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Though there is a strong consensus that word length and frequency are the most

important single-word features determining visual-orthographic access to the mental

lexicon, there is less agreement as how to best capture syntactic and semantic factors.

The traditional approach in cognitive reading research assumes that word predictability

from sentence context is best captured by cloze completion probability (CCP) derived

from human performance data. We review recent research suggesting that probabilistic

language models provide deeper explanations for syntactic and semantic effects than

CCP. Then we compare CCP with three probabilistic language models for predicting

word viewing times in an English and a German eye tracking sample: (1) Symbolic

n-gram models consolidate syntactic and semantic short-range relations by computing

the probability of a word to occur, given two preceding words. (2) Topic models rely

on subsymbolic representations to capture long-range semantic similarity by word

co-occurrence counts in documents. (3) In recurrent neural networks (RNNs), the

subsymbolic units are trained to predict the next word, given all preceding words in the

sentences. To examine lexical retrieval, these models were used to predict single fixation

durations and gaze durations to capture rapidly successful and standard lexical access,

and total viewing time to capture late semantic integration. The linear item-level analyses

showed greater correlations of all languagemodels with all eye-movementmeasures than

CCP. Then we examined non-linear relations between the different types of predictability

and the reading times using generalized additive models. N-gram and RNN probabilities

of the present word more consistently predicted reading performance compared with

topic models or CCP. For the effects of last-word probability on current-word viewing

times, we obtained the best results with n-gram models. Such count-based models

seem to best capture short-range access that is still underway when the eyes move on to

the subsequent word. The prediction-trained RNN models, in contrast, better predicted

early preprocessing of the next word. In sum, our results demonstrate that the different

language models account for differential cognitive processes during reading. We discuss

these algorithmically concrete blueprints of lexical consolidation as theoretically deep

explanations for human reading.

Keywords: language models, n-gram model, topic model, recurrent neural network model, predictability,
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INTRODUCTION

Concerning the influence of single-word properties, there is a
strong consensus in the word recognition literature that word
length and frequency are the most reliable predictors of lexical
access (e.g., Reichle et al., 2003; New et al., 2006; Adelman and
Brown, 2008; Brysbaert et al., 2011). Though for instance, Baayen
(2010) suggests that a large part of the variance explained by
word frequency is better explained by contextual word features,
we here use these single-word properties as a baseline to set
the challenge for contextual word properties to explain more
variance than the single-word properties.

In contrast to single-word frequency, the question of how
to best capture contextual word properties is controversial.
The traditional psychological predictor variables are based on
human performance. When aiming to quantify how syntactic
and semantic contextual word features influence the reading of
the present word, Taylor’s (1953) cloze completion probability
(CCP) still represents the performance-based state of the art
for predicting sentence reading in psychological research (Kutas
and Federmeier, 2011; Staub, 2015). Participants of a pre-
experimental study are given a sentence with a missing word,
and the relative number of participants completing the respective
word are then taken to define CCP. This human performance
is then used to account for another human performance such
as reading. Westbury (2016), however, suggests that a to-be-
explained variable, the explanandum, should be selected from
a different domain than the explaining variable, the explanans
(Hempel and Oppenheim, 1948). When two directly observable
variables, such as CCP and reading times, are connected, for
instance Feigl (1945, p. 285) suggests that this corresponds to
a ‘“low-grade’ explanation.” Models of eye movement control,
however, were “not intended to be a deep explanation of language
processing, [. . . because they do] not account for the many effects
of higher-level linguistic processing on eye movements” (Reichle
et al., 2003, p. 450).

Language models offer a deeper level of explanation, because
they computationally specify how the prediction is generated.
Therefore, they incorporate what can be called the three mnestic
stages of the mental lexicon (cf. Paller and Wagner, 2002;
Hofmann et al., 2018). All memory starts with experience, which
is reflected by a text corpus (cf. Hofmann et al., 2020). The
languagemodels provide an algorithmic description of how long-
term lexical knowledge is consolidated from this experience
(Landauer and Dumais, 1997; Hofmann et al., 2018). Based
on the consolidated syntactic and semantic lexical knowledge,
language models are then exposed to the same materials that
participants read and thus predict lexical retrieval. In the present
study, we evaluate their predictions for viewing times during
sentence reading (e.g., Staub, 2015).

We will compare CCP as a human-performance based
explanation of reading against three types of language models.
The probability that a word occurs, given two preceding words,
is reflected in n-gram models, which capture syntactic and
short-range semantic knowledge (cf. e.g., Kneser and Ney, 1995;
McDonald and Shillcock, 2003a). This is a fully symbolic model,
because the smallest unit of meaning representation consist

of words. Second, we test topic models that are trained from
word co-occurrence in documents, thus reflecting long-range
semantics (Landauer and Dumais, 1997; Blei et al., 2003; Griffiths
et al., 2007; Pynte et al., 2008a). Finally, recurrent neural networks
(RNNs) most closely reflect the cloze completion procedure,
because their hidden units are trained to predict a target word
by all preceding words in a sentence (Elman, 1990; Frank, 2009;
Mikolov, 2012). In contrast to the n-gram model, topic and
RNN models distribute the meaning of a word across several
subsymbolic units that do not represent human-understandable
meaning by themselves.

Eye Movements and Cloze Completion
Probabilities
While the eyes sweep over a sequence of words during reading,
they remain relatively still for some time, which is generally
called fixation duration (e.g., Inhoff and Radach, 1998; Rayner,
1998). A very fast and efficient word recognition is obtained
when a word can be recognized at a single glance. In this type of
fixation event, the single-fixation duration (SFD) informs about
this rapid and successful lexical access. When further fixations
are required to recognize the word before the eyes move on to
the next word, the duration of these further fixations is added to
the gaze duration (GD). This is an eye movement measure that
reflects “standard” lexical access in all words, while it may also
represent syntactic and semantic integration (cf. e.g., Inhoff and
Radach, 1998; Rayner, 1998; Radach and Kennedy, 2013). Finally,
the eyes may come back to the respective word, and when the
fixation times of these further fixations are added, this is reflected
in the total viewing time (TVT)—an eye movement measure that
reflects the full semantic integration of a word into the current
language context (e.g., Radach and Kennedy, 2013).

Though CCP is known to affect all three types of fixation
times, the result patterns considerably vary between studies
(see e.g., Frisson et al., 2005; Staub, 2015; Brothers and
Kuperberg, 2021, for reviews). A potential explanation is that
CCP represents an all-in variable (Staub, 2015). The cloze can be
completed because the word is expected from syntactic, semantic
and/or event-based information—a term that refers to idiomatic
expressions in very frequently co-occurring words (cf. Staub
et al., 2015).

By shedding light on the consolidation mechanisms, language
models are expected to complement future models of eye-
movement control, which do not provide a deep explanation
to linguistic processes (Reichle et al., 2003, p. 450). Models of
eye-movement control, however, provide valuable insights how
lexical access and eye-movements interact. These models assume
that lexical access is primarily driven by word length, frequency
and CCP-based predictability of the presently fixated word (e.g.,
Reichle et al., 2003; Engbert et al., 2005; Snell et al., 2018). This
reflects the simplifying eye-mind assumption, which “posits that
the interpretation of a word occurs while that word is being
fixated, and that the eye remains fixated on that word until
the processing has been completed” (Just and Carpenter, 1984,
p. 169). Current models of eye-movement control, however,
reject the idea that lexical processing exclusively occurs during
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the fixation of a word (Reichle et al., 2003; Engbert et al.,
2005; see also Anderson et al., 2004; Kliegl et al., 2006). Lexical
processing can still be underway when the eyes move on to
the subsequent word, which can occur, for instance, if the first
word is particularly difficult to process (Reilly and Radach, 2006).
Therefore, lexical processing of the last word can still have a
considerable impact on the viewing times of the currently fixated
word. Moreover, when a word is currently fixated at a point in
time, lexical access of the next word can already start (Reilly and
Radach, 2006).

When trying to characterize the time course of single-word
and contextual word properties, for instance the EZ-readermodel
suggests that there are two stages of lexical processing that
are both influenced by word frequency and predictability. The
first stage represents a “familiarity” check and the identification
of an orthographic word form—this stage is primarily driven
by word frequency. The second stage additionally involves the
(phonological and) semantic word form—therefore, CCP has a
stronger impact on this stage of processing. Please also note that
attention can already shift to the next word, while the present
word is fixated. When the next word is short, highly frequent
and/or highly predictable, it can be skipped, and the saccade is
programmed toward the word after the next word (Reichle et al.,
2003).

Language Models in Eye Movement
Research
Symbolic Representations in N-Gram Models
Symbolic n-gram models are so-called count-based models
(Baroni et al., 2014; Mandera et al., 2017). Cases in which
all n words co-occur are counted and related to the count
of the preceding n-1 words in a text corpus. McDonald and
Shillcock (2003a) were the first who tested whether a simple 2-
gram model can predict eye movement data. They calculated
the transitional probability that a word occurs at position n
given the preceding word at position n-1. Then they paired
preceding verbs with likely and less likely target nouns and
showed significant effects on early SFD, but no effects on later GD
(but see Frisson et al., 2005). Effects on GD were subsequently
revealed using multiple regression analyses of eye movements,
suggesting that 2-gram models also account for lexical access in
all words (McDonald and Shillcock, 2003b; see also Demberg and
Keller, 2008). McDonald and Shillcock (2003b) discussed that
the 2-gram transitional probability reflects a relatively low-level
process, while it does probably not capture high-level conceptual
knowledge, corroborating the assumption that n-gram models
reflect syntactic and short-range semantic information. Boston
et al. (2008) analyzed the viewing times in the Potsdam Sentence
Corpus (PSC, Kliegl et al., 2004) and found effects of transitional
probability for all three fixation measures (SFD, GD, and TVT).
Moreover, they found that these effects were descriptively larger
than the CCP effects (see also Hofmann et al., 2017).

