c among {1, 2, 4}, the embedding dimension d among
{20, 40, 100}, the learning rate λ among {0.0001, 0.001, 0.01, 0.1},
batch size b among {1,000, 3,000, 5,000, 10,000}, the layers of
GCN L among {1, 2, 3}. The activation function σ(·) in GCN is set
to tanh (·). The best configurations obtained through experiments
on validation set are shown in Table 2.

4.2 Link Prediction
Link prediction is a subtask of knowledge graph completion, which
aims to predict missing h or t in a triplet (h, r, t). For each missing
entity, this task is to give a ranked list of candidate entities from the
KG, rather than just guessing the best answer. Following (Bordes
et al., 2013b), we conducted experiments on FB15K and WN18.

Since there are only correct triplets in the KG, we constructed
corrupted triplets (h′, r, t′) in KGs for a triplet (h, r, t) by randomly
replacing the head/tail entity with other entities using Bernoulli
Sampling (Wang et al., 2014b). Then we ranked these entities in
descending order by the scoring function f. Given the entity ranking
list, we employed two evaluation metrics (Bordes et al., 2013b): (1) the
average rank of correct entities (MR); (2) the proportion of correct
entities in the top-10 ranked entities Hits@10. Corrupted triplets may
also exist in the KG, and such a prediction should not be regarded as an
error. Thus, following (Bordes et al., 2013b), we removed those
corrupted triplets which appear in either training, validation or test
sets before getting the ranking lists. The overall results are presented in
Table 3.

Overall Results. In Table 3, one can observe that our model
Teger_TransE significantly outperforms TransE, which indicates
that knowledge representation can greatly benefit from text
descriptions. Furthermore, Teger_TransE achieves better
performance than other text-enhanced methods based on TransE,
without an attention mechanism. The improvements of Teger_TransE
over J (LSTM) and J (A-LSTM) models which use the same entity

descriptions demonstrate that Teger better exploits the semantics of
auxiliary texts. Teger benefits from the text-graph constructed from
auxiliary texts, which captures the global relationships among entities
and words. Teger_TransE also outperforms AATE_E, which use long
Wikipedia articles corresponding to the entities (Shaoul, 2010)
(containing 495 words on average). This further demonstrates the
effectiveness of Teger in making full use of limited text information. In
futurework, we could explore to utilize such longer textual information.

We can also see from Table 3 that our model Teger_TransE
achieved comparable performance to the state-of-the-art models
including TransD and ConvE. It is worth noting that our proposed
framework Teger can be transferred to these models, further
improving their performance. We explored the transfer of Teger to
the best baseline model ConvE and found that Teger_ConvE achieves
better results than ConvE on both datasets. It further demonstrates the
effectiveness of our text-graph enhanced KG embedding model. Note
that Teger is based on real-vector space, which cannot be directly
generalized to complex-vector basedmodels, such as RotatE (Sun et al.,
2019). We would like to extend our model to complex vector space in
the future.

On the WN18 dataset, we observed that the mean rank (MR)
of Teger_TransE is worse than the state-of-art models. The reason
may be thatMR could be largely influenced by one extremely bad case,
while themetric ofHits@10would not. Since the entity descriptions of
some entities in the data set are quite short, e.g., containing only one
word, the semantic propagation may be limited.

Detailed Results on Different Types of Relationships. To
further analyze the effect of our model Teger_TransE, following
Bordes et al. (2013b) and (Han et al., 2018), we divided the
relationships into four types: 1-to-1, 1-to-N, N-to-1 and N-to-N,
for which the proportions in FB15K are 26.3%, 22.7%, 28.2% and
22.8% respectively. Table 4 presents the results of Teger_TransE on
four types of relationships on link prediction task.

Experimental results inTable 4 show that ourmodel Teger_TransE
achieve the best perfomance on most cases. All the models including
AATE_E, J (LSTM), J (A-LSTM) which extend TransE to incorporate
auxiliary texts consistently outperform TransE. It demonstrates that
the textual information can effectively enrich the semantics of a KG,
alleviating its structure sparsity and learning better KG embeddings. It
is worth noting that compared to the baseline method TransE, our

TABLE 1 | Statistics of the datasets.

Dataset #Relationship #Entity #Word #Train #Valid #Test

FB15K 1,341 14,904 28,383 472,860 48,991 57,803
WN18 18 40,493 30,519 141,442 5,000 5,000

TABLE 2 | Parameter settings.

