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Background: With the dearth of trained care providers to diagnose congenital heart
disease (CHD) and a surge in machine learning (ML) models, this review aims to estimate
the diagnostic accuracy of such models for detecting CHD.

Methods: A comprehensive literature search in the PubMed, CINAHL, Wiley Cochrane
Library, and Web of Science databases was performed. Studies that reported the
diagnostic ability of ML for the detection of CHD compared to the reference standard
were included. Risk of bias assessment was performed using Quality Assessment for
Diagnostic Accuracy Studies-2 tool. The sensitivity and specificity results from the studies
were used to generate the hierarchical Summary ROC (HSROC) curve.

Results: We included 16 studies (1217 participants) that used ML algorithm to diagnose
CHD. Neural networks were used in seven studies with overall sensitivity of 90.9% (95% CI
85.2–94.5%) and specificity was 92.7% (95% CI 86.4–96.2%). Other ML models included
ensemble methods, deep learning and clustering techniques but did not have sufficient
number of studies for a meta-analysis. Majority (n�11, 69%) of studies had a high risk of
patient selection bias, unclear bias on index test (n�9, 56%) and flow and timing (n�12,
75%) while low risk of bias was reported for the reference standard (n�10, 62%).

Conclusion: ML models such as neural networks have the potential to diagnose CHD
accurately without the need for trained personnel. The heterogeneity of the diagnostic
modalities used to train these models and the heterogeneity of the CHD diagnoses
included between the studies is a major limitation.
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INTRODUCTION

The global prevalence of congenital heart disease (CHD) is six to nine children per 1,000 live births
(Marelli et al., 2007; van der Linde et al., 2011). Although mortality due to CHD has halved in high
income countries (HICs), low andmiddle income countries (LMICs) have seen a rise in disability and
death in the last 20 years (IHME, 2015). Scaling up surgical care in these countries can reduce CHD
related deaths by 58% (Higashi et al., 2015). However, prompt identification of patients is crucial to
ensuring improved outcomes.

In HICs, the vast majority of children with CHD are diagnosed timely, mainly due to
comprehensive pre- and postnatal screening (Lytzen et al., 2018). Echocardiography is
considered to be the gold standard for diagnosis of pediatric and adult CHD (Mcleod et al.,
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2018). However, this diagnostic modality requires the existence of
a healthcare systemwith appropriately trained personnel (Mcleod
et al., 2018). The paucity of healthcare professionals in resource
constrained areas means that many patients may depend on lesser
trained health care providers for healthcare (Abdullah et al.,
2014), resulting in higher rates of missed diagnoses and
subsequent delays in treatment. Additionally, unavailability of
echocardiographic machines, technologists, or expert
interpretation in these areas may require many patients to
travel large distances to tertiary care centers for confirmation
of diagnosis.

Use of artificial intelligence (AI) in healthcare and its utility in
medicine, from diagnosis and risk assessment to outcome
predictions for a wide variety of illnesses has been extensively
described in the literature (Koivu et al., 2018; Senders et al., 2018;
Harris et al., 2019). The current developments in machine
learning (ML), a subset of AI, has renewed the interest in
using intelligent systems in healthcare. ML uses algorithms to
allow computers to find patterns in data and make predictions
without being given specific instructions (Beam and Kohane,
2018). The technology can analyze large amounts of complex data
and identify previously unknown relationships. ML models are
broadly classified as supervised, unsupervized, and semi-
supervized when the data are fully labeled, unlabeled or
partially labeled, respectively (Zhang, 2010). For an ML model
to be successful and generalizable to new cases, the data from
which it learns needs to be robust and sufficiently vast (Halevy
et al., 2009).

The utility of ML in aiding diagnosis is not only beneficial in
resource-limited areas, but presents universal opportunities for
healthcare (Beam and Kohane, 2018). Specifically in cardiology,
ML has potential applications in cardiac diagnostic imaging
(Gandhi et al., 2018), electrocardiogram (ECG) interpretation
(Mincholé et al., 2019), and auscultation (Leng et al., 2015), and
therefore, has the potential to be used as a diagnostic aid for
identification of structurally abnormal hearts and specific types of
CHDs. The advances in AI in recent years have shown great
improvements in recognition of cardiac shape, size and structure,
thus presenting a potential solution to the scarcity of diagnostic
services in LMICs. However, for ML to be fully incorporated in
clinical care as a diagnostic tool, the accuracy of its diagnostic
ability needs to be evaluated. The objective of this review is to
estimate the diagnostic accuracy ofMLmodels for detecting CHD
diagnosed by an expert clinician or through echocardiography
(reference standard).

