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Drug labeling contains an ‘INDICATIONS AND USAGE’ that provides vital information to
support clinical decision making and regulatory management. Effective extraction of drug
indication information from free-text based resources could facilitate drug repositioning
projects and help collect real-world evidence in support of secondary use of approved
medicines. To enable AI-powered language models for the extraction of drug indication
information, we used manual reading and curation to develop a Drug Indication
Classification and Encyclopedia (DICE) based on FDA approved human prescription
drug labeling. A DICE scheme with 7,231 sentences categorized into five classes
(indications, contradictions, side effects, usage instructions, and clinical observations)
was developed. To further elucidate the utility of the DICE, we developed nine different AI-
based classifiers for the prediction of indications based on the developed DICE to
comprehensively assess their performance. We found that the transformer-based
language models yielded an average MCC of 0.887, outperforming the word
embedding-based Bidirectional long short-term memory (BiLSTM) models (0.862) with
a 2.82% improvement on the test set. The best classifiers were also used to extract drug
indication information in DrugBank and achieved a high enrichment rate (>0.930) for this
task. We found that domain-specific training could provide more explainable models
without performance sacrifices and better generalization for external validation datasets.
Altogether, the proposed DICE could be a standard resource for the development and
evaluation of task-specific AI-powered, natural language processing (NLP) models.
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INTRODUCTION

Drug labeling contains an ‘INDICATIONS AND USAGE’ section that provides vital information to
support clinical decision making and regulatory management. The primary role of drug indications
is to enable health care practitioners to readily identify appropriate therapies for patients and support
clinical decision making (Sohn and Liu, 2014). The information on drug indication is part of the
required information in FDA approved drug labeling and guides the content and format of labeling
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of human prescription drugs and biological products [21 CFR
201.57(c) (2)]. Drug indications also provide guidance for
facilitating clinical knowledge management and play an
essential role in enabling the secondary use of electronic
medical records (EMRs) for clinical-based translational
research. Besides the primary drug indication approved for the
drug, information on off-label uses and repurposing
opportunities, or alternative uses of drugs, are common within
biomedical-related data resources such as scientific literature,
patents, public health forums, and pharmacological,
biomedical, or drug labeling databases (Salmasian et al., 2015;
Delavan et al., 2018). Furthermore, indication information
extraction is also a regulatory requirement for creating the
highlights section of the Physician Labeling Rule (PLR)
labeling, which provides concise information for public health
practitioners, patients and drug reviewers (https://www.fda.gov/
drugs/laws-acts-and-rules/prescription-drug-labeling-resources).
Thus, developing an effective approach to facilitate the mining
of drug indication information from free text-based resources
is an important task for biomedical natural language
processing (NLP).

Some attempts to extract drug indications from free text-based
documents have been undertaken, mainly based on the
combination of named entity recognition (NER) approaches
with conventional machine learning algorithms (Fung et al.,
2013; Khare et al., 2014; Khare et al., 2015). One example is a
two-step strategy for drug indication extraction proposed by
Khare et al. 2014. Here, disease terminology is extracted from
over 500 drug labels using a MetaMap tool with the Unified
Medical Language System (UMLS)-based disease lexicon as the
control vocabulary (Aronson, 2001). Then, a binary support
vector machine (SVM) classifier is implemented to distinguish
drug indication from other information such as adverse drug
reactions, yielding an 86.3% F1 measure (the measure of a
model’s accuracy) for the indication extraction task,
representing a 17% improvement over baseline approaches.
With advances in AI-powered NLP, new approaches have
been developed, which may provide additional performance
improvements in the task of drug indication extraction.
Artificial intelligence (AI)-powered language models such as
transformers have achieved greater improvement compared to
other approaches in various NLP tasks (Vaswani et al., 2017a;
Devlin et al., 2018). Several biomedical-based BERT models
(i.e., BioBERT, SciBERT, and clinicalBERT) have been
developed for domain-specific tasks such as biomedical named
entity recognition (NER) (Beltagy et al., 2019; Huang et al., 2019;
Lee et al., 2020). Disease entity recognition corpora, such as the
NCBI disease corpus, have become widely established sources for
developing AI-based NER approaches (Doğan et al., 2014).
However, the lack of large corpora for disease information
classification hampers AI-based NLP development, and efforts
to address this gap are urgently needed (Khare et al., 2015).