Smith and Levy (2013, p. 303) examined larger sequences of
words by using a 3-gram model to show last- and present-word
probability effects on GD during discourse reading (Kneser and
Ney, 1995). Moreover, they showed that these n-gram probability

effects are logarithmic (but cf. Brothers and Kuperberg, 2021).
For their statistical analyses, Smith and Levy (2013) selected
generalized additive models (GAMs) that can well capture the
phenomenon that a predictor may perform better or worse in
certain range of the predictor variable. They showed that the 3-
gram probability of the last word still has a considerable impact
on the GDs of the current word. Therefore, this type of language
model canwell predict that contextual integration of the last word
is still underway at the fixation of the current word. Of some
interest is that Smith and Levy (2013) suggest that CCP may
predict reading performance well, when comparing extremely
predictable with extremely unpredictable words. Hofmann et al.
(2017, e.g., Figure 3), however, provide data showing that a 3-
gram model may provide more accurate predictions at the lower
end of the predictability distribution.

Latent Semantic Dimensions
The best-known computational approach to semantics in
psychology is probably latent semantic analysis (LSA, Landauer
and Dumais, 1997). A factor-analytic-inspired approach is used
to compute latent semantic dimensions that determine which
words do frequently occur together in documents. This allows
to address the long-range similarity of words and sentences by
calculating the cosine distance (Deerwester et al., 1990). Wang
et al. (2010) addressed the influence of transitional probability
and LSA similarity of the target to the preceding content word.
They found that transitional probability predicts lexical access,
while the long-range semantics reflected by LSA particularly
predicts late semantic integration [but see Pynte et al. (2008a,b)
for LSA effects on SFD and GD, and Luke and Christianson
(2016) for LSA effects on TVT, GD, and even earlier viewing
time measures].

In a recent study, Bianchi et al. (2020) contrasted the GD
predictions of an n-gram model with the predictions of an
LSA-based match of the current word with the preceding nine
words during discourse reading. They found that LSA did not
provide effects over and above the n-gram model. The LSA-
based predictions improved, however, when further adding the
LSA-based contextual match of the next word. This indicates
that such a document-level, long-range type of semantics might
be particularly effective when taking the predictabilities of the
non-fixated words into account.

LSA has been challenged by another dimension-reducing
approach in accounting for eye movement data. Blei et al. (2003)
introduced the topic model as a Bayesian, mere probabilistic
language modeling alternative. Much as LSA, topic models are
trained to reflect long-range relations based on the co-occurrence
of words in documents. Griffiths et al. (2007) showed that topic
models provide better model performance than LSA in many
psychological tasks, such as synonym judgment or semantic
priming. They calculated the probability of a word to occur, given
topical matches with the preceding words in the sentence. This
topic model-based predictor, but not LSA cosine accounted for
Sereno’s et al. (1992) finding that GDs and TVTs of a subordinate
meaning are larger than in a frequency-matched non-ambiguous
word (Sereno et al., 1992).
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Though Hofmann et al. (2017) also found topic model
effects on SFD data, their results suggested that long-range
semantics provides comparably poor predictions. The short-
range semantics and syntax provided by n-gram models, in
contrast, provided a much better performance, particularly when
the language models are trained by a corpus consisting of movie
and film subtitles. In sum, the literature on document-level
semantics presently provides no consistent picture. Long-range
semantic effects might be comparably small (e.g., Hofmann et al.,
2017), but they may be more likely to deliver consistent results
when the analysis is not constrained to the long-range contextual
match of the present, but also of other words (Bianchi et al.,
2020). A more consistent picture might emerge, when also short-
range predictability is considered, as reflected e.g., in n-gram
models (Wang et al., 2010; Bianchi et al., 2020).

(Recurrent) Neural Networks
Neural network models are deeply rooted in the tradition
of connectionist modeling (e.g., Seidenberg and McClelland,
1989; McClelland and Rogers, 2003). In the last decade, these
models were advanced in the machine learning community
to successfully recognize pictures or machine translation (e.g.,
LeCun et al., 2015). In the processing of word stimuli, one of
the most well-known of these models is the word2vec model,
in which a set of hidden units is for instance trained to predict
the surrounding words by the present word (Mikolov et al.,
2013). This model is able to predict association ratings (Hofmann
et al., 2018) or semantic priming (e.g., Mandera et al., 2017). The
neural network that most closely approximates the cloze task,
however, is the recurrent neural network model (RNN), because
it is trained to predict the next word by the preceding sentence
context. In RNN models, words are presented at an input layer,
and a set of hidden units is trained to predict the probability of the
next word at the output layer (Elman, 1990). The hidden layer is
copied to a (recurrent) context layer after the presentation of each
word. Thus, the network gains a computationally concrete form
of short-term memory (Mikolov et al., 2013). Such a network
provides large hidden-unit cosine distances between syntactic
classes such as verbs and nouns, lower between non-living and
living objects, and even lower between mammals and fishes,
suggesting that RNNs reflect syntactic and short-range semantic
information at the level of the sentence (Elman, 1990). Frank
and Bod (2011) show that RNNs can account for syntactic
effects in viewing times, because they absorb variance previously
explainable by a hierarchical phrase-structure approach.

Frank (2009) used a simple RNN to successfully predict GDs
during discourse reading. When adding transitional probability
to their multiple regression analyses, both predictors revealed
significant effects. Such a result demonstrates that prediction-
based models such as RNNs and count-based n-gram models
probably reflect different types of “predictability.” Hofmann et al.
(2017) showed that an n-gram model, a topic model, and an
RNN model together can significantly outperform CCP for the
prediction of SFD. It is, however, unclear whether this finding
can be replicated in a different data set and generalized to other
viewing time measures.

Some recent studies compared other types of neural network
models to CCP (Bianchi et al., 2020; Wilcox et al., 2020;
Lopukhina et al., 2021). For example, Bianchi et al. (2020)
explored the usefulness of word2vec. Because they did not find
stable word2vec predictions for eye movement data, they decided
against a closer examination of this approach. Rather they relied
on fasttext—another non-recurrent neural model, in which the
hidden units are trained to predict the present word by the
surrounding language context (Mikolov et al., 2018). Moreover,
Bianchi et al. (2020) evaluated the performance of an n-gram
model and LSA. When comparing the performance of these
language models, they obtained the most reliable GD predictions
for their n-gram model, followed by CCP, while LSA and fasttext
provided relatively poor predictions. In sum, studies comparing
CCP to language models support the view that CCP-based and
language-model-based predictors account for different though
partially overlapping variances in eye-movement data (Bianchi
et al., 2020; Lopukhina et al., 2021) that seem related to syntactic,
as well as early and late semantic processing during reading.

The Present Study
The present study was designed to overcome the limitations
of the pilot study of Hofmann et al. (2017), which compared
an n-gram, a topics and an RNN model with respect to the
prediction of CCP, electrophysiological and SFD data in only
the PSC data set. They found that RNN models and n-gram
models provide a similar performance in predicting these data,
while the topics model made remarkably worse predictions. In
the present study, we focused on eye movements and aimed
to replicate the SFD effects with a second sample, which was
published by Schilling et al. (1998). Moreover, we aimed to
examine the dynamics of lexical processing. By modeling a set
of three viewing time parameters (SFD, GD and TVT), we
will be able to compare the predictions of CCP and different
language models for early rapid (SFD) and standard (GD) lexical
access, and their predictions for full semantic integration (TVT).
In their linear multiple regression analysis on item-level data,
Hofmann et al. (2017) found that the three language models
together account for around 30% of reproducible variance in
SFD data—as opposed to 18% for the CCP model. Though the
three language models together significantly outperformed the
CCP-based approach, they used Fisher-Yates significance z-to-t-
tests as a conservative approach, because aggregating over items
results in a strong loss of variance. Therefore, n-gram and RNN
models alone outperformed CCP always at a descriptive level,
but the differences were not significant. Here we applied a model
comparison approach to evaluate the model fit in comparison to
a baseline model, using standard log likelihood tests (e.g., Baayen
et al., 2008). This approach will also test the assumptions of
different short- and long-range syntactic and semantic processes
that we expect to be reflected by the parameters of the three
different language models selected.

Such a statistical approach, however, is based on unaggregated
data. As Lopukhina et al. (2021) pointed out, the predictability
effects in such analyses are relatively small. For instance Kliegl
et al. (2006; cf. Table 5) found that CCP can account for
up to 0.38% of the variance in viewing times – thus it is
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important to evaluate the usefulness of language models in highly
powered samples. On the other hand, a smaller sample reflects
a more typical experimental situation. The present study was
designed to replicate and extend previous analyses of viewing
time parameters using two independent eye-movement data sets,
a very large sample of CCP and eye movement data, the PSC,
and a sample that is more typical for eye movement experiments,
the SRC.