MATERIALS AND METHODS

Literature Search
The protocol for the review was prospectively registered at
PROSPERO (CRD42020186672). A comprehensive literature
search in the PubMed, CINAHL, Wiley Cochrane Library, and
Web of Science electronic databases was performed to identify
relevant articles published until March 31, 2020. The search
strategy was (“Artificial Intelligence [Mesh]” OR “Artificial
intelligence” OR “AI” OR (((“Machine”) OR (“Deep”) OR

(“Ensemble machine”)) AND (“Learning”)) OR “Processing”
OR (((“Supervised”) OR (“unsupervised”)) AND “learning”))
OR “Neural network*”) AND (“Heart Defects, Congenital
[Mesh]” OR (((“ventric*”) OR (Atri*) OR (sept*)) AND
(“defect”)) OR “tetralogy” OR (((“pulmonary”) OR
(“tricuspid”)) AND (“atresia”)) OR “patent ductus” OR
“transposition” OR (((“pulmonary”) OR (“aortic”)) AND
(“stenosis”)) OR “Ebstein anomaly” OR “coarctation of aorta”
OR “hypoplastic left heart” OR “truncus arteriosus”). All records
were imported to Endnote X9 for management and duplicate
records were deleted. Two authors (ZH and UJ) independently
screened titles and abstracts to assess for potential eligibility. Full
texts of all screened studies were reviewed for final selection.
Titles of excluded literature along with the reason for exclusion
were recorded. We followed the Preferred Reporting Items for
Systematic reviews and Meta-Analyses (PRISMA) guidelines for
diagnostic test accuracy for analysis reporting in this publication
(McInnes et al., 2018).

Eligibility Criteria
All cross-sectional, case-control and cohort studies that reported
the diagnostic results of a ML algorithm for the detection of CHD
as compared to a reference standard (categorized as an imaging
and/or expert confirmation) and were published in English
language were included. No restrictions were applied based on
the age of diagnosis for CHD or type of ML algorithm used in the
study. Studies with an unclear description of reference standard
and studies which did not explicitly state the type of cardiac defect
were excluded. In studies where both congenital and acquired
defects were included, data were extracted only for CHD.

Data Extraction
Two authors (ZH and UJ) independently extracted information
in a pre-formed data extraction sheet. Data obtained included
information about the study (first author, year of publication,
journal, study title, country, income region of the country
according to the World Bank (Organization, 2017), aim of the
study, study design, study setting, sample size (including size of
training and test set) and method of population selection), the
patients (age range, type of CHD), the ML algorithm used (refer
to Table 1 (J, 2019), the reference standard, the results
(sensitivity, specificity, and area under the curve), validation
method of the ML algorithm, and sub-group data if present.
Disagreements during the literature selection, data extraction,
and risk assessment were resolved by discussion and consensus of
the authors. In case of disagreement, a third reviewer (JKD) was
involved for final decision.

Risk of Bias Assessment
The risk of bias was assessed by two authors independently using
Quality Assessment for Diagnostic Accuracy Studies-2
(QUADAS-2) tool (Whiting et al., 2011). Domains for risk of
bias included patient selection, index test, reference standard, and
flow and timing with the first three domains also considered in
terms of applicability concerns. If one of the questions within the
domain was scored at high risk of bias, the domain was scored as
high risk.
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Data Analysis
For all included studies, we entered the data provided into
Review Manager five software (Review Manager 5.3)
(Cochrane, 2008) where the sensitivity, specificity and their
95% confidence intervals (CIs) were presented in the form of
forest plots and receiver operating characteristic (ROC)
curves. After grouping atleast four studies that used a

specific type of ML model (as shown in Table 1), a meta-
analysis was performed. This analysis utilized the sensitivity
and specificity results from each included study using the
metandi command for bivariate model in STATA version 16
using (Stata-Corp, College Station, Texas, United States)
(StataCorp, 2007) to generate the hierarchical Summary
ROC (HSROC) curve.