Based on guidance for industry on the ‘INDICATIONS AND
USAGE’ section of Labeling for Human Prescription Drug and
Biological Products, content should be concise but unambiguous.
The information in the ‘INDICATIONS AND USAGE’ section
should readily allow the identification of approved indication(s)

and reflect current scientific evidence. Furthermore, indication
terminology should be standardized, clinically relevant,
scientifically valid, and easily understandable. Also, this
information should be consistent within/across drug and
therapeutic classes to aid the indexing of indications in
electronic drug databases and medical information systems.
Drug indication information often comprises mixed
information such as age group, subpopulations, classifications
such as adjunctive or concomitant therapy, specific tests/
diagnoses, and other disease conditions or clinical
manifestations. Thus, drug labeling is a great resource for drug
indication classification, facilitating the development of AI-based
NLP models, and further improving drug indication information
extraction.

We developed a five-category Drug Indication Classification
and Encyclopedia (DICE) based on FDA approved human
prescription drug labeling to facilitate the development of AI-
based NLP approaches for enhanced drug indication extraction
from free text-based document resources. The DICE scheme
categorizes the >7,000 sentences in the ‘INDICATIONS AND
USAGE’ section into five classes, including indication,
contraindication, side effect, usage instruction, and clinical
observations. To verify the utility of DICE, we developed nine
different AI-based classifiers, including 4-word embeddings-
based Bidirectional long short-term memory (BiLSTM) models
and five transformer-based language models. The model
performances were comprehensively assessed based on a test
set and an independent validation set. Some critical questions
such as the benefit of domain-specific training for AI-based NLP
were also investigated. Furthermore, the model explainability was
discussed for real-world applications.

MATERIALS AND METHODS

Figure 1 illustrates the workflow of the study. The study consisted
of two components: DICE development, and AI-powered
indication classification model development based on DICE.

Drug Indication Classification and
Encyclopedia Development
To curate an indication classification corpus, we employed US
Food and Drug Administration (FDA)-approved drug labeling.
Drug labeling, also known as the package insert or prescribing
information, accompanies every FDA approved medicine as
required under the US Code of Federal Regulations (21 CFR
201.56). Drug labeling is submitted by the manufacturer and
approved by FDA and includes a rich source of information on
safe and effective drug usages. There are more than 80 sections
embedded in a drug labeling document (Fang et al., 2020).
Among the labeling sections, the INDICATIONS AND
USAGE section aims to enable health care practitioners to
readily identify appropriate therapies for patients by clearly
communicating the drug’s approved indication(s) (https://
www.fda.gov/media/114443/download). The ‘INDICATIONS
AND USAGE’ section mainly contains information such as
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“1) The disease, condition, or manifestation of the disease or
condition (e.g., symptoms) being treated, prevented, mitigated,
cured, or diagnosed;” and “2)When applicable, other information
necessary to describe the approved indication (e.g., descriptors of
the population to be treated, adjunctive or concomitant therapy,
or specific tests needed for patient selection).” Since the
‘INDICATIONS AND USAGE’ section contains such a variety
of information, it is imperative to develop an indication
classification corpus for automatic indication extraction.

Specifically, we extracted a list of FDA approved drug labels by
using a search query “human Rx” under labeling type in the
FDALabel databases (version 2.5, https://nctr-crs.fda.gov/

fdalabel/ui/search) (Mehta et al., 2020). Consequently, we
obtained queried results with summary information of human
prescription (Rx) drug labeling. To obtain ‘INDICATIONS AND
USAGE’ sections for a unique list of human prescription drug
labels, we implemented the following strategy: 1) collapse the
labeling with the same Unique Ingredient Identifier (UNII); 2)
select the labeling with latest effective time as the representative
one (i.e., XML file) for each collapsed labeling; 3) extract
‘INDICATIONS AND USAGE’ section from XML file based
on Logical Observation Identifiers Names and Codes (LOINC)
for Human Prescription Drug and Biological Product Labeling
(https://www.fda.gov/industry/structured-product-labeling-

FIGURE 1 | Workflow of the study.
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resources/section-headings-loinc). The LOINC code for
INDICATIONS AND USAGE section is “34067-9”
(Figure 1).