Parameter Value

FB15K WN18

Top K words 5 5
Threshold δ 0.6 0.6
Margin c 4 4
Embedding dimension d 100 40
Learning rates λ 0.0001 0.0001
Batch size b 10,000 3,000
Layers of GCN L 2 2

TABLE 3 | Results on link prediction. MR is the lower the better; Hits@10 is the
higher the better.

Models WN18 FB15K

MR ↓ Hits10 ↑ MR ↓ Hits10 ↑

UnS 304 38.2 979 6.3
SME (linear) 533 74.1 154 40.8
SME (bilinear) 509 61.3 158 41.3
TransH 303 86.7 84 58.5
TransR 225 92.0 77 68.7
TransD 212 92.2 91 77.3
TransE 251 89.2 125 47.1
AATE_E 123 94.1 76 76.1
J (LSTM) 95 91.6 90 69.7
J (A-LSTM) 123 90.9 73 75.5
Teger_TransE 168 94.7 72 76.3
ConvE 374 95.6 51 83.1
Teger_ConvE 336 95.6 47 85.1
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model Teger_TransE achieves significant performance gains. It shows
that by making full use of the semantic relationships within short text
descriptions through GCN, we are able to learn KG representations of
much higher quality. It can also be observed that Teger_TransE
outperforms all the other TransE based text-enhanced models on
almost all the categories of relationships. We believe the reason is that
Teger better exploits the semantic information from auxiliary texts by
modeling the texts as a graph which captures both local and global
long-range semantic relationships among entities and words.

4.3 Triplet Classification
In this section, we evaluated different methods on the triplet
classification task, which aims to confirm whether a given triplet
(h, r, t) is correct or not. Following Socher et al. (2013) and (Han
et al., 2018), we created negative triplets by replacing entities. For the
classification of a triplet (h, r, t), we classified it as “correct”when the
score of the triplet is equal or greater than a predefined threshold Tr.
The threshold Tr for a relationship r is determined by maximizing
the classification accuracy on the validation set.

Table 5 presents the results of triplet classification on FB15K and
WN18. As we can see, on FB15K, all the text-enhanced methods
outperform the triplet embedding methods based on only structure
information. In addition, all the TransE based text-enhanced models
including J (LSTM), J (A-LSTM) and our Teger_TransE significatly
outperform TransE on both datasets. These observations demonstrate
the effectiveness of leveraging auxiliary texts to enrich KG
embeddings. Our model Teger_TransE obtains the best
performance on WN18, while achieves inferior performance on
FB15K. The reason could be that the entity descriptions in WN18
are shorter, which can benefitmore from global semantic information.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose Teger, a novel end-to-end text-graph
enhanced knowledge graph representation method. Teger enriches
the KG embedding by effectively incorporating the auxiliary text
information represented by a graph. Particularly, we first construct
a text-graph from the auxiliary text and then apply GCN to obtain
entity embeddings by aggregating neighboring information, which can
capture both local and global semantic relationships among entities
and words. The GCN-yielded embeddings are then integrated with a
gating mechanism to augment existing KG embeddings based on
triplets and alleviate the structure sparsity of the KG. Experiments on
two benchmark datasets demonstrate the superiority of Teger for text-

enhancedKG embedding by representing the auxiliary texts as a graph
and effectively incorporating the textual information.

In future work, we will explore to apply graph attention
networks for encoding the text-graph, considering that there
could be some noise in the texts. It would also be interesting
to generalize Teger to complex-vector space.
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TABLE 4 | Results on FB15K by the category of relationships.

Tasks Prediction Head (Hits@10) Prediction Tail (Hits@10)

Relationship Category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

TransE 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransD 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2
AATE_E - 96.1 35.2 49.1 - 32.2 98.3 60.3
J (LSTM) 81.3 88.9 18.8 45.2 80.1 25.4 89.6 52.4
J (A-LSTM) 83.8 95.1 21.1 47.9 83.0 30.8 94.7 53.1
Teger_TransE 87.3 96.3 54.1 75.9 84.9 54.9 95.5 79.1

TABLE 5 | Results on triplet classification.

Datasets WN18 FB15K

TransE 92.9 79.8
TransH − 79.9
TransR − 82.1
TransD − 88.0
J (LSTM) 97.7 90.5
J (A-LSTM) 97.8 91.5
Teger_TransE 98.1 89.5
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