TABLE 1 | Categorization and brief description of ML models.

Types of algorithms Description

Neural networks Mimics the biological neural network to analyze data
Deep learning Uses a combination of artificial neural networks in a computationally efficient manner
Ensemble methods An amalgamation of predictions of multiple weak models used to strengthen overall prediction
Regression algorithms Maps the relationship between the input and output variable using a measure of error
Regularization methods It is an extension of regression models but favors simpler models that are generalizable
Clustering methods An unsupervized machine learning technique that uses the inherent structures in the data to organize the data into groups of

maximum commonality
Dimensionality reduction Similar to clustering but summarizes data using less information
Rule system Extract rules between variables in the existing dataset to explain observed relationships
Bayesian methods Explicitly applies Bayes’ theorem for the problem
Decision tree methods Uses actual values of features in the data to build a model
Instance-based models Compares new data to the example database (built by the model) using a similarity measure in order to make a prediction
Natural language processing Converts textual data to a machine readable format

FIGURE 1 | Search flow diagram.
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RESULTS

The search strategy identified 6,652 articles from which 90 studies
met the eligibility criteria for full text screening. We excluded 74
studies and the remaining 16 studies were included in the review.
Out of the 16 included studies; meta-analysis was conducted for
seven studies while nine studies were narratively synthesized
(refer to Figure 1 for the study flow diagram) (DeGroff et al.,
2001; Yang et al., 2002; Bhatikar et al., 2005; Higuchi et al., 2006;
De Vos and Blanckenberg, 2007; Ye et al., 2011; Gharehbaghi
et al., 2015; Zhang and Pohl, 2015; Gavrovska et al., 2016; Kotb
et al., 2016; Sepehri et al., 2016; Karar et al., 2017; Pereira et al.,
2017; Meza et al., 2018; Diller et al., 2019a; Bahado-Singh et al.,
2020). The characteristics of included studies (n � 16) have been
outlined in Table 2. Majority of the studies were from HICs (n �
10, 62.5%) followed by upper middle income countries (UMICs)
(n � 4, 25%) and LMICs (n � 2, 12.5%). Ten studies (n � 62.5%)
were case control study designs, five studies (n � 31.25%) were

cross sectional while one study (n � 6.25%) was a cohort design.
The sample size of these studies ranged from 22 (Karar et al.,
2017) to 824 participants (Kotb et al., 2016). The types of CHDs
included Tetralogy of Fallot, Transposition of great arteries,
coarctation of aorta, atrial and/or ventricular septal defects,
and valvular conditions (stenosis or regurgitation at
atrioventricular or semilunar valves). Due to the small
number of studies for each of these diagnostic conditions,
these were all labeled as an umbrella term of CHD for the
purpose of this review. The reference standard for most of the
studies was echocardiography (n � 9, 56.3%) (DeGroff et al.,
2001; Yang et al., 2002; Bhatikar et al., 2005; Higuchi et al.,
2006; De Vos and Blanckenberg, 2007; Gharehbaghi et al.,
2015; Gavrovska et al., 2016; Kotb et al., 2016; Meza et al.,
2018) or the expert clinician (n � 7, 43.7%) (Ye et al., 2011;
Zhang and Pohl, 2015; Sepehri et al., 2016; Karar et al., 2017;
Pereira et al., 2017; Diller et al., 2019b; Bahado-Singh et al.,
2020) who made the final diagnosis.

TABLE 2 | Table of included studies.

Author
and year

Country Income
region

Age range Study
design

Input Index
test

Reference
standard

Sensitivity
(%)

Specificity
(%)

Bahado-Singh
et al. (2020)

United States High Neonates Case-
control

Genetic
makeup

DL Expert Single genetic
marker �
95.51;

combination of
markers
91.7%

Single genetic
marker � 93.8;
3 combination
of markers
� 87.5%

Bhatikar et al.
(2005)

United States High Not specified Case-
control

Heart
sounds

ANN Echocardiography 88 83

De Vos and
Blanckenberg
(2007)

South Africa Upper-
middle

2 months–16 years Case-
control

Heart
sounds

ANN Echocardiography 90 96.46

DeGroff et al.
(2001)