To manually annotate the information in the ‘INDICATIONS
AND USAGE’ sections into different categories, we developed a
five-class indication classification scheme (Figure 1). We split the
extracted ‘INDICATIONS ANDUSAGE’ sections into sentences.
Each of the 7,231 sentences were placed into one of five
categories, namely indication, contraindication, side effect,
usage instruction, and clinical observations. Assignments were
based on predefined keywords and a priori knowledge. Three
experienced, expert pharmacologists carried out the manual
annotations independently and a consensus assignment was
selected for indication information classification.

AI-Powered Indication Extraction Model
Development
For the purposes of indication extraction, the extracted 7,231
sentences assigned with the category ‘indication’ were considered
as positives, and sentences assigned to any of the other four
categories were considered negative. The 7,231 curated sentences
were divided into the training and test sets with an approximate
ratio of 80:20. Consequently, we obtained 5,785 sentences and
1,446 sentences for the training and test sets, respectively. Two
types of deep learning models were developed, including word
embedding-based BiLSTM models, and transformer-based
language models.

Preprocessing
We implemented the following procedure to preprocess the
sentences: 1) the sentences were tokenized; with stripping of
punctuation, digits, and words with less than two characters; 2)
stop word removal; and 3) lemmatization.

Word Embeddings
Word embedding is a set of language modeling and learning
techniques in NLP to map words or phrases from a vocabulary to
a numeric vector representation. In this study, we used two types
of word embeddings including Word2vec (Mikolov et al., 2013a;
Mikolov et al., 2013b) and Glove (Pennington et al., 2014).

Word2vec is a shallow neural network framework
(i.e., continuous bag-of-words (CBOW) and continuous skip-
gram) used to estimate continuous vector representations of
words from large text corpora (Mikolov et al., 2013a; Mikolov
et al., 2013b). The generated word embeddings position words
with common contexts close to one another. Word2vec has been
used widely in NLP tasks such as semantic relationship extraction
(Chen et al., 2018), text classification (Jang et al., 2019), and
sentiment analysis (Rezaeinia et al., 2019). In this study, we use
three pretrained domain-specific word2vec models, including
Word2vec with PubMed and PMC (i.e., Word2vecPubmed +
PMC), word2vec with PubMed, PMC, and Wikipedia
(i.e., Word2vecPubmed + PMC + Wikipedia), and word2vec
with FDA approved human prescription labeling
(Word2veclabeling). The Word2vecPubmed + PMC and
Word2vecPubmed + PMC + Wikipedia (200-dimension vector

models) were downloaded from https://bio.nlplab.org/(Moen
and Ananiadou, 2013). We developed the pre-trained
Word2veclabeling by using the human labeling documents
described above. The in-house implementation of word2vec
was consistent with the PubMed corpus; briefly, the
implementation used the skip-gram model with a window size
of 5, hierarchical SoftMax training, and a word subsampling
threshold of 0.001 to create 200-dimensional vectors. The
training was conducted using the Python Gensim package
(version 0.6.0).

We also employed another well-known word embedding
technique (i.e., GloVe 200-dimension vectors), which, when
applied to aggregated global word-word co-occurrence
statistics from a corpus, generate word vector representation
(Pennington et al., 2014). Specifically, the pretrained GloVe
model with 2 billion Twitter corpus was employed as the
general domain specific word embedding (i.e., GloVeTwitter);
this corpus can be downloaded from https://nlp.stanford.edu/
projects/glove/.

Bidirectional Long Short-Term Memory
To better understand the framework and theory behind the
BiLSTM, we provide a simple introduction on the Recurrent
Neural Network (RNN) and Long Short-Term Memory (LSTM).
An RNN is a set of artificial neural networks for sequential and
time-series data. Unlike conventional neural networks, RNNs
adopt recurrent hidden states to store previous inputs and
leverage sequential information of the previous inputs to
estimate the next element in the sequence. In theory, RNNs
are able to leverage previous sequential information for arbitrarily
long sequences. In practice, however, due to RNNs memory
limitations called “vanishing gradients”, the length of the
sequential information is limited to only a few steps back
(Hochreiter et al., 2001).

