
Comparing Plan Recognition
Algorithms Through Standard Plan
Libraries
Reuth Mirsky1*†, Ran Galun2, Kobi Gal 2,3 and Gal Kaminka4

1Department of Computer Science, The University of Texas at Austin, Austin, TX, United States, 2Department of Software and
Information Systems Engineering, Ben Gurion University, Be’er Sheva, Israel, 3School of Informatics, University of Edinburgh,
Edinburgh, United Kingdom, 4Department of Computer Science, Bar Ilan University, Ramat Gan, Israel

Plan recognition deals with reasoning about the goals and execution process of an
actor, given observations of its actions. It is one of the fundamental problems of AI,
applicable to many domains, from user interfaces to cyber-security. Despite the
prevalence of these approaches, they lack a standard representation, and have not
been compared using a common testbed. This paper provides a first step towards
bridging this gap by providing a standard plan library representation that can be used by
hierarchical, discrete-space plan recognition and evaluation criteria to consider when
comparing plan recognition algorithms. This representation is comprehensive enough
to describe a variety of known plan recognition problems and can be easily used by
existing algorithms in this class. We use this common representation to thoroughly
compare two known approaches, represented by two algorithms, SBR and
Probabilistic Hostile Agent Task Tracker (PHATT). We provide meaningful insights
about the differences and abilities of these algorithms, and evaluate these insights
both theoretically and empirically. We show a tradeoff between expressiveness and
efficiency: SBR is usually superior to PHATT in terms of computation time and space,
but at the expense of functionality and representational compactness. We also show
how different properties of the plan library affect the complexity of the recognition
process, regardless of the concrete algorithm used. Lastly, we show how these insights
can be used to form a new algorithm that outperforms existing approaches both in
terms of expressiveness and efficiency.

Keywords: plan recognition, standardization, plan libraries, theory of mind, artificial intelligence

1 INTRODUCTION

A plan recognition algorithm allows an observer to reason about the goals and execution process of
an agent, the actor, given a set of its observed actions. It outputs either a sequence of future steps or
a hierarchical plan (Schmidt et al., 1978; Kautz, 1987; Bui H., 2003; Blaylock and Allen, 2006;
Wiseman and Shieber, 2014; Chakraborti et al., 2017). Recent advancements have applied plan
recognition to a variety of real-world domains, including education (Amir and Gal, 2013; Uzan
et al., 2015), cyber security (Geib and Goldman, 2001; Bisson et al., 2011; Mirsky et al., 2017b) and
more (Masters and Sardina, 2017; Vered and Kaminka, 2017). Although all of these domains have
a lot in common in terms of the problem being solved and the components of a recognition
problem, there is no single standard representation that allows for a comparison of these works, as

Edited by:
Balaraman Ravindran,

Indian Institute of Technology Madras,
India

Reviewed by:
Mostafa Haghi Kashani,
Islamic Azad University,

ShahreQods, Iran
Mayukh Das,

Microsoft Research, India

*Correspondence:
Reuth Mirsky

reuthde@gmail.com

†Present address:
Reuth Mirsky,

Department of Computer Science,
Bar Ilan University, Ramat Gan, Israel

Specialty section:
This article was submitted to

Machine Learning and Artificial
Intelligence,

a section of the journal
Frontiers in Artificial Intelligence

Received: 28 June 2021
Accepted: 02 November 2021
Published: 06 January 2022

Citation:
Mirsky R, Galun R, Gal K and

Kaminka G (2022) Comparing Plan
Recognition Algorithms Through

Standard Plan Libraries.
Front. Artif. Intell. 4:732177.

doi: 10.3389/frai.2021.732177

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7321771

ORIGINAL RESEARCH
published: 06 January 2022

doi: 10.3389/frai.2021.732177

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.732177&domain=pdf&date_stamp=2022-01-06
https://www.frontiersin.org/articles/10.3389/frai.2021.732177/full
https://www.frontiersin.org/articles/10.3389/frai.2021.732177/full
https://www.frontiersin.org/articles/10.3389/frai.2021.732177/full
http://creativecommons.org/licenses/by/4.0/
mailto:reuthde@gmail.com
https://doi.org/10.3389/frai.2021.732177
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.732177

they use different models to represent the possible plans an actor
can take in the environment (Carberry, 2001; Sukthankar et al.,
2014; Mirsky et al., 2021).

This work highlights the lack of standardization in the plan
recognition community and proposes a first step towards
defragmentation of this community, by presenting a
standardized representation that allows several algorithms and
domains to be evaluated using similar metrics. We create a joint
interface that facilitates two representative plan recognition
algorithms from the literature, and then use this
representation in order to provide a thorough, both theoretical
and empirical, comparison between them. This comparison then
enables us to leverage insights from these works and provide a
new, improved algorithm that outperforms both baseline
algorithms.

This work presents the following contributions:

1) A general plan library representation that can be used as a
baseline representation for plan recognition contributions to
refer to.