United States High 1 week–15 years Case-
control

Heart
sounds

ANN Echocardiography 100 100

Diller et al.
(2019a)

United Kingdom
and Germany

High Adults Case-
control

Images DL Expert NR NR

Gavrovska et al.
(2016)

Serbia Upper-
middle

7–19 years Cross-
sectional

Heart
sounds

ANN Echocardiography 93.1 94.1

Gharehbaghi
et al. (2015)

Iran Upper-
middle

2.5–12 years Cross-
sectional

Heart
sounds

NN, CSVM Echocardiography NN: 84,
CSVM: 66.8

NN: 85.7,
CSVM: 78.2

Higuchi et al.
(2006)

Japan High Not specified Cross-
sectional

Heart
sounds

ANN Echocardiography NR NR

Karar et al.
(2017)

Egypt Lower-
middle

Not specified Case-
control

Heart
sounds

Rule-based
classification

tree

Expert 80 100

Kotb et al.
(2016)

Egypt Lower-
middle

1 week–14 years Cross-
sectional

Heart
sounds

HMM Echocardiography 98 89

Meza et al.
(2018)

Canada High Neonates Cohort Images Cluster
analysis

Echocardiography NR NR

Pereira et al.
(2017)

United States High 1–7 days Case-
control

Images SVM Expert NR NR

Sepehri et al.
(2016)

Iran Upper-
middle

1–18 years Cross-
sectional

Heart
sounds

NN Expert 87.29 87.89

Yang et al.
(2002)

Japan High 12–56 years Case-
control

ECG ANN Echocardiography 91.4 91.7

Ye et al. (2011) United States High Case-
control

Images Non-
linear SVM

Expert 95.45 83.33

Zhang and Pohl
(2015)

United States High Not specified Case-
control

Images LR Expert NR NR

Notes: ANN: artificial neural network; CSVM: conventional support vector machine DL: deep learning; ECG: electrocardiogram; HMM: hidden markov model LR: logistic regression; MLP:
multilayer perceptron; NN: neural network; SVM: support vector machine.
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Methodological Quality of Included Studies
Risk of Bias assessment reported that eleven studies (69%)
(DeGroff et al., 2001; Yang et al., 2002; Bhatikar et al., 2005;
De Vos and Blanckenberg, 2007; Ye et al., 2011; Zhang and Pohl,
2015; Karar et al., 2017; Pereira et al., 2017; Meza et al., 2018;
Diller et al., 2019a; Bahado-Singh et al., 2020) had high risk of
patient selection bias due to the study design (case control) while
the remaining five studies (31%) (Higuchi et al., 2006;
Gharehbaghi et al., 2015; Gavrovska et al., 2016; Kotb et al.,
2016; Sepehri et al., 2016) were unclear risk. The index test
interpretation bias was unclear in nine studies (56%) (DeGroff
et al., 2001; Yang et al., 2002; Bhatikar et al., 2005; Higuchi et al.,
2006; De Vos and Blanckenberg, 2007; Gharehbaghi et al., 2015;
Sepehri et al., 2016; Pereira et al., 2017; Diller et al., 2019a), high in
six studies (37%) (Ye et al., 2011; Zhang and Pohl, 2015;
Gavrovska et al., 2016; Karar et al., 2017; Meza et al., 2018;
Bahado-Singh et al., 2020) and low in only one study (7%) (Kotb
et al., 2016). The main contributor to the unclear risk was the
unavailability of information regarding theblinding status in
these studies. Majority of the studies (n � 10, 62%) had low
risk of reporting bias (DeGroff et al., 2001; Yang et al., 2002; De
Vos and Blanckenberg, 2007; Zhang and Pohl, 2015; Gavrovska
et al., 2016; Sepehri et al., 2016; Karar et al., 2017; Pereira et al.,
2017; Meza et al., 2018; Diller et al., 2019a) while five reported
unclear risk (31%) (Bhatikar et al., 2005; Higuchi et al., 2006;
Gharehbaghi et al., 2015; Kotb et al., 2016; Bahado-Singh et al.,
2020) and one reported high risk (7%) (Ye et al., 2011). The
reference standard that was used mainly included expert opinion
along with gold standard imaging modalities such as
echocardiography, thus reducing the likelihood of bias. On the
flow and timing domain, most of the studies (n � 12, 75%) (Yang
et al., 2002; Higuchi et al., 2006; Ye et al., 2011; Gharehbaghi et al.,
2015; Zhang and Pohl, 2015; Gavrovska et al., 2016; Sepehri et al.,
2016; Karar et al., 2017; Pereira et al., 2017; Meza et al., 2018;
Diller et al., 2019a; Bahado-Singh et al., 2020) were unclear risk of
bias as the interval between the index test and reference standard
could not be ascertained while four studies (25%) (DeGroff et al.,
2001; Bhatikar et al., 2005; De Vos and Blanckenberg, 2007; Kotb
et al., 2016) were high risk of bias as they either did not include all
patients in the analysis or all participants did not receive the same
reference standard. Details of risk of bias and applicability
concerns have been highlighted in Figure 2.