Hochereiter and Schimdhuber (Hochreiter and Schmidhuber,
1997) proposed the LSTMmodel, which is a gated RNN intended
to solve the “vanishing gradients” problem and greatly expand
RNNs applications for long sequence data (Gers et al., 1999). The
LSTM cell consists of four components (i.e., input gate, memory
cell, forget gate, and output gate) to remember information over a
longer period of time and thus enable reading, writing, and
deleting information from the cell’s memory. The forget gate
makes the decision of preserving/removing the existing
information, the input gate specifies the extent to which the
new information will be added into the memory, and the output
gate controls whether the existing value in the cell contributes to
the output (Siami-Namini et al., 2019). The deep-BiLSTMs are an
extension of the described LSTM model above, in which two
LSTMs are applied to the input sequence (i.e., forward layer) and
reverse of the input sequence (i.e., backward layer) (Schuster and
Paliwal, 1997). Applying the LSTM twice leads to the enhanced
learning of long-term dependencies and thus improves the
accuracy of the model.

Supplementary Figure S1 illustrates the proposed BiLSTM
model infrastructure for indication classification. The processed
sentences were vectorized by the different word embedding
techniques described above; the now vectorized sentences were
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then fed into bidirectional LSTM layers and a dense layer,
followed by a flattened layer and a dense layer. The output
layer is a probabilistic value of sentences belonging to the
indication information category. Specifically, we used a
learning rate of 0.001, Rectified Linear Units (ReLU)
activation, and an Adagrad Optimizer. The optimizer was
chosen due to its suitability for training on sparse data and its
ability to perform more informed gradient-based learning.

Transformer-Based Language Models
To further investigate the performance of advance AI-powered
NLP approaches on indication classification, we employed the
Bidirectional Encoder Representations from Transformers
(BERT) (Vaswani et al., 2017a; Devlin et al., 2018) and its
derivatives including a distilled version of BERT (DistilBERT)
(Sanh et al., 2019), A Lite BERT (ALBERT) (Lan et al., 2019), a
Robustly Optimized BERT Pretraining Approach (RoBERTa)
(Liu et al., 2019), and a pre-trained biomedical BERT
(BioBERT) (Lee et al., 2020).

BERT is a transformer that learns contextual bidirectional
representations from an unlabeled, large corpus of documents by
using two training strategies: Masked Language Model (MLM)
and Next Sentence Prediction (NSP) (Vaswani et al., 2017b;
Devlin et al., 2018). In the MLM, a randomly selected 15% of
words in a sequence are replaced with a [MASK] token, and the
model aims to estimate masked words, based on the context
provided by unmasked words. In the NSP, the model aims to
utilize the pairs of sentences as inputs and predict the sequence
order in the original documents. The BERT model has achieved
state-of-the-art performance on diverse sets of NLP tasks (e.g.,
text classification, named entity recognition) while requiring only
minimal task-specific architectural modification (i.e., fine-tuned
layers).

Two condensed BERT models, DistillBERT and ALBERT,
were proposed to overcome the obstacle of long training
times. DistilBERT uses a technique called distillation, which
approximates the BERT from the large neural network to a
smaller one. By learning from the distilled version of BERT,
DistilBERT retained about 97% performance while using only
half as many parameters as the original BERT (Sanh et al., 2019).
One of the key optimization functions used for posterior
approximation in DistilBERT is Kulback Leiber (K-L)
divergence to condense the network size while maintaining
performance. ALBERT is a light version of BERT, which
employs two techniques to reduce the parameters, including
Factorized Embedding Parametrization and Cross-layer
Parameter Sharing (Lan et al., 2019). Additionally, a self-
supervised objective is proposed for sentence order prediction
to further improve performance, addressing the suboptimal
performance of the NSP task from BERT.

RoBERTa is an updated version of BERT that improves the
pretrained optimization process (Liu et al., 2019). First of all,
RoBERTa uses a much larger set of training data (161 GB) for
pretraining to increase the model’s generalization ability.
Secondly, instead of the static masking pattern used in the
MLM model, RoBERTa introduced a dynamic masking
pattern to avoid same training mask for each training

instance. Also, the RoBERTa model developed training
objectives to enhance NSP model performance. Moreover,
RoBERTa trained on longer sequences than BERT to further
improve performance.