2) A theoretical and empirical comparison of two representative
plan-library based plan recognition algorithms (SBR and
PHATT, see below).

3) Leveraging the insights learned to provide an improved
PHATT algorithm.

The choice to use plan-libraries for plan recognition stems
from their high expressiveness, and their ability to provide robust
explanations without any demonstrations or data sampling (Kim
et al., 2018; Kantharaju et al., 2019). Within the scope of plan-
library based plan recognition, there is a variety of algorithms and
representations, including AND/OR trees, grammars,
Hierarchical Task Networks (HTNs) (Erol et al., 1995),
Temporal Plan Networks (TPNs) Kim et al. (2001), and more.
We focus here on two families of algorithms: graph-based
algorithms that explicitly depict the full set of potential plans;
and grammar-based algorithms that capture the fragments of
these plans and how they can be combined.

For our comparison, we will use two plan recognition
algorithms from these two families: the graph-based SBR
(Avrahami-Zilberbrand and Kaminka, 2005) and the
grammar-based PHATT (Geib and Goldman, 2009). PHATT
and SBR were both designed to perform plan recognition using a
plan library, but are fundamentally different. As a grammar-
based algorithm, the PHATT algorithm was inspired by language
parsing. The graph-based SBR algorithm, on the other hand, was
inspired by hierarchical plan representations and robotics and its
focus is on fast performance.

The differences between the approaches translate into
different abilities of the algorithms: SBR is faster in its on-line
processing and can give partial answers about the current state of
the actor, but these answers might not be correct once more
observations are revealed (Avrahami-Zilberbrand and Kaminka,
2005). PHATT (Geib and Goldman, 2009), on the other hand, is
more comprehensive, can handle more complex inputs and
outputs, but its runtime is sometimes even exponentially
slower than SBR, as we show in this paper.

This work provides a first thorough evaluation of plan-
library based plan recognition, raising several interesting
insights, both specific to the algorithms evaluated and to plan
recognition research in general. In the next section, we present
some basic concepts and plan recognition background. Then, we
present the compared algorithms and outline the approach each
is using. Section 2 discusses related work. Next, Section 4,
describes the proposed standard representation for plan-library
based plan recognition, and lists the properties it can capture.
Then we highlight the differences between the compared
algorithms and consequently, and the constraints needed to
be enforced to enable a fair comparison of the algorithms. This
section concludes with a theoretical complexity analysis of the
two algorithms. Section 5 presents a comprehensive empirical
evaluation of the two algorithms, using an artificially generated
domain in which various important plan recognition
parameters can be modified. Then, Section 6 uses the lessons
and insights learned from this evaluation to leverage
improvements and work done on SBR to improve PHATT.
Finally, we conclude and provide a list of guidelines for future
works in Section 7.

2 RELATED WORK

As plan recognition plays a crucial role in a variety of applications
and disciplines, researchers have a diverse set of techniques and
representations when approaching a plan recognition problem,
depending on their application domain. This fragmentation
causes to a lack of ability to compare between the different
algorithms, as each is aimed to optimize a different set of
requirements (Carberry, 2001; Sukthankar et al., 2014; Mirsky
et al., 2021).

Many plan recognition algorithms use plan libraries to
represent the possible plans of an actor in the environment.
These plan libraries are highly expressive and their explicit
representation of plans makes them inherently explainable.
But while this expressive richness enables it to be used in a
variety of domains including education, robotics, e-commerce,
and verification, it also leads to the use of different models to
represent the possible plans an actor can take in the environment.
To this date, there is no commonly accepted standard
representation that allows for a comparison of these works
(Mirsky et al., 2018).

2.1 Plan-Library Based Plan Recognition
Algorithms
There are several approaches to represent a domain in plan
recognition. Some recent advent of work on plan recognition
as planning takes as input a planning domain, usually described
in STRIPS (Standford Research Institute Problem Solver) (Fikes
and Nilsson, 1971), a set of possible goals and selects one of the
goals (Ramırez and Geffner, 2010; Sohrabi et al., 2016; Freedman
and Zilberstein, 2017; Masters and Sardina, 2017; Pereira et al.,
2017; Shvo et al., 2017; Vered and Kaminka, 2017). In this work,
we focus on PL-based plan recognition (Blaylock and Allen, 2006;

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7321772

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sukthankar and Sycara, 2008; Kabanza et al., 2013; Geib, 2017;
Barták et al., 2018). We consider plan library representations that
are less expressive from or equivalent to a hierarchical task
networks (HTN) Erol et al. (1995), but that do not take into
account pre and post conditions. Previous work in this class of
recognizers used PHATT or SBR as a baseline to compare against,
depending on the representation that was used for the PL, and
showed aggregated improvements based on specific properties.