In addition to a simple item-level analysis as a standard
benchmark for visual word recognition models (Spieler and
Balota, 1997), that were applied more thoroughly in a previous
set of analyses (Hofmann et al., 2017), we here applied Smith
and Levy’s (2013) generalized additive modeling approach with a
logarithmic link function (but cf. Brothers and Kuperberg, 2021).
The computed GAMs rely on fixation-event-level viewing time
parameters as the dependent variables. We used a standard set
of baseline predictors for reading and lexical access, and then
extended this baseline model by CCP- and/or language-model-
based predictors for the present, last and next words. To test
for reproducibility, our analyses will be based on the two eye-
movement data sets that are most frequently used for testing
models of eye-movement control: the EZ-reader model (Reichle
et al., 2003) was tested with the SRC data set; and the SWIFT and
the OB-1 reader models were used to predict viewing times in the
PSC (Kliegl et al., 2004; cf. Engbert et al., 2005; Snell et al., 2018).
GAMs are non-linear extensions of the generalized linear models
that allow predictors to be modeled as a sum of smooth functions
and therefore allow better adaptations to curvilinear and wiggly
predictor-criterion relationships (Wood, 2017).

Different language models are expected to explain differential
and independent proportions of variance in the viewing
time parameters. While an n-gram model reflects short-range
semantics, we expect it to be predictor of all viewing time
measures (e.g., Boston et al., 2008). A subsymbolic topic model
that reflects long-range semantics should be preferred over
the other language models in predicting GD and TVT and
semantic integration into memory (Sereno et al., 1992; Griffiths
et al., 2007), particularly when other forms of predictability are
additionally taken into account (Wang et al., 2010; Bianchi et al.,
2020). Previous studies examining RNN models found effects on
SFD and GD (e.g., Frank, 2009; Hofmann et al., 2017). Thus, it
is an open empirical question whether predict-based models do
not only affect lexical access, but also late semantic integration.
As these models are trained to predict the next word, they may be
particularly useful to examine early lexical preprocessing of the
next word.

METHOD

Language Model Simulations
All language models were trained by corpora derived from
movie and film subtitles.1 The English Subtitles training corpus
consisted of 110 thousand films and movies that were used for
document-level training of the topic models. We used the 128
million utterances as the sentence-level, in order to train the

1www.opensubtitles.org

n-gram and RNN models in the English corpus, which in all
consisted of 716 million tokens. The German corpus consisted
of 7 thousand movies, 7 million utterances/sentences comprising
of 54 million tokens.

Statistical n-grammodels for words are defined by a sequence
of n words, in which the probability of the nth word depends
on a Markov chain of the previous n-1 words (see, e.g., Chen
and Goodman, 1999; Manning and Schütze, 1999). Here we set
n = 3 and thus computed the conditional probability of a word
wn, given the two previous words (wn−1 . . . w1; Smith and Levy,
2013).

p (wn|w1 . . . wn−1) =
p ( w1 . . . wn)

p ( w1 . . . wn−1)
(1)

We used Kneser-Ney-smoothed 3-gram models, relying on the
BerkleyLM implementation (Pauls and Klein, 2011).2 These
models were trained by the subtitles corpora to capture lexical
memory consolidation (cf. Hofmann et al., 2018). For modeling
lexical retrieval, we computed the conditional probabilities for
the sentences presented in the SRC and the PSC data set (cf.
below). Since n-grammodels only rely on the most recent history
for predicting the next word, they fail to account for longer-range
phenomena and semantic coherence (see Biemann et al., 2012).

For training the topic models, we used the procedure
by Griffiths and Steyvers (2004), who infer per-topic word
distributions and per-document topic distributions through a
Gibbs sampling process. The empirically observable probability
of a word w to occur in a document d is thus approximated by
the sum of the products of the probabilities a word, given the
respective topic z, and the topic, given the respective word:

p =
∑

i=1...N

p (w|zi) ∗ p(zi|d) (2)

Therefore, words frequently co-occurring in the same documents
receive a high probability in the same topic. We use Phan
and Nguyen’s (2007) Gibbs-LDA implementation3 for training
a latent dirichlet allocation (LDA) model with N = 200 topics
(default values for α = 0.25 and β = 0.001; Blei et al., 2003).
The per-document topic distributions are trained in form of a
topic-document matrix [p(zi|d)], allowing to classify documents
by topical similarities, and used for inference of new (unseen)
“documents” at retrieval.

For modeling lexical retrieval of the SRC and PSC text
samples, we successively iterate over the words of the particular
sentence and create a new LDA document representation d
for each word at time i and its entire history of words in the
same sentence:

p (wi| d) = p(wi|wi . . .w1) (3)

In this case, d refers to the history of the current sentence
including the current word wi, where we are only interested in
the probability of wi. We here computed the probabilities of

2https://code.google.com/p/berkeleylm/
3http://gibbslda.sourceforge.net/
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the current word wi given its history as a mixture of its topical
components (cf. Griffiths et al., 2007, p. 231f), and thus address
the topical matches of the present word with the preceding words
in the sentence context.

For the RNNmodel simulations, we relied on the faster RNN-
LM implementation4, which can be trained on huge data sets and
very large vocabularies (cf. Mikolov, 2012). The input and target
output units consist of so-called one-hot vectors with one entry
for each word in the lexicon of this model. If the respective word
is present, the entry corresponds to 1, while the entries remain 0
for all other words. At the input level, the entire sentence history
is given word-by-word and the models objective is to predict
the probability of the next word at the output level. Therefore,
the connection weights of the input and output layer to the
hidden layer are optimized. At model initialization, all weights
are assigned randomly. As soon as the first word is presented to
the input layer, the output probability of the respective word unit
is compared to the actual word, and the larger the difference, the
larger will be the connection weight change (i.e., backpropagation
by a simple delta rule). When the second word of a sentence
then serves as input, the state of the hidden layer after the first
word is copied to a context layer (cf. Figure 2 in Elman, 1990).
This (recurrent) context layer is used to inform the current
prediction. Therefore, the RNN obtains a form of short-term
memory (Mikolov, 2012; cf. Mikolov et al., 2013). We trained a
model with 400 hidden units and used the hierarchical softmax
provided by faster-RNN with a temperature of 0.6, using a
sigmoid activation function for all layers. For computing lexical
retrieval, we used the entire history of a sentence up to the current
word and computed the probability for that particular word.

Cloze Completion and Eye Movement Data
The CCP and eye movement data of the SRC and the PSC
were retrieved from Engelmann et al. (2013).5 The SRC data set
contains incremental cloze task and eye movement data for 48
sentences and 536 words that were initially published by Schilling
et al. (1998). The PSC data set provides the same data for 144
sentences and 1,138 words (Kliegl et al., 2004, 2006).

The sentence length of the PSC ranges from 5 to 11 words
(M = 7.9; SD = 1.39) and from 8 to 14 words in the SRC (M =

11.17; SD = 1.36). As last-word probability cannot be computed
for the first word in a sentence, and next-word probability cannot
be computed for the last word of a sentence, we excluded fixation
durations on the first and the last words of each sentence from
analyses. Four words of the PSC (e.g., “Andendörfern,” villages
of the Andes) did not occur in the training corpus and were
excluded from analyses. This resulted in the 440 target words
for the SRC and the 846 target words for the PSC analyses.
The respective participant sample sizes and number of sentences
are summarized in Table 1 (see Schilling et al., 1998; Kliegl
et al., 2004, 2006, for further details). Table 2 shows example
sentences, in which one type of predictability is higher than

4https://github.com/yandex/faster-rnnlm
5https://clarinoai.informatik.uni-leipzig.de/fedora/objects/mrr:
11022000000001F2FB/datastreams/EngelmannVasishthEngbertKliegl2013_1.
0/content

the other predictability scores. In general, CCP distributes the
probability space across a much smaller number of potential
completion candidates. Therefore, the mean probabilities are
comparably high (SRC: p = 0.3; PSC: p = 0.2). The mean
of the computed predictability scores, in contrast, provide 2–3
leading zeros. Moreover, the computed predictability scores by
far provide greater probability ranges.

To compute SRC-based CCP scores comparable to the PSC
(Kliegl et al., 2006), we used the empirical cloze completion
probabilities (ccp) and logit-transformed them (CCP in formula
4). Because Kliegl’s et al. (2004) sample was based on 83 complete
predictability protocols, cloze completion probabilities of 0 and
1 were replaced by 1/(2∗83) and 1−[1/(2∗83)] for the SRC, to
obtain the same extreme values.

CCP = 0.5∗ log(
ccp

1− ccp
) (4)

Since lexical processing efficiency varies with landing position of
the eye within a word (e.g., O’Regan and Jacobs, 1992; Vitu et al.,
2001), we computed relative landing positions by dividing the
landing letter by the word length. The optimal viewing position
is usually slightly left to the middle of the word, granting optimal
visual processing of the word (e.g., Nuthmann et al., 2005).
Therefore, we will use the landing position as a covariate to partial
out variance explainable by suboptimal landing positions (cf. e.g.,
Vitu et al., 2001; Kliegl et al., 2006; Pynte et al., 2008b). For all
eye movement measures, we excluded fixation durations below
70ms (e.g., Radach et al., 2013). The upper cutoff was defined
by examining the data distributions and excluding the range
in which only a few trials remained for analyses. We excluded
durations 800ms or greater for SFD (21 fixation durations for
SRC and 13 for PSC), 1,200ms for GD (12 for SRC and 0 for
PSC), and 1,600ms for TVT analyses (7 for SRC and 0 for PSC).
This resulted in the row numbers used for the respective analyses
given in Table 1.