No studies had concerns about applicability in the reference
standard domain while majority of the studies (n � 14, 88%) had
low concern on the index text. However, ten studies (62%) had
unclear concern on patient applicability.

Outcome of Interest
The 16 studies included in this review had 1,217 participants
whereMLmodels were used to diagnose CHD. Five studies (31%)
did not report sensitivity and/or specificity as the performance
metric for the ML algorithm. (Higuchi et al., 2006; Zhang and
Pohl, 2015; Pereira et al., 2017; Meza et al., 2018; Diller et al.,
2019a). The models in these studies included neural networks
(n � 8), ensemble methods (n � 3), deep learning (n � 2) as well as
other techniques such as rule based classifications and clustering
techniques for unsupervized learning.

Seven studies with 666 participants utilized neural networks as
the “index text” for detection of CHD (DeGroff et al., 2001; Yang
et al., 2002; Bhatikar et al., 2005; De Vos and Blanckenberg, 2007;
Gharehbaghi et al., 2015; Gavrovska et al., 2016; Sepehri et al.,
2016). Higuchi et al. also used neural networks as the index test
but did not report sensitivity and specificity and hence were not
included in the analysis (Higuchi et al., 2006). Refer to Figures 3,
4 for the forest plot and ROC curve respectively. Most studies
used heart sounds as the input data except for one where
electrocardiogram (Yang et al., 2002) was used. The sensitivity
of these studies ranged from 84% (Gharehbaghi et al., 2015) to
100% (DeGroff et al., 2001) while the specificity range was from
83% (Bhatikar et al., 2005) to 100% (DeGroff et al., 2001). The
overall sensitivity of the neural networks to detect CHD was
90.9% (95% CI 85.2–94.5%) while the overall specificity was
92.7% (95% CI 86.4%–96.2%).

Three studies with 548 participants used the ensemble
methods for detection of CHD (Ye et al., 2011; Gharehbaghi
et al., 2015; Kotb et al., 2016). However, there was wide variation
in the sensitivity (66–100%) and specificity (78–100%) of these
studies. One study that used ensembleMLmethods did not report
these metrics (Pereira et al., 2017) and hence due to an insufficient
number of studies, a meta-analysis could not be performed.

One study utilized deep learning methods to detect differences
in genetic makeup using newborn blood DNA for diagnosis of
CHD (coarctation of aorta) with a sensitivity and specificity of
>90% on 40 participants (Bahado-Singh et al., 2020). Deep

FIGURE 2 | Risk of bias assessment and applicability concerns for included studies.
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learning was also utilized by Diller et al. on echocardiographic
images but did not report sensitivity and specificity (Diller et al.,
2019a). Another study utilized rule based classification tree on
heart sounds data of 22 participants with a sensitivity of 80% and
specificity of 100% to detect ventricular septal defects (Karar et al.,
2017). Regression technique (Zhang and Pohl, 2015), hidden
markov models (Kotb et al., 2016) and clustering techniques for
unsupervized learning (Meza et al., 2018) were among the other
ML techniques utilized but did not report the metrics of interest.
Due to the small number of studies that used the ML methods
specified and/or lack of information regarding performance
metrics, a meta-analysis could not be performed.