Yet Another Probabilistic Plan Recognizer [YAPPR, (Geib
et al., 2008)] can improve PHATT’s runtime significantly if the
user is not interested in complete plans, but rather in the goals of
the actor and predictions about future actions. The Decision-
Oriented PLAn Recognizer [DOPLAR, (Kabanza et al., 2013)]
extended YAPPR using probabilistic reasoning to reach even
better performance, at the cost of completeness. Cumulative
Recognition of Activities and Decreasing Load of Explanations
[CRADLE, (Mirsky et al., 2017a)] augmented PHATT with the
ability to process PLs with parameters and proposed a set of
pruning heuristics.

Avrahami-Zilberbrand and Kaminka (2005) enhanced the
basic SBR to handle interleaving of more than one plan in
Avrahami-Zilberbrand et al. (2005), and proposed an
algorithm that reasons about the utility of the actor as part of
the recognition process (Avrahami-Zilberbrand and Kaminka,
2007). Sukthankar and Sycara (2008) based their work on SBR to
deal with large domains and multiple agents.

Other notable works are Engine for LEXicalized Intent
Recognition [ELEXIR, (Geib, 2009)] and YR (Maraist, 2017)
which present new approaches for PL-based plan recognition
algorithms. These algorithms use PL representations that differ
both from PHATT’s and from SBR’s. Another possible standard
representation that was considered in previous work is the
Hierarchical Task Network (HTN) representation used by the
Simple Hierarchical Ordered Planner 2 (SHOP2) (Nau et al.,
2003). However, this is a state-based representation, which means
that the goal of an agent is a state (or a set of predicates), while in
the algorithms presented in this paper, the goal is a complex
action (or a set of such). This makes the use of these domains to be
non-trivial, as it is not straightforward converting from a goal
state to a set of goal actions.

All of the above papers used a single existing algorithm as a
baseline and showed improvements in specific properties, but
they did not compare to more than one algorithm nor did they
investigate the differences between the algorithms.

2.2 Standardization
Previous papers surveyed methods for plan recognition, but did
not try to run and evaluate the presented algorithms as well
(Carberry, 2001; Sukthankar et al., 2014; Albrecht and Stone,
2017; Mirsky et al., 2021; Van-Horenbeke and Peer, 2021). Many
of these surveys discuss the research efforts in plan, activity and
intent recognition (PAIR) and present open challenges that are
relevant to the PAIR community, such as: 1) designing
computationally efficient algorithms, and 2) finding a single
representation that can naturally generate various modelling
capabilities. The work presented here is aimed to provide a
first step towards meeting these challenges.

3 BACKGROUND: PHATT AND SBR

This section provides the necessary background for
representing a plan recognition domain and using PHATT
and SBR. First, we identify the components of a plan
recognition problem in the scope of this work. We used
standard definitions from the plan recognition literature, in
which basic actions represent rudimentary activities that
cannot be decomposed, and complex actions represent
higher level activities that can be decomposed to basic and
complex actions (Gal et al., 2012). To emphasize the
distinction between these two action types, we notate basic
actions using the bold notation.

An observation sequence is an ordered set of basic actions
carried out by the acting agent. A plan library is an explicit yet
compact representation of all possible plans that an actor can
execute in the environment. These plans can be represented using
graphs, AND/OR trees, or grammars. As SBR and PHATT use
different representations for their plan libraries, we will provide a
separate definition of a plan library for each. Given an
observations sequence and a plan library, the goal of the
observer is to infer the plan of the actor.

We will use a running example based on a real-world domain,
an open-ended educational system called TinkerPlots. It is used
world-wide to teach students in grades four through eight about
statistics (Konold and Miller, 2004). Using TinkerPlots, students
build stochastic models and generate pseudo-random samples to
analyze the underlying probability distributions. Several prior
works have used plan recognition to infer students’ activities in
such open-ended environments (Conati et al., 1997; Amershi and
Conati, 2006; Amir and Gal, 2013; Mirsky et al., 2017a). We will
use one of the problems given to students (ROSA) in our running
example:

There are 4 letters printed on cards, each card contains
one letter: A, O, R, S. The cards are lined up in a row.
After mixing the cards up, what is the probability that
the cards would spell ROSA?

In order to solve this problem, a student must perform the
following activities using the software: create a sampler model of a
probability distribution over ROSA; run the model and collect
data; plot the results correctly on the graph. When accomplishing
all activities successfully, the student is said to have solved the
ROSA problem. The basic level actions in the plan library for
solving the ROSA problem are the actions that students can
perform in the software, such as add new sampler (NS), Create
device (CCD), which is executed by adding a device to sampler
(SAD), set number of draws in the sampler (SDS) and number of
repetitions (SR); SRP, CSM and PO are some of the complex
actions.

For example, the complex action of solving the ROSA problem
(SRP) is decomposed into the following activities: creating a
sampler object (CSM), running the sampler (R) and plotting
the sampler on a graph (PO). R must follow CSM, as one must
first create a sampler before it can be used to run tests. PO,
creating a plot, can be executed only after R. Recipes describe

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7321773

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

these relationships and how complex actions decompose into
other complex and basic actions, and in what order.