It was observed that generic pretrained transformer models
may not work very well in conjunction with specific domain data.
To fill this gap, BioBERT, a domain-specific BERT model, was
proposed by training the BERTbase model on large biomedical
corpus including PubMed abstracts and PMC full text (Lee et al.,
2020). The BioBERT model outperformed BERTbase on some
domain-specific tasks such as biomedical named entity
recognition (NER), and bio-Questions and answering with a
0.51–9.61% absolute improvement.

BERT-like models are designed as pre-trained deep
bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers. They
are then fine-tuned with an additional output layer to create
models for a wide range of tasks, such as question answering
and language inference, without substantial task-specific
architecture modifications. The fine-tuned base models of
transformers were used in this study for the binary
classification task for indication recognition. An important
difference is that these models used their native tokenizers,
which utilized sub-word tokenization (e.g., WordPiece) where
larger words may be broken down to map to token(s),
compared to the cruder tokenization implemented with the
simpler model.

Model Performance Evaluation
To train the model and measure model performance, we
employed area under the receiver operating characteristic
(ROC) curve analysis, which demonstrates the performance
of the classification model by plotting the true predictive rate
(TPR) against the false positive rate (FDR). We calculated
the area under the ROC curve (AUC) for each model described
above. We also used seven other performance metrics
including Matthews correlation coefficient (MCC), accuracy,
sensitivity, specificity, precision, negative predictive value
(NPV), and F1-score for further evaluation of model
performance by using the following confusion matrix and
formulas

MCC � TPpTN − FPpFN
��������������������������������������(TP + FP)p(TP + FN)p(TN + FP)p(TN + FN)√ (1)

accuracy � TP + TN
TP + TN + FN + FP

(2)

sensitivity � TP
TP + FN

(3)

specificity � TN
TN + FP

(4)

PPV � TP
TP + FP

(5)

NPV � TN
TN + FN

(6)

F1 � 2TP
2TP + FP + FN

(7)
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External Validation
To further investigate real-world applications of the developed
indication classification model, we applied the best-performing
models to indication descriptions in the DrugBank database. The
indication information in DrugBank is a relatively concise
description of the indication and usage of approved or
investigational drugs (Wishart et al., 2018). Specifically, the
DrugBank (version 5.1, downloaded on April 02, 2021) XML
file was downloaded via https://go.drugbank.com/releases/latest.
We developed an in-house script to extract the drug indication
information from DrugBank XML file. Consequently, a list of
3,976 indication descriptions in DrugBank were extracted to
further verify our developed model.

Visualization
To investigate the discrimination powers of different word
embeddings or sentence embeddings yielded from the
transformers models used in this study, we employed
t-distributed stochastic neighbor embedding (t-SNE) (Hinton
and Roweis, 2002). t-SNE is a non-linear dimension reduction
method. With t-SNE, the algorithm calculates the similarity in
both high dimensional space and low dimensional space. Next,
the similarity difference in both spaces is minimized using an
optimization method such as gradient descend.

Data and Code Availability
We developed a GitHub webpage (https://github.com/arjun-
bhatt/TransformersIndicationExtraction) to share the source
code and curated drug indication corpus. Specifically, all the
code script is developed under Python 3.6. The BiLSTM model is
based on tensorflow version 1.12.3. The transformers models were
based on Huggingface package version 3.02 and its backend is
tensorflow version 2.3.0 and PyTorch version 1.5.1. t-SNE was
implemented by using Python Scikit-learn package version 0.23.2.

RESULTS

Drug Indication Classification and
Encyclopedia
Figure 2A illustrates the distribution of 7,321 sentences in the
proposed drug indication classification scheme. To curate a high-
quality drug indication classification, three pharmacologists
manually read the sentences and assigned them into five
predefined categories including indication, non-indication
miscellaneous, contraindication, side effect, and usage
instruction. Based on consensus manual annotation results, the
7,231 sentences were categorized into 4,297 indication, 1,673
clinical observations, 701 contraindication, 492 usage
instructions, and 68 side effects (supplementary Table S1).