Data Analysis
First, we calculated simple linear item-level correlations between
the predictor variables and the mean SFD, GD and TVT data
(see Table 3). In addition to the logit-transformed CCPs and
the log10-transformed language model probabilities (Kliegl et al.,
2006; Smith and Levy, 2013), we also explored the correlations
of the non-transformed probability values with SFD, GD and
TVT data, respectively: In the SRC data set, CCP provided
correlations of −0.28, −0.33, and −0.39; n-gram models of
−0.11, −0.16 and −0.21; topic models of −0.35, −0.47 and
−0.52; and RNN models provided correlations of −0.16, −0.23,
and −0.25, respectively. In the PSC data set, the SFD, GD
and TVT correlations with CCP were −0.20, −0.26, −0.31;
those of n-gram models were −0.16, −0.18 and −0.19; topics
models provided correlations of −0.19, −0.18 and −0.17; and
RNN models of −0.19, −0.21, −0.22. In sum, the transformed
probabilities always provided higher correlations with all fixation
durations than the untransformed probabilities (cf. Table 3).
Therefore, the present analyses focus on transformed values.

For non-linear fixation-event based analyses of the non-
aggregated eye-movement data, we relied on GAMs using thin
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TABLE 1 | Overview about cloze completion and eye movement (EM) data used for the present study.

Data set Sentences Targets Language Participants Rows of data in analysis

CCP EM SFD GD TVT

SRC 48 440 English 20 30 6,451 8,671 8,736

PSC 144 846 German 272 222 100,975 134,835 135,021

TABLE 2 | Example sentences and the probabilities of the four types of predictability.

SRC PSC

Word CCP N-gram Topic RNN Word CCP N-gram Topic RNN

Bill 6e-3 1e-4 1e-3 2e-5 In 1e-2 2e-3 3e-2 4e-3

complained 6e-3 3e-6 1e-4 1e-6 der 7e-1 1e-1 1e-2 1e-1

that 3e-1 1e-1 2e-3 6e-2 Klosterschule 6e-3 2e-6 4e-5 4e-5

the 2e-1 1e-1 2e-3 1e-2 herrschen 2e-2 1e-6 8e-4 3e-4

magazine 6e-3 1e-4 3e-4 3e-5 Schwester 6e-3 5e-5 4e-2 1e-9

included 6e-3 3e-7 2e-4 1e-5 Agathe 1e-2 7e-7 1e-4 1e-8

more 6e-3 4e-4 2e-3 6e-4 und 9e-1 5e-3 4e-3 4e-2

adds 4e-1 6e-7 2e-5 1e-8 Schwester 5e-1 1e-4 2e-2 8e-5

than 9e-1 2e-4 2e-3 1e-3 Maria 1e-1 5e-4 2e-3 2e-3

articles 8e-1 4e-6 5e-5 4e-6

The 6e-3 6e-4 3e-3 2e-2 Er 6e-3 1e-2 2e-2 2e-2

drunk 6e-3 6e-5 9e-4 2e-5 hätte 6e-3 5e-3 2e-3 2e-3

driver 6e-3 2e-2 2e-4 2e-3 nicht 2e-2 4e-2 2e-2 3e-2

lost 6e-3 6e-6 2e-3 1e-5 auch 6e-3 3e-4 9e-4 4e-3

control 4e-1 4e-1 3e-3 6e-3 noch 7e-1 1e-1 1e-3 3e-2

crashed 5e-2 9e-8 1e-4 4e-7 am 1e-2 3e-3 3e-3 5e-3

into 4e-1 9e-2 2e-3 1e-1 Telefon 6e-3 4e-3 4e-3 4e-2

a 6e-1 2e-1 2e-3 1e-1 nörgeln 6e-3 8e-8 5e-5 6e-8

street 6e-3 9e-4 2e-3 4e-3 sollen 7e-1 2e-4 2e-3 6e-4

sign 6e-1 2e-2 3e-3 6e-4

and 8e-1 1e-3 2e-3 3e-3

died 7e-1 3e-5 2e-3 4e-4

M 3e-1 5e-2 1e-3 3e-2 M 2e-1 2e-2 8e-3 1e-2

SD 4e-1 1e-1 1e-3 7e-2 SD 3e-1 7e-2 2e-2 3e-2

Min 6e-3 1e-9 3e-6 2e-10 Min 6e-3 1e-10 2e-6 4e-13

Max 1e+0 1e+0 2e-2 5e-1 Max 1e+0 9e-1 2e-1 5e-1

Examples sentences were selected to illustrate one case, in which one type of predictability is particularly high (bold). Translations (PSC): In the convent school, nun Agathe, and nun

Maria rule (upper). He should not have moaned at the telephone, as well (lower sentence).

plate regression splines from the mgcv-package (version 1.8) in R
(Hastie and Tibshirani, 1990; Wood, 2017). As several models of
eye-movement control rely on the gamma distribution (Reichle
et al., 2003; Engbert et al., 2005), we here also used gamma
functions with a logarithmic link function (cf. Smith and Levy,
2013). GAMs have the advantage to model non-linear smooth
functions, i.e., the GAM aims to find the best value for the
smoothing parameter in an iterative process. Because smooth
functions are modeled by additional parameters, the amount
of smoothness is penalized in GAMs, i.e., the model aims to
reduce the number of parameters of the smooth function and
thus to avoid overfitting. The effective degrees of freedom (edf)
parameter describes the resulting amount of smoothness (see

Table 8 below). Of note is, that an edf of 1 is present if the
model penalized the smooth term to a linear relationship. Edf ’s
close to 0 indicate that the predictor has zero wiggliness and
can be interpreted to be penalized out of the model (Wood,
2017). Though Baayen (2010) suggested that word frequency
can be seen as a collector variable that actually also contains
variance from contextual word features (cf. Ong and Kliegl,
2008), our baseline GAMs contained single-word properties.
We computed a baseline GAM consisting of the length and
frequency of the present, last and next word as predictors
(cf. Kliegl et al., 2006). To reduce the correlations between
the language models trained by the subtitles corpora and the
frequency measures, word frequency estimates were taken from
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TABLE 3 | Correlations between word properties for the SRC (below diagonal) and PSC (above diagonal), and the item-level means of the SFD, GD, and TVT data of the

present word.

1 2. 3 4 5 6 7 8 9

1. Length −0.62 −0.40 −0.47 −0.46 −0.51 0.28 0.62 0.57

2. Frequency −0.76 0.52 0.71 0.70 0.75 −0.35 −0.49 −0.50

3. CCP −0.48 0.58 0.56 0.36 0.56 −0.27 −0.34 −0.40

4. N–gram −0.58 0.74 0.63 0.61 0.79 −0.41 −0.49 −0.51

5. Topic −0.67 0.80 0.45 0.69 0.61 −0.35 −0.43 −0.41

6. RNN −0.65 0.81 0.58 0.84 0.75 −0.47 −0.51 −0.53

7. SFD 0.35 −0.50 −0.33 −0.39 −0.40 −0.44 0.81 0.79

8. GD 0.54 −0.62 −0.38 −0.51 −0.55 −0.55 0.86 0.95

9. TVT 0.61 −0.66 −0.44 −0.55 −0.58 −0.60 0.78 0.90

Highlighting was used to illustrate that the language models (italics and bold) provide always larger correlations with the three viewing time measures than CCP (bold) (see below

for discussions).

TABLE 4 | Generalized additive models (GCV, R2) for single-fixation duration (SFD) and χ
2 tests (df) against the previous model for significant increments in explained

variance (*p < 0.05).

SRC PSC

GCV %1R2 Deviance (df) GCV %1R2 Deviance (df)

Baseline 0.1273 4.17 Baseline 0.0969 3.99 Baseline

CCP Baseline

Baseline + present 0.1273 0.02 0.4 (1.9) 0.0968 0.1 10.7 (8)*

+ Last 0.1272 0.06 1.1 (2.7)* 0.0967 0.05 7.5 (9.1)*

+ Next 0.1271 0.02 0.5 (1.1) 0.0964 0.31 36.4 (9.5)*

N-gram Baseline

Baseline + present 0.127 0.29 3.1 (5.6)* 0.0966 0.27 33 (9.1)*

+ Last 0.1265 0.44 5.5 (9.4)* 0.0964 0.14 15.5 (8.7)*

+ Next 0.1265 −0.02 0 (0.8) 0.0963 0.07 9.6 (8.5)*

Topic Baseline

Baseline + present 0.1272 0.12 1.4 (4.6) 0.0967 0.21 23.1 (8.4)*

+ Last 0.1272 0.04 1.1 (5.8) 0.0963 0.28 33.8 (9.2)*

+ Next 0.1272 0.09 1.3 (4.4) 0.0963 0.07 9.6 (9.2)*

RNN Baseline

Baseline + present 0.1271 0.16 1.6 (1.2)* 0.0966 0.27 31.3 (9.6)*

+ Last 0.1271 −0.02 0 (0.9) 0.0966 0.03 3.7 (8.7)*

+ Next 0.1269 0.27 3.6 (11)* 0.0964 0.16 18 (8.7)*

N-gram + Topic + RNN Full CCP model

(Present + last + next) 0.1262 1.08 13 (33.6)* 0.0957 0.69 81.5 (49.1)*

Consistent GAM model improvements in both data sets are marked bold.

the Leipzig corpora collection6 The English corpus consisted of
105 million unique sentences and 1.8 billion words, and the
German corpus consisted of 70 million unique sentences and
1.1 billion words (Goldhahn et al., 2012). We used Leipzig word
frequency classes that relate the frequency of each word to the
frequency of the most frequent word using the definition that
the most common word is 2class more frequent than the word
of which the frequency is given (“der” in German and “the” in
English; e.g., Hofmann et al., 2011, 2018). Moreover, we inserted

6http://www.corpora.uni-leipzig.de/en?corpusId=deu_newscrawl-public_201

landing site into the baseline GAM (e.g., Pynte et al., 2008b), to
absorb variance resulting from mislocated fixations.