DISCUSSION

To the best of our knowledge, this meta-analysis is the first
systematic attempt to assess the diagnostic accuracy of ML
models in diagnosing CHD. It was noted that cardiac

auscultation and imaging techniques were the main input data
sources to the models while neural networks were most
commonly used for analysis. This ML technique which was
primarily based on heart sounds acquired through a digital
stethoscope had a high sensitivity and specificity (>90%) for
diagnosis of CHD as compared to expert diagnosis (used as a
reference standard). Limited number of studies were available for
the other methods such as ensemble method, deep learning, and
unsupervized learning, thus precluding a meta-analysis.

In recent years, ML has found several potential applications as
decision support in the field of cardiovascular health, with several
studies investigating its role in assessment of chamber
quantification and cardiac function on imaging (Gandhi et al.,
2018), categorization of complex cardiac disease and predicting
its prognosis (Diller et al., 2019b). A virtual clinical trial using
signal processing techniques and classification algorithms on
heart sound to diagnose pediatric CHD showed a sensitivity,
specificity, and accuracy of 93, 81, and 88%, respectively
(Thompson et al., 2019). Although the performance metrics of
ML models to diagnose CHD in isolated studies is promising, a
pooled analysis is required to synthesize the evidence regarding
the accuracy of new techniques in a systematic manner so that a
case for incorporation into clinical practice can be made. The
present study reports that one such type of ML model (i.e. neural
networks) has a high accuracy to detect CHD using a digital
stethoscope without the need of a human interpreter.

Even though the benefits of ML models have been shown in
research settings, there is a significant lag between translation of
ML models into real world clinical settings. The “productization”
of AI technology poses several challenges including large amounts
of generalizable datasets, ensuring compliance with regulatory
bodies and developing frameworks for integration of these into
existing clinical workflows (He et al., 2019). Implementation of AI-
based diagnostic tools can have important implications for
providing healthcare in resource-limited settings, where existing
medical infrastructure (i.e. echocardiography machines) and
highly trained skilled providers to obtain and/or interpret the
data is inadequate. This meta-analysis provides evidence toward
use of a low cost existing tools such as a digital stethoscope that
requires minimal operator expertize, andwhich when coupled with
a ML model could have high accuracy as a screening tool to detect
CHD in low resource settings.

A recent report by the United States Agency for International
Development (USAID) illustrates several examples including the
use of a clinical decision support system that can help

FIGURE 3 | Forest plot for neural network models (arranged by increasing order of sensitivity).

FIGURE 4 | Summary receiver operating curve for use of neural network
models to detect CHD.
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increase access and quality of care for complex diseases in
LMICs (USAID, 2019). Despite this potential implication,
published literature on use of ML in healthcare in these
regions is lacking. This finding is substantiated by our
review where only two (2.5%) studies were published
from LMICs in spite of the high burden of CHD in these
regions.

In order to increase the clinical applicability of future studies
utilizing ML methods for diagnosis, standardization of reporting
and performance metrics need to be followed. Adequate
descriptions of the study design and flow, important
demographic characteristics of patients, data acquisition
methods, index test, reference test, standard performance
metrics, and thresholds should be provided (Collins et al.,
2015). The quality assessment performed in this review
highlights the lack of methodological rigor in studies reporting
the use of ML in healthcare.

This is the first meta-analysis to present the diagnostic
accuracy of ML algorithms for CHD compared to clinical
experts or echocardiography, thus highlighting the use of
advanced data analytics techniques to improve care especially
in regions where highly trained professionals needed for
diagnosis of complex disease are limited. However, this study
has several limitations. The number of studies eligible for this
review were small, thus limiting the ability to perform meta-
analyses for only 1 ML method. The heterogeneity of the
diagnostic modalities used to train the ML models and the
heterogeneity of the CHD diagnoses (critical, major and minor
disease) included between the studies is a major limitation. The
methodological quality of the studies as assessed by the

QUADAS-2 tool was unclear or high for most of the studies.
We only included articles published in English language thus
leading to a publication bias.

This study highlights the potential of ML models such as
neural networks as an accurate decision support tool in
diagnosing CHD. However, due to the limited number of
studies with high risk of bias, future work would require
studies with methodological rigor in assessing the role of
advanced AI techniques in detecting CHD accurately.
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