Figure 2B depicts the most frequent words in each indication
classification category using word clouds. For example, the top
five key words in the Indication category were “indicated”,
“treatment”, “patients”, “therapy”, and “disease”, respectively
(supplementary Table S2). To develop an indication
recognition classifier, we used the 4,297 indication as positives,
and 2,934 combined sentences from the other categories as
negatives, yielding a ratio between positives and negatives of
1.46. Then, we randomly split the 7,231 into a training set (80%)
and a test set (20%). Accordingly, the training set (i.e., 5,785
sentences) consisted of 3,452 positives and 2,333 negatives (P/N
ratio � 0.596), and the test set (i.e., 1,446 sentences) consisted of
845 positives and 601 negatives (P/N ratio � 0.584).

Word Embedding-Based Bidirectional Long
Short-Term Memory Models
To develop BiLSTM models for indication classification, we used
four types of word embeddings, including Word2vecPubmed +
PMC, Word2vecPubmed + PMC +Wikipedia, Word2veclabbeling,
and GloVeTwitter. To illustrate the potential benefit of domain-
specific embedding, we randomly selected four different domain-
specific words (i.e., aspirin, heart, azithromycin, and cancer) to get
their top ten most similar words (Figure 2). Figure 3 illustrates
the clusters of similar words based on the t-SNE analysis. The
Word2veclabbelin, Word2vecPubmed + PMC, and
Word2vecPubmed + PMC + Wikipedia models could cluster
similar words for the queried words more closely than
GloVeTwitter models, highlighting the benefit of domain-
specific word embedding for semantic relationship extraction
in biomedical applications. We found that the performance of
BiLSTM models with domain-specific word embeddings
(i.e., MCC � 0.878 for Word2vecPubmed + PMC + Wikipedia
>MCC � 0.864 forWord2vecPubmed + PMC >MCC � 0.857 for
Word2veclabbeling) was slightly better than that of the BiLSTM
model with general domain-based word embedding (MCC �
0.849 for GloVeTwitter). Furthermore, the other 7 performance
metrics including accuracies, AUCs, F-scores, sensitivity,
specificity, NPV and PPV of domain-specific embedding-based
LSTMs were consistently better than general domain embedding-
based BiLSTM, indicating domain-specific embedding-based
BiLSTMs could extract the indication-related information
more accurate (Table 1).

Transformers-Based Models Outperformed
the Word Embedding-Based Bidirectional
Long Short-Term Memory Model
To further explore the possibility of improving the binary
indication classification model performance, we implemented

Actual class

Indication (positive) Non-indication (negative)
Predicted class Indication (positive) True positive (TP) False positive (FP)

Non-indication (negative) False negative (FN) True negative (TN)
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five different fine-turned BERT-like transformer models,
including BERT, DistillBERT, ALBERT, RoBERTa, and
BioBERT (Table 1). First, all transformer-based models except

DistillBERT outperformed word embedding-based BiLSTMs.
Second, RoBERTa, BioBERT, and BERT yielded better
performance (MCC � 0.921, 0.917, and 0.899, respectively)

FIGURE 2 | (A) Distribution of sentences in the proposed DICE scheme; (B) word cloud of the sentences in each defined DICE category.
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than the condensed transformers including ALBERT and
DistilBERT (MCC � 0.877 for ALBERT and MCC � 0.820 for
DistilBERT). Third, domain-specific word embedding-based
BiLSTM (i.e., MCC � 0.878 for Word2vecPubmed + PMC +
Wikipedia) outperformed the condensed BERT models
(i.e., MCC � 0.820 for DistilBERT), highlighting the
improvement of model performance based on the large size of
the domain-specific corpus, even with the relatively shallow deep
learning model. Fourth, the performance of domain-specific

BERT (i.e., BioBERT) was comparable to that of RoBERTa,
which is trained on top of a large general corpus and with
more aggressive hyperparameters.

We further employed a t-SNE analysis to visualize the
contribution of hidden states of transformers on classification
performance (Figure 4). We observed the obvious margin for
discriminating positives from negatives based on the hidden layer
information of most of the transformer models. It is interesting
that the positives and negatives samples were closer for the

FIGURE 3 | t-SNE analysis of different word embedding models on the queried words.