We added the different types of predictability of the present
word to the baseline model and tested whether the resulting
GAM performs better than the baseline GAM (Tables 4–6).
Then we successively added the predictability scores of the last
and next words and tested whether the novel GAM performs
better than the preceding GAM. Finally, we also tested whether
a GAM model including all language-model-based predictors
provides better predictions than the GAM including CCP scores
(Hofmann et al., 2017).
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TABLE 5 | Generalized additive models (GCV, R2) for gaze duration (GD) and χ
2 tests (df) against the previous model for significant increments in explained variance (*p <

0.05).

SRC PSC

GCV %1R2 Deviance (df) GCV %1R2 Deviance (df)

Baseline 0.1656 8.19 Baseline 0.145 10.52 Baseline

CCP Baseline

Baseline + present 0.1656 0.02 0.5 (1.6) 0.1448 0.09 31.2 (8.3)*

+ Last 0.1654 0.14 5 (11.1)* 0.1447 0.05 14.2 (9)*

+ Next 0.1652 0.08 2 (0.6)* 0.1444 0.17 45.8 (9.4)*

N-gram Baseline

Baseline + present 0.1651 0.32 4.3 (0.9)* 0.1446 0.24 66.8 (9)*

+ Last 0.1648 0.14 3.8 (5.2)* 0.1443 0.13 34.1 (8.8)*

+ Next 0.1648 0.02 1.1 (5.7) 0.1443 0.04 13.5 (8.7)*

Topic Baseline

Baseline + present 0.1657 0.01 −0.6 (0.6) 0.1448 0.15 38.1 (7.7)*

+ Last 0.1656 0.06 2.4 (6.9) 0.1444 0.14 47 (9.1)*

+ Next 0.1656 0 0.1 (1.2) 0.1444 0.02 10.2 (9)*

RNN Baseline

Baseline + present 0.1653 0.21 4 (5.3)* 0.1446 0.22 64.1 (8.9)*

+ Last 0.1652 0.1 2.2 (5.7) 0.1446 0.02 6.6 (7.9)*

+ Next 0.1651 0.09 2.4 (4.8)* 0.1444 0.12 26 (7.8)*

N-gram + Topic + RNN Full CCP model

(Present + last + next) 0.1644 0.67 14.1 (28.2)* 0.1434 0.55 145.8 (52)*

Consistent GAM model improvements in both data sets are marked bold.

TABLE 6 | Generalized additive models (GCV, R2) for total viewing time (TVT) and χ
2 tests (df) against the previous model for significant increments in explained variance

(*p < 0.05).

SRC PSC

GCV %1R2 Deviance (df) GCV %1R2 Deviance (df)

Baseline 0.1933 9.73 Baseline 0.1952 9.94 Baseline

CCP Baseline

Baseline + present 0.1931 0.13 2.8 (2.2)* 0.1943 0.32 134.4 (8.3)*

+ Last 0.1931 0.02 0.6 (1.9) 0.194 0.14 42.8 (9.3)*

+ Next 0.1929 0.14 4.2 (7.8)* 0.1938 0.09 32.6 (9.2)*

N-gram Baseline

Baseline + present 0.1926 0.39 8.8 (7.2)* 0.1942 0.33 139.6 (8.9)*

+ Last 0.1925 0.09 2.7 (5.5)* 0.1937 0.23 81.8 (8.9)*

+ Next 0.1925 0.01 1.7 (5.6) 0.1935 0.07 26.4 (8.8)*

Topic Baseline

Baseline + present 0.1932 0.15 4.1 (7.9)* 0.1949 0.12 48.2 (8.8)*

+ Last 0.1932 0 2.1 (8.1) 0.1945 0.15 56.8 (8.8)*

+ Next 0.1933 −0.01 0 (0.9) 0.1944 0.03 17.1 (9.3)*

RNN Baseline

Baseline + present 0.1926 0.33 6.1 (0.2)* 0.1942 0.34 138.2 (8.2)*

+ Last 0.1925 0.12 3.4 (6.9)* 0.194 0.1 32.5 (8.7)*

+ Next 0.1923 0.16 5.4 (11.5)* 0.1939 0.04 18.8 (8.8)*

N-gram + Topic + RNN Full CCP model

(Present + last + next) 0.1917 0.64 16.6 (19.9)* 0.1924 0.52 206 (53.5)*

Consistent GAM model improvements in both data sets are marked bold.
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TABLE 7 | χ2 tests whether the respective language model performed better than CCP.

SRC PSC

SFD GD TVT SFD GD TVT

%1R2 Deviance %1R2 Deviance %1R2 Deviance %1R2 Deviance %1R2 Deviance %1R2 Deviance

(df) (df) (df) (df) (df) (df)

N-gram 0.6 6.5 (10.1)* 0.24 1.8 (−1.4) 0.21 5.6 (6.5)* 0.02 3.6 (−0.2) 0.09 23.2 (−0.2) 0.09 38 (−0.2)

Topic 0.14 1.8 (9) −0.17 −5.7 (−4.6)* −0.15 −1.4 (5) 0.1 12 (0.2)* 0 4 (−1) −0.24 −87.7 (0)

RNN 0.31 3.2 (7.4)* 0.17 1 (2.5) 0.33 7.3 (6.7)* 0 −1.6 (0.3) 0.04 5.4 (−2.1) −0.06 −20.3 (−1.1)*

Positive deviance (df) suggests better performance of the language model, and negative deviance indicates that CCP fits better (*p < 0.05).

For a better overview, language models performing better were marked bold, and CCP performing better was marked in italics and bold.

As model benchmarks, we report the generalized cross-
validation score (GCV). This is an estimate of the mean
prediction error based on a leave-one-out cross validation
process. Better models provide a lower GCV (Wood, 2017). We
also report the difference in the percentage of explained variance
relative to the preceding or baseline model (%1R2, derived from
adjusted R2-values). We also tested whether a subsequent GAM
provides significantly greater log likelihood than the previous
model using χ

2-tests (anova function in R; p= 0.05, cf. Tables 4–
6). To provide a measure that can be interpreted in a similar
fashion as the residual sum of squares for linear models, we
further report the difference of the deviance of the last and the
present model (e.g., Wood, 2017). If this term is negative, this
indicates that the latter model provides a better account for the
data. We also report the difference of the degrees of freedom (df)
of the models to be compared. Negative values indicate that the
previous GAM is more complex.

In the second set of GAM comparisons, we compare the
performance of each single language model to the performance
of the CCP. For this purpose, we use the predictability scores
for all positions (present, last, and next word), and compared
each language model to CCP (see Table 7 below). To examine
the predictors themselves and to be able to directly compare the
contribution of human-generated and model-based predictors in
explaining variance in viewing times, we also generated a final
GAM model for each viewing time parameter comprising all
types of predictability. For these models we finally report the F-
values, effective degrees of freedom and the levels of significance
(cf. Table 8). We evaluate the functional forms of the effects
that are most reproducible across all analyses in the final model,
while setting all non-inspected variables to their mean value (cf.
Figures 1–3 below).

RESULTS

Our simple item-level correlations revealed that all language
models provided larger correlations with SFD, GD, and TVT data
than CCP (Table 3), demonstrating that languagemodels provide
a better account for viewing times than CCP. Moreover, there are
substantial correlations between all predictor variables, making
analyses with multiple predictors prone to fit error variance.
Therefore, we will focus our conclusions on those findings that

can be reproduced in different types of analyses (Tables 4–8;
Wagenmakers et al., 2011). When turning to these non-linear

GAM analyses at the level of each fixation event, we found that
nearly any predictor accounts for variance in the PSC data set.
This suggests that all types of predictability account for viewing
time variance, once there is sufficient statistical power. When
we examined typically sized samples in the SRC, only the most
robust effects make a contribution. Therefore, we will also focus
our conclusions on those effects that can be reproduced in both
samples (see Table 8 for a summary of all results).

Concerning the CCP analyses, the only findings that can
be reproduced in both data samples and across all non-linear
analyses was the influence of last- and next-word CCP on
GD data (Tables 5, 8). These effects seem quite robust and
can be examined in Figure 1. When all types of predictability
are included in the GAM (Table 8), CCP of the last and next
word seems to prolong GDs particularly in the range of logit-
transformed CCPs of around 0.5–1.5 (Figure 1). We see this as
a preliminary evidence that this type of predictability might be
particularly prone to predict that high-CCP last or next words
are processed during present-word fixations.