Both algorithms represent the possible activities that can be
carried out by the student. However, their representation differ
very much.

3.1 The PHATT Representation
We begin by describing the representation used by the PHATT
algorithm.

Definition 1 (Plan Library in PHATT) A plan library (PL) is a
tuple L � 〈B, C,G, R〉, where B is a set of basic actions, C is a set of
complex actions,G ⊆C is the set of goals the actor can achieve and
R is a set of recipes, such that each recipe is of the form c→ (τ,O),
where (1) c ∈ C; (2) τ ∈ (B ∪ C)*; (3) andO is a partial order over τ
representing ordering constraints over the actions in τ.

Figure 1 is an example PL for the ROSA problem. Each line
represents how a complex action constitutes a partially ordered
sequence of basic and complex actions. For example, the first
recipe defines the action SRP (Solve ROSA Problem) to be
constructed from CSM (Create Sampler), R (Run Sampler),
and PO (Plot the sampler to a graph).

A plan in a PL L is a labeled tree p � (V, E,L), where 1) V and
E are the nodes and edges of the tree, respectively, 2) L is a
labeling function L: V → B ∪ C mapping every node in the tree
to either a basic or a complex action in L, and 3) the children of a
node labeled by a complex action are a decomposition of this
complex action into constituent actions, according to one of the
recipes. The set of all leaves of a plan p is denoted by leaves(p).
Note that sibling nodes in a plan can have implicit ordering
constraints between them, according to the recipe used to create
them. A plan is said to be complete iff all its leaf nodes are labeled
basic actions, i.e., ∀v ∈ leaves(p),L(v) ∈ B.

An observation sequence is an ordered set of basic actions that
represents actions carried out by the observed agent. A plan p
describes an observation sequence O iff every observation is
mapped to a leaf in the tree. As we will see next, in the SBR
representation, an observation sequence can be an ordered set of
both basic and complex actions.

As mentioned earlier, the PHATT algorithm was inspired by
parsing techniques, where the recipes are given in the form of a
grammar, observations can be considered words, and each
outputted plan is a parse tree. The major problem with
parsing as a model of plan recognition is that it does not treat
partially-ordered plans or interleaved plans well. This situation
resembles to a case of parsing two (or more) sentences that their
words are mixed together. Both partial ordering and interleaving
of plans result in an exponential increase in the size of the

required grammar, issues which have been addressed in the
implementation of PHATT (Geib and Goldman, 2009).

Figure 2 shows a plan that describes the observation sequence
NS, SAD, SDS, SR. In a PHATT-style plans, the goal of the plan,
SRP, is the root node and the student started executing the basic
actions, mapped to leaves in the plan, to achieveCSM. This plan is
an incomplete plan explaining the student’s actions. Incomplete
plans include nodes labeled with complex level actions that have
not been decomposed using a recipe (like PO) or basic actions
which has not been mapped to an observation (like R). These
open frontier nodes represent activities that the agent will carry
out in future. Finally, an explanation that describes an
observation sequence is a set of plans such that each plan
describes a mutually exclusive subset of the observation
sequence and taken together the plans describe all of the
observations.

We now provide here a brief description of the PHATT
algorithm. At the first observation σ, PHATT constructs
explanations describing this observation. Each explanation
includes a single plan tree such that 1) the root node is
labeled with a goal g ∈ G; 2) there exists a leaf node that is
labeled with σ; 3) the path from the root to the leaf includes
actions that are derived from the recipes of the PL; 4) all other
leaves in the plan tree are open frontier nodes, and the plan is
referred to as a leftmost tree deriving σ. For a complex action C,
the generating set of C is the set of all leftmost trees that derive
some basic action σ, that their root is labeled with C.

When introducing a new observation σn into an existing
explanation, PHATT considers two possibilities:

1) Adding σn as a new plan in the explanation, which requires to
iterate the generating sets of all g ∈ G to find the leftmost trees
that derive σn.

2) Updating an existing plan in the explanation with σn. This
option requires to construct another leftmost tree deriving σn
with a root that matches one of the open frontier nodes of an
existing plan.

This process is iterated over all observations, maintaining a set
of explanations H that explain the sequence of observations seen
so far. To this end, PHATTmodifies and extends the explanations

FIGURE 1 | PHATT PL for the ROSA problem.

FIGURE 2 | A plan describing the observation sequence NS, SAD,
SDS, SR in PHATT-style.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7321774

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

in H, and, if necessary, adds and removes explanations, so that H
contains explanations that describe the new updated sequence of
observations σ1 . . . , σn.

Figure 3 exemplify components from PHATT’s explanation
construction process. The tree on the right is one tree from the
generating set for SRP. It is a leftmost deriving tree, which derives
NS. The tree on the left is such a leftmost deriving tree for SAD,
and a part of the generating set for CCD.

Assume the following observation sequence: NS1, SAD1, NS2
is given. This sequence means that a student created two samplers
and added a device to the first sampler. Using the trees from the
generating set and this observation sequence, Figure 4 shows one
explanation that PHATT will output, where the first and third
observations are described by the left plan, and the second
observation is described by the right plan.

