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Editorial on the Research Topic

Probabilistic Perspectives on Brain (Dys)function

While observations in neurobiology provide inspiration for methods in artificial intelligence and
machine learning—most famously, in the development of artificial neural networks (McCulloch and
Pitts 1943; Rosenblatt 1958; Smolensky 1986)—the reciprocal relationship has also proved fruitful. Put
simply, many of the problems that machine learning is designed to solve have already been solved by
the brain. When we have a good understanding of how the brain deals with a problem, we can draw
inspiration from this solution in other domains. When we have a poor understanding of aspects of
brain function, we can look to how these functions are performed in machine learning. If natural
selection has arrived at the same optimum, we hypothesize that brain architectures support analogous
procedures. Perhaps the most obvious example of this translation is the Bayesian brain hypothesis
(Knill and Pouget 2004; Doya 2007), and recent extensions of this idea (Ramstead et al., 2018). This
perspective treats the brain as a statistician whomakes use of a probabilistic model of the world tomake
sense of sensory input. It has been central to the development of theories of brain function—like
predictive coding (Srinivasan et al., 1982; Rao and Ballard 1999; Friston and Kiebel 2009; Bastos et al.,
2012). This research topic was designed to showcase the application of contemporary probabilistic
methods to understanding how the brain works, and how it can go awry in psychiatric disorders.

Broadly, the applications of probabilistic methods to the brain fall into two camps. The first applies
these methods to neurobiological or psychophysical data to draw better inferences about the brain.
The second assumes the brain itself makes use of these methods and engages in inference about the
data it gathers from receptors in the eyes, ears, and other sensory organs. Both approaches are usefully
illustrated by Feltgen and Daunizeau. Their focus is on refinement of the estimation procedure for
drift-diffusion models (Ratcliff and McKoon, 2008). While drift-diffusion dynamics may be seen as a
metaphor for evidence accumulation in the brain, the estimation procedure advocated by the authors
represents a means of drawing inferences about cognition from psychophysical measurements.

A related perspective on evidence accumulation is offered by Heins et al., who show the
emergence of drift-diffusion like dynamics in belief updating under a deep temporal model
(Friston et al., 2017). This introduces an active aspect, in which we must decide how to sample
our sensory data, over multiple timescales, to ensure we assimilate the most informative data (Mirza
et al., 2016). The neural realization of this assimilation process was probed by Loued-Khenissi and
Preuschoff in a functional imaging experiment in which participants engaged in a probabilistic
gambling task. The task allowed the authors to disambiguate neural correlates of the confidence with
which an outcome was predicted from the information gain when it is observed.
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Chen et al. exploit the same active inferential formalism as
Heins et al., but apply it to understand how the brain might
optimize the space of hypotheses it entertains. Specifically, the
authors employ Bayesian model reduction (Friston et al., 2016;
Friston et al., 2018)—a technique originally developed to compare
dynamic causal models in neuroimaging—to prune the set of
behavioral policies a creature can select between. Policies here are
alternative sequences (of actions) over time. These could be
sequences of saccadic eye movements, or steps through a maze
(Kaplan and Friston, 2018). Such sequences are ubiquitous in
planning and decision-making problems.

Temporal sequences of this sort are central to two other
contributions to this Research Topic. Frölich et al. review the
generation of sequences in neural systems in the form of robust
and reproducible activation patterns and argue for their central role in
probabilistic and predictive information processing. FitzGerald et al.
complement this by considering the role of retrospective (postdictive)
inference; through the perspective of Bayesian filtering (prospective)
and smoothing (prospective and retrospective). The authors propose
a middle ground between the two by limiting the number of past
time-steps over which retrospective inference is
performed—curtailing the computational cost accrued in
modeling long sequences—and demonstrate the success of the
resulting scheme on a probabilistic reversal learning task.

At a more conceptual level, Safron provides a broad overview of
active inference and its relationship to other influential theories of
brain and consciousness, including the global neuronal workspace
theory (Baars, 1993) and integrated information theory (Tononi
et al., 2016). Gershman adds an interesting novel perspective to this
through proposing a generative adversarial theory of brain
function. This is based upon the widely used deep learning
networks of the same name (Goodfellow et al., 2014).
Generative adversarial networks learn a generative model of the
data they are exposed to. Their objective is to generate new data
that are indistinguishable from the original inputs. Gershman
highlights how human brain architectures could support the
generative and discriminative parts of such networks.

A key area of application for theoretical neurobiology is in
computational psychiatry (Montague et al., 2012). This
interdisciplinary field is well-represented by the contributions
from Leptourgos and Corlett and Mehltretter et al. The former

set out a theory for the distortions in the sense of agency
experienced by some people with schizophrenia. They do so
through assuming the brain makes use of two distinct predictive
hierarchies that deal with the feeling of, and the judgment of,
agency, respectively. This dual hierarchy allows them to
incorporate features of prominent theories of passivity
phenomena (Blakemore and Frith 2003; Synofzik et al.,
2008). Mehltretter et al. take a different perspective on
computational psychiatry and make use of deep learning
methods in feature selection to predict remission of
symptoms in patients taking antidepressants. Their focus is
on the important challenge of interpretability for such analyses.

The papers outlined above offer a snapshot of the exciting
work at the interface of neuroscience and probabilistic reasoning
and the enduring symbiotic relationship between the two fields.
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