In general, CCP effects seem to be most reliable in GD data.
CCP outperformed the topic model in the SRC data set for
GD predictions (Table 7). Please also note that the only type of
predictability that failed to improve the GAM predictions in the
highly powered PSC sample was the CCP-effect of the last word
in SFD data (Table 8).

The language models not only showed greater correlations
with all viewing time measures than CCP (Table 3), but they also
delivered a larger number of consistent findings in our extensive
set of non-linear analyses (Tables 4–8). There are some CCP
effects worth to be highlighted that are exclusively apparent in the
analyses using only a single type of predictability. There are last-
word CCP effects in SFD data (Table 4), and a present-word effect
in the TVT data (Table 6). In addition to the fully consistent
last-word GD effects (Tables 5, 8, Figure 1), this lends further
support to the hypothesis that CCP is particularly prone to reflect
late processes. Moreover, there are also consistent next-word
effects in the GD and TVT analyses of both samples (Tables 5,
6) that are, however, often better explained by other types of
predictability in the analysis containing all predictors (Table 8).

Our non-linear analyses revealed that the n-gram-based
probabilities of the present word can account for variance in all
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TABLE 8 | The F-values of the predictors (effective degrees of freedom), their significance level and the total amount of variance explained in models including all

predictors at the same time.

SFD GD TVT

Baseline SRC PSC SRC PSC SRC PSC

Landing site 2.9 (1.9)* 12.8 (8.6)*** 8.4 (4.1)*** 12.8 (8.7)*** 10.5 (4.5)*** 10.7 (8.5)***

Length 0.6 (2.0) 19.6 (8.8)*** 10.2 (3.2)*** 372.5 (9.0)*** 17.2 (2.2)*** 248.9 (9.0)***

Length_last 6.9 (7.0)*** 29.1 (8.9)*** 6.5 (6.3)*** 26.8 (8.8)*** 10.2 (8.5)*** 24.0 (8.8)***

Length_next 2.1 (6.5)* 12.3 (8.2)*** 3.7 (8.7)*** 10.5 (8.5)*** 3.4 (8.6)*** 8.9 (8.8)***

Frequency 5.0 (4.7)*** 29.4 (8.7)*** 6.9 (4.6)*** 65.2 (9.0)*** 4.8 (6.1)*** 81.3 (8.9)***

Frequency_last 1.8 (1.1) 6.2 (8.8)*** 1.6 (1.0) 6.6 (8.6)*** 6.6 (3.3)*** 24.0 (8.8)***

Frequency_next 1.5 (5.5) 17.5 (8.5)*** 2.0 (7.5)* 27.2 (8.7)*** 2.7 (7.5)** 22.6 (8.9)***

CCP 0.7 (1.0) 12.1 (8.8)*** 0.8 (3.0) 17.4 (8.8)*** 0.7 (1.0) 37.1 (8.8)***

CCP_last 1.9 (6.0). 2.1 (2.3) 2.5 (6.0)* 5.5 (8.8)*** 0.9 (2.0) 14.0 (8.9)***

CCP_next 2.0 (1.0) 19.0 (8.7)*** 7.0 (1.0)** 14.1 (8.8)*** 1.9 (1.0) 8.5 (8.8)***

N-gram 2.7 (4.2)* 14.0 (6.4)*** 3.8 (6.4)*** 12.8 (8.9)*** 4.2 (3.5)** 10.5 (8.8)***

N-gram_last 2.9 (7.4)** 12.3 (8.0)*** 7.4 (1.0)** 14.6 (8.9)*** 2.0 (5.6). 18.6 (8.9)***

N-gram_next 3.7 (1.0). 6.0 (8.4)*** 2.7 (1.0) 8.5 (7.7)*** 5.3 (1.0)* 10.7 (7.8)***

Topic 2.1 (2.4). 14.6 (8.8)*** 1.6 (2.9) 14.2 (8.8)*** 1.8 (2.1) 13.4 (8.8)***

Topic_last 1.7 (5.4). 19.6 (8.3)*** 3.1 (6.5)** 19.0 (8.4)*** 1.9 (6.6). 19.7 (8.5)***

Topic_next 1.8 (2.4) 9.2 (8.6)*** 0.3 (1.1) 19.0 (8.4)*** 0.2 (1.0) 11.2 (8.9)***

RNN 4.4 (1.0)* 5.3 (8.5)*** 1.5 (3.6) 5.8 (8.1)*** 8.6 (1.0)** 8.5 (8.4)***

RNN_last 1.5 (1.0) 9.2 (8.8)*** 3.3 (5.5)** 5.7 (8.5)*** 3.6 (3.9)** 7.4 (8.8)***

RNN_next 2.3 (5.6)* 6.7 (7.8)*** 1.6 (8.2) 11.0 (7.4)*** 1.8 (3.1) 8.3 (8.7)***

Total R2 (%) 5.45 5.36 9.16 11.5 10.7 11.3

p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001. Consistent findings over both data sets in Tables 4–6 and this Table and are marked bold.

three viewing time measures. Moreover, the n-gram probability
of the last word reproducibly accounted for variance in SFD and
GD data. We illustrate these effects in Figure 2, suggesting that
high log-transformed n-gram probabilities exhibit approximately
linear decreases in GD, particularly in the range of log-
transformed probabilities from −8 to −2 (cf. Smith and Levy,
2013).

The present and last-word n-gram effects can be consistently
obtained in the analyses of only a single type of predictability
(Tables 4–6), as well as in the analysis containing all predictors
(Table 8). Moreover, the n-gram-based GAM, including the
present, the last and the next word predictor, provided
significantly better predictions than the CCP-based GAM in the
SRC data set for SFD and TVT data (Table 7). This result pattern
suggests that an n-grammodel is more appropriate than CCP for
predicting eye-movements in relatively small samples.

Concerning the non-linear analyses of the topic models, we
found no effects that can be reproduced across all analyses
(Tables 4–6, 8). Thus, we found an even less consistent picture
for the topicmodel than for CCP.When tested against each other,
CCP provided better predictions than the topics model in the GD
data of the SRC, while the reverse result pattern was obtained for
SFD data in the PSC (Table 7). In the analyses relying on a single
type of predictability, we obtained a TVT effect for the present
word that can be reproduced across both samples (Table 6). In
the analyses containing all types of predictability, only the last-
word’s topical fit with the preceding sentence revealed a GD

effect in the SRC data set that can be reproduced across both
samples (Table 8). These result patterns may tentatively point at
a late semantic integration effect of long-range semantics by topic
model predictions.

The examination of RNNmodels revealed consistent findings
across all non-linear analyses for the present word in SFD
and TVT data (Tables 4–6, 8). Though consistent next-word
predictability effects were obtained for all viewing time measures
in the analyses containing only a single type of predictability
(Tables 4–6), only the next-word RNN effect in SFD data was
reproducible in the analyses containing all predictors (Table 8).
This result pattern indicates that an RNN may be particularly
useful for investigating (parafoveal) preprocessing in rapidly
successful lexical access.

Therefore, we relied on SFD data to illustrate the functional
form of the RNN effects in Figure 3. RNN probabilities of the
present word reduce SFDs, particularly at a log-transformed
probability of −10 and higher. Concerning the influence of
the next word, log-probabilities lower than −7 seem to delay
the SFDs of the current word. This provides some preliminary
evidence that an extremely low RNN probability of the word in
the right parafovea might leads to parafoveal preprocessing of the
next word.

Next-word probability effects, however, are not the only
domain, in which RNN models can account for other variance
than the other types of predictability. We also obtained
consistent last-word RNN-based GAM model fit improvements
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FIGURE 1 | Cloze completion probability effects on gaze duration. The x-axes show logit-transformed cloze completion probability (CCP), while the y-axes

demonstrate its influence on gaze durations (ms) of the full GAM models (cf. Table 8). (A,B) Illustrate effects of last-word CCP on gaze durations of the currently

fixated word. (C,D) Demonstrate that the CCP of the next word has an influence on the gaze durations of the currently fixated word. (A,C) Display effects in the SRC

data set and (B,D) illustrate the results of the PSC data set. Particularly in a logit-range around 0.5–1.5, the CCP of the surrounding words seems to delay fixations.

Shaded areas indicate standard errors.

and significant effects of last-word probabilities in the analysis
including all predictors for TVT data (Tables 6, 8)—a result
that probably points at the generalization capabilities of this
subsymbolic model. For the SRC data set, the RNN provided
significantly better predictions in SFD and TVT data, while CCP
outperformed the RNN model in the TVT data of the PSC data
set (Table 7).

When summing up the results of language-model-based vs.
the CCP-based GAM models, language models outperformed
CCP in 5 comparisons, while CCP provided significantly better
fitting GAM models in 2 comparisons (Table 7). Moreover,
the three language models together always accounted for
more viewing time variance than CCP (Tables 4–6). When the

predictors of all three language models are together incorporated
into a final GAM, this accounted for more viewing time variance
than CCP (Tables 4–6). Thus, a combined set of language model
predictors is appropriate to explain eye-movement patterns.