3.2 The SBR Representation
Definition 2. (Plan Library in SBR) is a single-root directed acyclic
connected graph, where vertices denote plan steps, and edges can
be of two types: vertical edges (also called decomposition edges)
decompose plan steps into sub-steps, and sequential edges specify
the expected temporal order of execution.

In the original SBR paper (Avrahami-Zilberbrand and
Kaminka, 2005), a PL has a single root node. The set of
possible goals (top-level plans) were defined as the children of
the root node, and all other nodes are plan steps. In this formalism,
similar to the PHATT formalism, we refer to basic actions as leaves
in the graph, and complex actions to all intermediate nodes.

Figure 5 shows the SBR PL constructed for the ROSA
problem. In this representation, a dashed arrow from node A
to Bmeans that the action Amust precede B. A full arrow from A
to B means that B can be the first action in a sequence of actions
that compose A. This figure represents the basic structure that
SBR builds to store all possible plans. For example, the actions the
student needs to execute to perform a plotting action (PO) are
ordered, so they appear using dashed lines. A complex action and
its first constituent action are connected using a full line. Setting
the plot type to count can be executed using a case count
visualization (CC) or by percent (PER), so these to options
appear as choices under C using a full line.

Since in the SBR algorithm the plan library is a single tree that
represents all possible plans, an SBR plan for achieving some
action A is a path along the plan library tree from a node labeled
with A to the root. This plan is represented by marking each node
in the path from the root to A with a timestep.

A plan p describes an observation sequence O iff every
observation Oi marks a path from the root to a node (rather
than to a leaf in PHATT) in the plan library such that each node

on that path is marked with the timestep i. This marking is done
in a consistent manner, meaning that some node X cannot be
labeled with a timestamp t unless it is a first step in a new plan, or
it has an incoming sequential edge from a node with a timestamp
t − 1. Notice that in a valid plan the describes O1, . . . , On, the root
should be marked with all timesteps 1, . . . , n. Figure 5 illustrates
how a plan describing the observation sequence NS, SAD, SDS,
SR is marked on top of the plan library structure. Consider the
first observation NS: to reach the node labeled with NS from the
root, one must go through a node labeled with SRP ∈G, then to its
child node labeled CSM, and finally to the node labeled NS. This
means that all nodes NS, CSM, SRP should be marked with
timestep 1. Figure 6 presents a compilation of these markings
into a consistent set of paths from the root to each observation,
and the mapping between these paths (on the left of the figure) to
the observations (on the right).

Agents are assumed to plan by choosing a subset of complex
actions as intended goals and then carrying out a separate plan for
completing each of these goals, using basic or complex actions
(unlike PHATT, where the agents can only be observed executing
basic actions).

As in PHATT, an explanation that describes an observation
sequence is a set of plans such that each plan describes a mutually
exclusive subset of the observation sequence and taken together
the plans describe all of the observations.

Given an observation, SBR traverses the PL and labels specific
nodes upon it that can represent the observation with a
timestamp, in a way that is consistent with only the last
observation. At this point, SBR can provide simple feedback
about what can the current step that the agent executed. This
feedback is called Current State Query (CSQ).

After a sequence of observationsO1, . . . ,Onweremarked on the
PL, SBR can also be requested to output the plans describing them.
It traverses the structure once more and collects consistent paths
that can explain the observation sequence soundly, in a process
called History State Query (HSQ) (Avrahami-Zilberbrand and
Kaminka, 2005). This process is done by retracing the root-to-
observation paths that were travered by SBR, and merging the
repeating nodes. For example, in Figure 6, the SRP − CSM − NS
path that leads to the observation (NS) and the path SRP − CSM −
CCD − SAD that leads to the observation SAD can be merged into
one explanation, where SPR is the root of the explanation, CSM is
its child, and CCD and NS are the two children of CSM.

Assume the same following observation sequence as before:
NS1, SAD1, NS2. SBR will construct the initial PL from Figure 5

FIGURE 3 | Leftmost deriving trees for SRP (B) and CCD (A).

FIGURE 4 | An explanation created by PHATT for the ROSA problem.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7321775

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

once in the initialization stage, and every time it will process an
observation, it will mark its timestamp on that single structure.
Thus, the NS node will be labeled with timestamps 1 and 3, while
the node SADwill receive the timestamp 2. At this point, the CSQ
process can return a feedback in the form of “The actor can
currently be at node NS on the path to SRP through CSM”.

If the HSQ process is evoked, it will construct a secondary data
structure, called extraction graph as depicted in Figure 7(left).
This graph captures that there is a continuity between the first
and second steps, such that the SAD action comes after the first
NS action. The second NS action is independent. Using this
extraction graph, the resulting explanation (Figure 7(right) can
easily be constructed by traversal over the created paths in the
extraction graph.