TABLE 1 | Model performances of nine different AI-based models for indication classification on test set*.

Models MCC ACC AUC F-score Sensitivity Specificity NPV PPV

Bidirectional long short-term memory (BiLSTM)
GloVe (twitter) 0.849 0.925 0.981 0.935 0.908 0.950 0.875 0.964
Word2vc (Drug Labeling) 0.857 0.929 0.977 0.940 0.916 0.950 0.883 0.965
Word2vec (PubMed+ PMC) 0.864 0.934 0.977 0.944 0.925 0.946 0.893 0.963
Word2vec (PubMed + PMC+ Wikipedia) 0.878 0.941 0.982 0.950 0.945 0.935 0.921 0.955

BERT and its derivates
DistilBERT 0.820 0.911 0.970 0.922 0.896 0.933 0.862 0.950
ALBERT 0.877 0.941 0.978 0.950 0.964 0.907 0.946 0.937
BERT 0.899 0.951 0.985 0.958 0.949 0.954 0.927 0.968
BioBERT 0.917 0.960 0.987 0.966 0.972 0.943 0.959 0.960
RoBERTa 0.921 0.962 0.987 0.968 0.962 0.962 0.945 0.974

*Positive predictive value (PPV) and negative predictive value (NPV).
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BioBERT model, which may be the reason for the unexpectedly
small contribution of domain-specific training for the test set.

Indication Information Extraction for
DrugBank Indication Notes
Working towards a real-world application, we applied the top
performance models to extract the indication-related sentences in
DrugBank indication description notes. The Drugbank indication
description notes are concise information for drug indications
without other information such as contraindications, side effects,
and specific population. We considered all drug indication notes
as positives. Therefore, we could calculate the enrichment rate
that measures the number of indication information sentences
correctly recognized by the developed models. The enrichment
rates were ranked as RoBERTa (0.952) > BioBERT (0.936) >
BERT (0.930), which is consistent with previous results based on
test sets (Figure 5). Based on the model performances of both the
test set and external validation set, BioBERT and RoBERTa could
provide more robust performance and better generalization
ability for different data resources.

DISCUSSION

Drug indications provide key medical information to support
clinical decision making and promote the appropriate use of
medicines. Furthermore, drug indication information is also
considered a fundamental resource to assist in the
standardization of medical coding and to potentially eliminate
medical errors (Fung et al., 2013). AI-powered NLP models have
successfully been applied to various biomedical-related tasks such
as biomedical entity recognition, text classification and

questioning and answering. However, a standard corpus for
domain-specific tasks is urgently needed to advance the
development of AI algorithms. In this study, we developed a
five-tier based Drug Indication Classification and Encyclopedia
(DICE) based on FDA approved drug labels with a consensus
manual curation strategy, to facilitate automatic indication
information extraction from free text with AI-powered NLP
approaches. To verify the utility of the proposed DICE, we
conducted a comprehensive comparison of nine deep learning-
based NLP models consisting of word embedding-based
BiLSTMs and BERT family models. Encouragingly, the top
models such as RoBERTa and BioBERT outperformed others

FIGURE 5 | Enrichment rate of fine-tuned transformers on Drugbank
indication notes.

FIGURE 4 | t-SNE analysis of average hidden states of transformers on test set.
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withMCCs greater than 0.910 and accuracy greater than 0.960 on
test sets, and enrichment rates greater than 0.930 on DrugBank
indication notes, demonstrating the great potential of the DICE
with AI for automatic indication information identification.

There have been a few attempts to curate the standard corpus
of drug indication information for NLP development. However,
the sample size is limited (e.g., ∼150 drug labels) (Khare et al.,
2015). Here, we used the entire list of FDA approved human
prescription drugs to develop the DICE with a five-tier
classification scheme. The DICE scheme took into account the
FDA guidance requirement for ‘INDICATION AND USAGE’
section drafting (https://www.fda.gov/regulatory-information/
search-fda-guidance-documents/indications-and-usage-section-
labeling-human-prescription-drug-and-biological-products-content-
and). The potential utility of DICE can be divided into two
aspects: 1) The DICE could serve as a standard biomedical
classification corpus for deep learning-based NLP algorithm
development; and 2) the DICE could also be utilized for
indication information extraction model development towards
real world applications such as off-label use and potential drug
repurposing opportunities derived from free-text resources (e.g.,
PubMed, EMR, patent, and social media).