GENERAL DISCUSSION

Language Models Account for More
Reproducible Variance
In the present study, we compared CCP to word probabilities
calculated from n-gram-, topic- and RNN-models for predicting
fixation durations in the SRC and PSC data set. Already simple
item-level analyses showed that all language models provided
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FIGURE 2 | N-gram probability effects on gaze durations. The x-axes display log-transformed n-gram probability, while the y-axes demonstrate its influence on gaze

durations (ms) of the full GAM models (cf. Table 8). (A,B) Demonstrate the effects of the present-word n-gram probabilities, while (C,D) Illustrate the influence of the

n-gram probability of the last word on the gaze durations of the currently fixated word. Results of the SRC data set are given in (A,C), while PSC data are illustrated in

(B,D). Large log-transformed n-gram probabilities lead to an approximately linear decrease of gaze durations, particularly in a log-range of −8 to −1. Shaded areas

indicate standard errors.

greater linear correlations with all viewing time measures than
CCP (Table 3).We also explored the possibility that the rawword
probabilities provide a linear relationship with reading times
(Brothers and Kuperberg, 2021). The transformed probabilities,
however, always provided greater correlations with the three
reading time measures than the raw probabilities. Therefore, our
analyses support Smith and Levy’s (2013) conclusion that the
best prediction is obtained with log-transformed language model
probabilities (cf. Wilcox et al., 2020).

When contrasting each language model against CCP in our
non-linear analyses, there was no single language model that
provided consistently better performance than CCP for the same
viewing time measure in both data sets (Table 7). Rather, such

comparisons seem to depend on a number of factors such
as the chosen data set, language, participants and materials,
demonstrating the need for further studies. A particularly
important factor should be the number of participants in the
CCP sample: In the small SRC data set, the language models
outperformed CCP in 4 cases, while CCP was significantly better
only 1 time. In the large CCP data set of the PSC, in contrast,
both CCP and the language models outperformed each other
for 1 time. When examining the amount of explained variance,
however, the language models usually provided greater gains in
explained variances than CCP: The n-gram and RNN models
provided increments in explained variance ranging between 0.33
and 0.6% over CCP in the SFD and TVT data of the SRC
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FIGURE 3 | RNN probability effects on single-fixation durations. X-axes show log-transformed RNN probabilities, while the y-axes demonstrate the most reliable

present and next-word RNN effects obtained in single-fixation durations. The (A,B) demonstrate the effect of present-word RNN probability. Relatively linear decreases

of single-fixation durations are obtained, particularly at a log-RNN probability of −10 and higher. (C,D) Illustrate the effects of log RNN probability of the next word. Log

RNN probabilities of the next word lower than −7 seem to delay the fixation duration of the currently fixated word. (A,C) show SRC data and (B,D) illustrate PSC data.

Shaded areas indicate standard errors.

data set, in which CCP however provided better predictions
than the topic model (0.17%, Table 7). For the PSC data, there
was a topic model gain of 0.1% over CCP in SFD data, but
a CCP gain over the RNN model of 0.06% of variance. In
sum, the language models provided better predictions than
CCP in 5 cases—CCP provided better predictions in 2 cases
(Table 7). Finally, the three language models together always
outperformed CCP (Tables 4–6), supporting Hofmann’s et al.
(2017) conclusion derived from linear item-level based multiple
regression analysis. Therefore, language models not only provide
a deeper explanation for the consolidation mechanisms of the
mental lexicon, but they also often perform better than CCP in
accounting for viewing times.

CCP Effects Set a Challenge for
Unexplained Predictive Processes
Nevertheless, CCP can still make a large contribution toward
understanding the complex interplay of differential predictive
processes. Though the results are less consistent than in the
n-gram and RNN analyses, at least the last- and next-word
CCP effects on GD data are reproducible in two eye movement
samples and over several analyses (Tables 5, 8; cf. Table 7). This
suggests that CCP accounts for variance that is not reflected
by the language models we investigated (cf. e.g., Bianchi et al.,
2020). When exploring the functional form of the GD effects
of the surrounding words, Figure 1 indicated that a high CCP
of the last and next word leads to a relatively linear increase in
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GD, particularly in a logit-transformed predictability range of
around 0.5–1.5. This might indicate that when between around
73 to 95% of the participants of the cloze completion sample
agree that the cloze can be completed with this particular word,
CCP might represent a reliable predictor of GD. As opposed to
functional forms of the language model effects, CCP was the
only variable that predicted an increase of viewing times with
increasing levels of predictability. So CCP might represent an
ongoing processing of the last word, or a type of parafoveal
preprocessing that delays the present fixation (cf. Figures 3C,D,
for other parafoveal preprocessing effects).

When having a large CCP sample available, the usefulness
of CCP increases, as can be examined in the PSC effects of
the present study (Tables 4–8). Though CCP can be considered
an “all-in” variable, containing to some degree co-occurrence-
based, semantic and syntactic responses (Staub et al., 2015), CCP
samples might probably vary with respect to the amount of these
different types of linguistic structure that is contained in these
samples. This might in part explain some inconsistency between
our SRC and PSC samples. We suggest that future studies should
more closely evaluate which type of information is contained in
which particular CCP sample, in order to obtain a scientifically
deeper explanation for the portions of the variance that can
presently still be better accounted for by CCP (Shaoul et al., 2014;
Luke and Christianson, 2016; Hofmann et al., 2017; Lopukhina
et al., 2021). Table 3 shows that the correlations of n-gram and
RNN models with the CCP data are larger than the correlations
with topics models in both data samples. This suggests that
the present cloze completion procedures were more sensitive to
short-range syntax and semantics rather to long-range semantics.
These CCP scores were based on sentence context—a stronger
contribution of long-range semantics could be probably expected
when the cloze (and reading) tasks are based on paragraph data
(e.g., Kennedy et al., 2013).

Though last-word SFD effects (Table 4) and present-word
TVT effects (Table 6) of CCP seem to be better explained by
the language models (Table 8), this result pattern confirms the
prediction of the EZ-reader model that CCP particularly reflects
late processes during reading (Reichle et al., 2003).

Symbolic Short-Range Semantics and
Syntax in N-Gram Models
While it has often been claimed that CCP reflects semantic
processes (e.g., Staub et al., 2015), it is difficult to define
what “semantics” exactly means. Here we offer scientifically
deep explanations relying on the computationally concrete
definitions of probabilistic language models (Reichle et al., 2003;
Westbury, 2016), which allow for a deeper understanding of the
consolidation mechanisms. An n-gram model is a simple count-
based model that relies exclusively on symbolic representations
of words. We call it a short-range “semantics and syntax” model,
because it is trained from the immediately preceding words.
The n-gram model reflects sequential-syntagmatic “low-level”
information (e.g., McDonald and Shillcock, 2003b).

The present word’s n-gram probability accounted for early
successful lexical access as reflected in SFD, standard lexical
access as reflected in the GD, as well as late integration

as reflected in the TVT. Moreover, the last word’s n-gram
probability accounted for lagged effects on SFD and GD data,
which replicates and extends Smith and Levy’s (2013) findings.
The examination of the functional form also confirms their
conclusion that last- and present-word log n-gram probability
provides a (near-)linear relationship with GD (see also Wilcox
et al., 2020)—at least in the log-transformed probability range
of −8 to −2 (Figure 2). Such a near-linear relationship was also
obtained for the log RNN probability of the present word with
SFD data (Figures 3A,B).

The present- and last-word effects of the n-gram model were
remarkably consistent across the two different eye-movement
samples, as well as over different analyses (Tables 4–6, 8; cf.
Wagenmakers et al., 2011). Our data support the view that n-
gram models not only explain early effects of lexical access (e.g.,
McDonald and Shillcock, 2003a; Frisson et al., 2005), but can
also be used for the study of late semantic integration (e.g.,
Boston et al., 2008). Moreover, they seem to be a highly useful
tool, when aiming to demonstrate the limitations of the eye-
mind assumption (Just and Carpenter, 1984). N-gram models
consistently predict lagged effects that reflect the sustained
semantic processing of the last word during the current fixation
of a word. In sum, count-based syntactic and short-range
semantic processes can reliably explain last-word and present-
word probability effects (e.g., Smith and Levy, 2013; Baroni et al.,
2014).

Less Consistent Findings in Long-Range
Topic Models
Topic models provided the least consistent picture over the two
different samples and the different types of analyses (Tables 4–
6, 8). Topic models are count-based subsymbolic approaches
to long-range semantics, which is consolidated from the co-
occurrences in whole documents. As the same is true for LSA,
they can well be compared to previous LSA-findings (Kintsch and
Mangalath, 2011). For instance, Bianchi et al. (2020) obtained
remarkably weaker LSA-based effects than n-gram-based GD
effects—thus our results are in line with the results of this
study (cf. Hofmann et al., 2017). When they combined LSA
with an n-gram model and additionally included next-word
semantic matches in their regression model, some of the LSA-
based effects became significant. This greater robustness of the
LSA effects in Bianchi et al. (2020) may be well-explained by
Kintsch and Mangalath’s (2011) proposal, that syntactic factors
should be additionally considered when aiming to address long-
rangemeaning and comprehension. As opposed to Bianchi’s et al.
(2020) next-word GD effects, however, the present study revealed
last-word GD effects of long-range semantics in the analysis
considering all predictors (Table 8). And when examining only
the present word’s topical fit with the preceding sentence, Wang’s
et al. (2010) conclusion was corroborated that (long-range)
lexical knowledge of whole documents is best reflected in TVT
data (see Table 6).