4COMPARATIVE THEORETICALANALYSIS

SBR and PHATTwere chosen for this evaluation since their input
and output can be easily standardized. However, there are major
differences between the algorithms before which makes their
comparison challenging. This section highlights these differences

between the algorithms and describe how to account for them in
the analysis.

Figure 8 depicts the main flow of both algorithms as detailed
below and summarizes the different data structures used in these
algorithms. A summary of the differences between the algorithms
appears below, and discussed in detail in the following sections:

1) Recursion: PHATT allows recursive recipes that SBR does not
(e.g., X → YX, X → X and a plan sequence Y, . . . , Y, X).
Discussed in Section 4.1.

2) Interleaving: PHATT can handle plan interleaving (e.g., the
explanation in Figure 4 can be a valid recognition hypothesis
for the observation sequence NS1, NS2, SAD). Discussed in
Section 4.2.

3) Current State Query: SBR can provide intermediate “current
state queries” (CSQ). Discussed in Section 4.3.

4) Observing Complex Actions: SBR can accept complex actions
as observations. Discussed in Section 4.3.

5) Theoretical Complexity: PHATT and SBR are constructed
differently, and hence their use of space and time is different.
Discussed in Section 4.4.

4.1 Bounded Recursion
To be able to discuss the similarities and differences of the two
algorithms, and to show that PLs for PHATT and SBR can
describe the same space of plans, there is a need to explain
how recursion can be used in PLs. Recursion in a PHATT PL
means that a recipe can have an action as a constituent of itself.

FIGURE 5 | The PL structure created and used by SBR for the ROSA problem.

FIGURE 6 | A plan describing the observation sequence NS, SAD,
SDS, SR in SBR-style.

FIGURE 7 | An extraction graph created by SBR and its translation to an
explanation.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7321776

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Recursion in an SBR PL means that there is a decomposition edge
from a node labeled A to either 1) another node that has the same
label A, or 2) there is a sequential node that follows the
decomposition with the same label A as the origin node.
Bounded recursion in both of these representations means that
these recursions can only be used a predefined number of times.

Claim 1. Assuming that the use of recursion is bounded, the
PLs used by PHATT and SBR have the same expressibility.

Proof. We first show how a PHATT PL can be translated
into an SBR PL. For each goal action G in PHATT-style PL, we
construct a node in SBR below the root. Then, recursively, for
each recipe r: c → (τ, O) such that there is already a node
labeled with c in SBR, for every possible permutation of the
constituents in the recipe (according to O), we add |τ| nodes
below c and label them with respect to the permutation. Since
we assume bounded recursion, at some point all leaves in the
SBR PL will be either basic actions or recursive complex
actions that was bounded by the recursion bound assumption.

Next, we show how an SBR PL can be translated into a PHATT
PL. According the definition of a PL in SBR, we define G to be the
set of all nodes below the root node. The label of a node with no
decomposition edges leaving it is a basic action in B. All other
intermediate nodes represent a complex in PHATT, as part of the
set of complex actions C. Notice that if two nodes in SBR have the
same label, this means that an action is used in two different
places in the SBR PL (e.g., used in two different recipes of
PHATT). For each decomposition edge from a node labeled A
to a node labeled B, we define a recipe as: A→ Bτ|O, such that τ is

the ordered sequence of nodes that are connected to B
sequentially, and O is the order of these nodes according to
the sequential edges. Notice that using this translation, the recipes
created are always fully ordered.

4.2 Completeness
Both SBR and PHATT are considered complete algorithms, but
this notion of “completeness” is different for each algorithm due
to differences in their underlying assumptions: some
fundamental properties cause these algorithms to output
different explanations given the same input. The goal of this
subsection is to evaluate these differences and constrain the PL
such that the algorithms will be evaluated when they output
exactly the same explanations.

Consider the full TinkerPlots PL, which has the following
properties: its maximal And-branching factor is 5, maximal
Or-branching factor is 2, an alphabet size of 32 and a maximal
depth of 3. This PL is highly recursive, and the recipes can
create an unbounded number of permutations of plans. While
PHATT has the ability to create plans of unlimited depth, SBR
cannot output plans that were not created during
initialization. Due to this difference, the algorithms output
a very different set of explanations: for a sequence of mere 4
observations, SBR outputted 2 explanations, while PHATT
outputted 6000 (with a recursion bound of 3).

Another difference is that PHATT has the ability to handle
interleaved plans, while the original SBR algorithm does not
Avrahami-Zilberbrand and Kaminka (2005). Both algorithms can

FIGURE 8 | Depiction of the flow differences between SBR and PHATT.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7321777

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

reason about an actor that executes more than one plan, but only
PHATT allows the actions of the plans to interleave.

For example, when cooking a dinner, the actor might make a
pasta dish and a salad dish. Suppose the first action observed is to
start boiling water for the pasta. The next action might be
chopping vegetables for the salad. In such a scenario, PHATT
will output more explanations than SBR, as it will also show ones
in which several plans interleave.