The benefits of the domain-specific training on different
biomedical applications have been discussed elsewhere (Beltagy
et al., 2019; Huang et al., 2019; Lee et al., 2020). The domain-
specific word embedding-based BiLSTM yielded better prediction
performance than those built from general domain corpora.
Furthermore, the explainability of domain-specific word
embedding was superior as demonstrated by t-SNE analysis.
We did not observe any significant improvement of domain-
specific transformers (i.e., BioBERT) compared to the original
BERTbase and RoBERTabase on the test set, indicating the
performance of transformers may be task-specific and data specific.
Furthermore, further training of domain-specific transformers (e.g.,
BioBERT, SciBERT, and ClinicalBERT) on FDA approved drug
labeling data may be a potential direction to pursue even better
performance, however, it is out of scope of the current study.

Advances in AI in NLP and increased computational power
have allowed various transformer-based language models to be
developed and successfully used in different downstream tasks
(Devlin et al., 2018; Brown et al., 2020). As proof-of-concept of
the utility of the developed DICE, we selected the transformers
based on the BERT architecture. Other transformer-based models
such as Generative Pre-trained Transformer (GPT) 2/3 (Brown
et al., 2020), an autoregressive language model, have
demonstrated high performance in different NLP tasks,
especially in text generation and reading comprehension, which
may be worth further investigation for potential performance
improvements, even in the indication information classification
task. However, the balance between performance, computational
cost, and data size must be considered. Based on model results of
the test set and DrugBank data set, the condensed models such as
DistillBERT and ALBERT could also largely maintain the
prediction performance with a more economical usage of
computational resources.

The current version of DICE and associated AI-based
language models were based on the English language. Further

evaluation of other languages will be a great addition to expand
the utility of the developed DICE corpus. First, the proposed data
curation process of the DICE corpus is reproducible and could be
migrated to the documents in other languages. Accordingly, the
associated AI-based language models could be developed for drug
indication information extraction in other languages. Second,
tremendous efforts have been made to language translation
powered by AI in the biomedical domain (Liu et al., 2021).
For example, Liu et al. proposed a novel cross-lingual
biomedical entity linking model among ten typologically
diverse languages, which could translate the domain-specific
terminology between the languages. By combining the
developed biomedical entity linking model, the proposed
indication extraction models could be utilized in other
languages. However, further investigation and evaluation are
strongly recommended.

It is worthwhile to consider some additional studies to further
investigate the utility of DICE in different medical applications.
First, the model performance of different models was only
evaluated based on one test set. Considering the lack of
annotated data (i.e., ground truth) in the other resources,
we only employed DrugBank indication notes as positives
to verify the proposed models for a real-world application.
Some extra verifications are strongly recommended for
expanding the utility of the developed DICE and
accompanying models. Second, the developed DICE and
classification models could serve as the first step to extract
indication information. The other biomedical entity
recognition approaches (e.g., UMLS MetaMap (Aronson,
2001) or BioBERT (Lee et al., 2020)) could be applied to
extract disease-related terms for further applications. Third,
in the current study, the AI-based indication extraction models
are binary-based. Considering the unbalanced distribution of
the five defined categories (4,297 indication, 1,673 clinical
observations, 701 contraindication, 492 usage instructions,
and 68 side effects), we suggest further investigations on the
performance of the multi-class models. Lastly, while the
developed DICE is a five-tier indication classification
scheme, we only investigated its utility for automatic
indication information extraction through its usage as a
binary classifier. Evaluation for potential utility for testing
multiple-class model performance is suggested.

Automatic drug indication extraction is of great importance
for different biomedical applications. To fill this gap, we
developed the DICE to facilitate AI-based algorithm
development and verification. We hope our developed DICE
will be considered as a standard drug indication classification
corpus, providing the opportunity for other biomedical NLP
researchers to promote AI-powered indication extraction in
different real-world applications.
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