In sum, long-range semantic models provide a less consistent
picture than the other language models (cf. Lopukhina et al.,
2021). The results become somewhat more consistent when
short-range relations are additionally taken into account. Given
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that the effects occur in the last, present or next word when
short-range semantics is included, this may point at a positional
variability of long-range semantics that is integrated at some
point in time during retrieval. We think that this results from
the position-insensitive training procedure. Therefore, rather
than completely rejecting the eye-mind assumption by proposing
that “the process of retrieval is independent of eye movements”
(Anderson et al., 2004, p. 225), we suggest that long-range
semantics is position-insensitive at consolidation. Therefore, it
is also position-insensitive at lexical retrieval and the effects can
hardly be constrained to the last, present or next word, even if
short-range relations are considered (Wang et al., 2010; Bianchi
et al., 2020).

Finally, it should be taken into account that we here examined
single sentence reading. This may explain the superiority
of language models that are trained at the sentence level.
Document-level training might be superior when examining
words embedded in paragraphs or documents. This hypothesis
is in part confirmed by Luke and Christianson (2016). They
computed the similarity of each word to the preceding paragraph
and found relatively robust LSA effects (Luke and Christianson,
2016, e.g., Tables 41–45).

RNN Models: An Alternative View on the
Mental Lexicon
Short-range semantics and syntax can be much more reliably
constrained to present-, last-, or next-word processing, as already
demonstrated by the consistent present and last-word n-gram
effects. For the RNN probabilities, the simple linear item-
level correlations with SFD, GD, and TVT data were largest,
replicating, and extending the results of Hofmann et al. (2017).
For the non-linear analyses, the present word’s RNN probabilities
provided the most consistent results for SFD and TVT (Tables 5,
6, 8). Though GD was significant when only examining a single
language model (Table 5), this result could not be confirmed
in the analysis in which all predictors competed for viewing
time variance (Table 8). We propose that this difference can
be explained by considering how these short-range models are
trained for consolidated information. The n-gram model is
symbolic; thus, the prediction is only made for a particular
word form. And when testing for standard lexical access (that
is reflected in the GD), a perfect match of the predicted and the
observed word form may explain the superiority of the n-gram
model in this endeavor (Table 8).

On the other hand, both language models accounted for
SFD and TVT variance in the analysis containing all types of
predictability (Table 8). The co-existence of these effects may be
explained by the proposal that both models represent different
views on the mental lexicon (Elman, 2004; Frank, 2009). The n-
grammodel represents a “static” view, in which large lists of word
sequences and their frequencies are stored, to see which word is
more likely to occur in a context, given this large “dictionary”
of word sequences. The RNN model, in contrast, has only a
few hundred hidden units that reflect the “mental state” of the
model (Elman, 2004). As a result of this small “mental space,”
neural models have to compress the word information, which
may, for instance, explain their generalization capabilities: When
such a model is trained to learn statements such as “robin is

a bird” and “robin can fly,” and it later learns only a few facts
about a novel bird, e.g., “sparrow can fly,” “sparrow” obtains a
similar hidden unit representation as “robin” (McClelland and
Rogers, 2003). Therefore, a neural model can complete the cloze
“sparrow is a . . . ” with “bird,” even if it never was presented
this particular combination of words. For instance, in our PSC
example stimulus sentence “Die [The] Richter [judges] der [of
the] Landwirtschaftsschau [agricultural show] prämieren [award
a price to] Rhabarber [rhubarb] und [and] Mangold [mangold],”
the word “prämieren” (award a price) has a relatively low n-
gram probability of 1.549e-10, but a higher RNN probability of
1.378e-5, because the n-gram model has never seen the word
n-gram “der Landwirtschaftsschau prämieren [agricultural show
award a price to],” but the RNN model’s hidden units are
capable of inferring such information from similar contexts (e.g.,
Wu et al., 2021). In sum, both views on the mental lexicon
account for different portions of variance in word viewing times
(Table 8). The n-gram model may explain variance resulting
from an exact match of a word form in that context, while for
instance generalized information may be better explained by the
RNN model.

There are, however, also differences in the result patterns
that are best captured by the two language models, respectively.
A notable difference between count-based, symbolic knowledge
in the n-gram vs. predict-based, subsymbolic knowledge in the
RNN lies in their capability to account for last-word vs. next-
word effects. While the n-gram model obtained remarkably
consistent findings for the last word, next-word SFD effects are
better captured by an RNN (Tables 4, 8). This corroborates our
conclusion that the two views on the mental lexicon account
for different effects. The search for a concrete word form, given
the preceding word forms in the n-gram model, may take some
time. Therefore, the probabilities of the last word still affect the
processing of the present word. As opposed to this static view
on a huge mental lexicon, the hidden units in the RNN model
are trained to predict the next word (Baroni et al., 2014). When
such a predicted word to the right of the present fixation position
may cross a log RNN probability of −7, its presence can be
verified (Figures 3C,D). Therefore, the RNN-based probability of
the next word may elicit fast and successful lexical access of the
present word, as reflected in the SFD.

Limitations and Outlook
Model comparison is known to be related to the numbers of
parameters included in the models, thus a comparison of the
GAMs comparing all three language models with the CCP
predictor might overemphasize the effects of the languagemodels
(Tables 4–6). However, we think that language models allow
for a deeper understanding of natural language processing of
humans than CCP does, because language models provide a
computational definition how “predictability” is consolidated
from experience. Moreover, the conclusion that language models
account for more variance than CCP is also corroborated by all
other analyses (Tables 3–8). Sometimes it is stated that GAMs
in general are prone to overfitting. CCP and even more so
the model-generated predictability scores are highly correlated
with word frequency, potentially leading to overfitting on the
one hand. On the other hand, it is more difficult for the
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language models to account for additional variance, because
their higher correlation (i.e., their higher shared variances)
with word frequency (Table 3). Wood (2017) discusses that the
penalization procedure that leads to the smoothing parameters
and also the GCV procedure inherent in the gam() function in R
specifically tackles overfitting.We further addressed this question
by focusing on consistent results, visible across the computation
for two independent eye-movement samples and different types
of analyses. This approach reduced the number of robust and
consistent findings. If one would have ignored the non-linear
nature of the relationships between predictors and dependent
variables and only examined the simple linear effects reported
in Table 3, however, the advantages of the language models over
CPP would have been much clearer.

This also leads to the typical concern for analyses on
unaggregated data that they account for only a small “portion”
of variance. For instance, Duncan (1975, p. 65) suggests to
“eschew altogether the task of dividing up R2 into unique
causal components” (quoted from Kliegl et al., 2006, p. 22).
It is clear that unaggregated data contain a lot of noise, for
instance resulting from a random walk in the activation of
lexical units, random errors in saccade length, and also “[s]accade
programs are generated autonomously, so that fixation durations
are basically realizations of a random variable” (Engbert et al.,
2005, p. 781). Therefore, if we like to estimate the “unique casual
component” of semantic and syntactic processes, we need to rely
on aggregated data. Table 3 suggests that these top-down factors
represented by language account for a reasonable 15–36% of the
viewing time variance, while CCP accounted for 7–19%.

It also becomes clear that the two data sets (PSC and
SRC), differ in important aspects. First, the CCP samples
differ in size, thus they probably provide a different signal-
to-noise ratio. A second difference is that also the PSC eye-
movement sample is larger and thus has more statistical power
to identify significant eye-movement effects of single predictors.
Third, the CCP measure is derived from different participant
samples. We would also point to the fact, that the eye-
movement and CCP samples were collected at different times
and come from different countries, which may also explain
some differences between the obtained effects. Fourth, also
the English and the German subtitles training corpora may
contain slightly different information. Having these limitations
in mind, we feel that the most consistent findings discussed
in the previous sections represent robust effects to evaluate
the functioning and the predictions of language models. Our
rather conservative approach might miss some effects that are
actually apparent, though they are explainable by these four
major differences between the samples. Therefore, future studies
might more closely characterize the CCP participant samples.
They may examine the same participants’ eye movements to
obtain predictability estimates that are representative for the
participants—which might increase the amount of explainable
variance (cf. Hofmann et al., 2020). Finally, google n-gram
training corpora may help to obtain training corpora stemming
from the same time as the eye-movement data collection.

Though we were able to discriminate between long-range
semantics and short-range relations that can be differentiated
into count-based symbolic and predict-based subsymbolic

representations, we like to point at the fact that the short-range
relations could also be separated into semantic and syntactic
effects. For example, RNN models have previously also been
related to syntax processing (Elman, 1990). Therefore, syntactic
information may alternatively explain the very early and very
late effects (Friederici, 2002). To examine whether semantic
or syntactic effects are at play, a promising start for further
evaluations may examine content vs. function words, which may
even lead to more consistent findings for long-range semantic
models. Further analysis may focus on language models that take
into account syntactic information (e.g., Padó and Lapata, 2007;
cf. Frank, 2009).

CONCLUSION

Understanding the complex interplay of different types of
predictability for reading is a challenging endeavor, but we think
that our review and our data point at differential contributions
of count-based and predict-based models in the domain of
short-range knowledge. Count-based models better capture last-
word effects, predict-based models better capture early next-
word effects, while present-word probabilities both make an
independent contribution to viewing times. In contrast, CCP
is a rather all-in predictor, that probably covers both types of
semantics: short-range and long-range. But we have shown that
language models with their differential foci are better suited
for a deeper explanation for eye-movement behavior, and thus
applicable in theory development for models of eye-movement
control. Finally, we hope that we made clear that these relatively
simple language models are highly useful for understanding
differential lexical access and semantic integration parameters
that are reflected in differential viewing time parameters.
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