To reason about interleaved plans, PHATT is required to keep
track of all unfinished plans, which means it keeps a separate copy
of every plan in every explanation rather than using a single
representation covering all possible plans. SBR was later extended
to account for interleaved plans Avrahami-Zilberbrand et al.
(2005), but this is not the version we utilized in this paper.

Even when the PL representation do not explicitly allow
interleaved plans, the algorithm can receive observation sequences
that can be described by such plans. In the following example, based
on the presented TinkerPlots domain, a given observation sequence
can be: NS1, NS2, SAD1. This means that a student created two
samplers and only then added a device to the first sampler. Notice
that this is a different sequence than the NS1, SAD1, NS2 sequence
used earlier, which does not contain interleaved execution of actions
from different plans. Figure 4 depicts one of the explanations that
can be outputted from PHATT for this observation sequence. The
left plan is incomplete when the NS2 is executed, and then we come
back to it with the action SAD1. PHATT outputs this explanation
(among others), while SBR does not output it. Other than that, all
other explanations appear both in PHATT and SBR’s outputs.

Notice that this difference is only apparentwhen plans interleave
- if one plan is complete and only then another begins, or if we don’t
return to the first plan after starting the second one - there is no
difference between the algorithms. However, in our empirical
evaluation, an instance with such interleaving only appeared
62 times in 1091 runs, mostly in PLs with increased depth. In
two of these cases, for example, SBR outputted 3 and 4 explanations.
PHATT outputted 4 and 5 explanations, respectively. In these cases,
the additional explanation had two plans with interleaved actions.
Thus, we excluded these specific scenarios from the experiments
reported below.

4.3 Algorithm-Specific Properties
Another major difference between these two algorithms is SBR’s
inherent capability to provide an answer to a query about the
actor’s current state (Current State Query, or CSQ), without the
need to reason back through all of the previous observations. For
example, in the TinkerPlots domain, we might want to understand
whether the student is currently working on the ROSA problem, or
performing an action that biases from any solution. In such a
scenario, we might like to alert the teacher that the student is doing
something wrong, regardless of their previous actions.

The ability to output only the current state gives the algorithm
real-time responsiveness, but at the expense of consistency with
past observations: a sequence of returned current states (i.e., the
sequence of CSQ answers) might not be completely consistent with
the plan library, since given observations and appropriate
recognition hypotheses at a time t, it might be possible to now

rule out explanations thatmight have been correct at an earlier time
t′, where t′ < t. To find fully consistent explanations for the entire
sequence of observations, SBR relies on a separate algorithm for
computing the actors history of states (HSQ). PHATT, on the other
hand, computes the full set of explanations for all observations,
with every observation. It can report on the current state only by
computing complete explanations and then eliciting the current
possible states. As we show below, the separation of queries reduces
the complexity of recognition for SBR.

An additional property of SBR is that it can accept both basic
and complex actions as inputs, and use them to generate
recognition hypotheses. PHATT can only take basic actions as
input. Extending PHATT to reason about complex actions as well
is a trivial change in the code, but it was not part of the original
algorithm. However, this ability was added in a later work
(Mirsky and Gal, 2016). In this work, however, as we compare
the vanilla versions of the algorithms, we do not use complex
actions as observations as part of the empirical evaluation.

There are additional properties that both algorithms keep, and
every comparable algorithm (such as Geib (2009) or Kabanza
et al. (2013)) will have to keep as well: Both algorithms can handle
partial ordering of the actions, which is a compact way to
represent a sequence of actions that can be performed in
several permutations. Both can output the complete plans of
the actor rather than just their goals. Both algorithms can also
reason about observation sequences that execute more than one
plan, although as described above, only PHATT allows these
plans to interleave.

4.4 Algorithm Complexity
Plan recognition in exploratory domains using plan grammars,
similar to the ones used in PHATT, is known to be NP-hard (in
general), as shown by (Gal et al., 2012) who presented a reduction
of this problem to a constraint-satisfaction problem (CSP). In this
section, we drill down into the pseudo code of the algorithms in
order to map the critical parts of each algorithm in terms of time
and space complexity.

Algorithm 1. The PHATT algorithm

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7321778

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

The pseudo-code of PHATT is presented in Algorithm 1.
The initialization of PHATT takes place in lines 2–5: as
discussed in Section 3, the generating set for complex
action c is the set of branches with a single basic action in
the leaf-level and c as the root. The size of the generating set for
a single action is bounded by the maximal or-branching of the
PL (denoted MaxOr) power by the maximal depth of the PL
(denoted MaxD). In total, the generating set for the complete
PL is expected to be |G|× MaxOrMaxD. More details on the
construction of the generating set can be found in Geib and
Goldman (2009).

After the initialization, the algorithm incrementally creates
explanations for the observations. It checks if a new observation
can be combined into the existing explanations either by adding a
branch from the generating set as a substitute to a leaf in an
existing tree, or as a new tree.

The function SubstituteNodeT, Tσ, o is a function that
takes a tree T with a leaf node labeled with o, a subtree Tσ, and
the specific instance of o (in case there is more than one leaf
labeled with o). It returns an updated tree T′, which is T with
Tσ instead of the node labeled with o. The complexity of this
function is O(1). However, considering all the possible points
of substitution for an observation σn in an explanation e is
O(MaxAndMaxD) where MaxAnd is the maximal and-
branching of the PL. This process needs to be done for
every explanation, so for the nth observation, this needs to
be done O(|En−1|× MaxAndMaxD) times. After the
substitution, a new copy of the new explanation with the
new observation needs to be kept. This is the part that is the
most time- and space-consuming in the PHATT algorithm.

The pseudo-code of SBR is presented in Algorithm 2 [see
Avrahami-Zilberbrand and Kaminka (2005)]. It is separated
into two main functions, one for the current state query (CSQ,
at line 1) and the other of the history state query (HSQ, at line
16). The details of specific calls is discussed below.

The algorithm starts with initPLPL (line 2), which is the
function that takes a PL and constructs all possible plans. This
process is a hotspot of the SBR algorithm, and it creates
O(MaxAnd × MaxOrMaxD) nodes, exactly once.

Then, for each observation σi, the function FindNodeP, σi
traverses the PL and returns all instances of σi in the PL.
Naively, this is a search over all nodes, but Avrahami-
Zilberbrand and Kaminka (2005) describes a method for
carrying this out at a complexity of O(MaxD). For each node n,
a node that represents an instance of σi, isRootn returns true iff n is
a root node in the PL, and IsConsistentn returns true iff n appears
in the PL as a first child of a plan or as the next sibling of a
previously tagged node. If these two conditions are met, AddTagn,
σi adds a tag of the current time (number of observation � i) to the
node n. tagged is the list of all tagged nodes so far. All of these steps
are carried out inO(1). Finally, getPathsΠ, p1, pt returns all paths in
Π on tagged nodes such that pi is tagged with i for all i ∈ 1‥t and
each node pi is consistent with respect to the previous nodes.
Overall, the generation of the SBR PL is bounded by O(MaxAnd ×
MaxOrMaxD), and the tagging process traverses this PL once per
observation, where each consistency check to see if a node can be
tagged is carried out in O(1). Together these operations make the

CSQ process bounded by O(MaxAnd × MaxOrMaxD + n). The
HSQ process just require to traverse the nodes that were already
decided to be consistent, it will need to travese, in the worst case,
the whole plan library once. Thus, the final expression for the
execution complexity of SBR is O(MaxAnd × MaxOrMaxD + n).

5 EMPIRICAL COMPARISON

In this section we present several empirical results that exemplify
how the different properties discussed above affect the runtime
and space usage of PHATT and SBR. We begin by describing the
properties of the domains tested, and how they were controlled
using a domain generator. We then show how each domain
property affects each algorithm, and dive into the different
components that take place in the recognition process in both
algorithms. We then show the completeness results of both
algorithms, if we assume that interleaving is allowed.

Algorithm 2. The SBR algorithm

5.1 Domain Generator
In order to evaluate the impact of several PL properties, we used
the PL generator from Kabanza et al. (2013), that can be
configured to output PLs that vary in several features which
are known to affect the explanation set size (Geib and Goldman,
2009), but that were never compared on more than one algorithm
at a time. The parameters of the PL that can be configured are:

• Number of Goals Representing the number of different
goals an actor might pursue at the same time.

• Depth Representing the depth of the PL. Generally in PLs,
this value is the depth of the deepest plan that can be created
in the library. However, all plans generated on the same call
for this generator will have the same depth, so in this
evaluation, the Depth value is set to be the depth of all plans.

• Alphabet Size Representing the number of basic actions in
the PL.

• Or Branching Factor This is the number of different ways a
complex action can be decomposed into a sequence of
constituent actions.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7321779

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

• And Branching Factor This is the number of constituents
which decompose a complex action.

• Ordering This is the type of ordering constraints that can be
put on a sequence of constituent actions. The possible
orders are: unrodered, fully-ordered, partially ordered
(with a default value such that %30 of the constituents
are ordered), first and last (where only the first/last
constituent is strict and the others are unordered).

The generator outputs a PL which is constructed from partially
ordered AND/OR trees. We then translate these trees to a set of
recipes: an AND node is translated into a single recipe, with the
same ordering constraints as the partial order of the AND node’s
children. An OR node labeled with an action c is translated into a
list of recipes with c as their left hand side, such that each recipe
represents one option that can be executed to achieve c.

An example of one of the generated PL can be viewed in
Figure 9 (as this is a fully-ordered plan, ordering constrains are
omitted for brevity). At the top of the figure, there is a fragment of
a plan generated with an AND branching factor of 3, and an OR
branching factor of 2. All basic actions are given a number and are
labeled with a prefix of A (e.g., A93). The translation process
create a recipe, or a set of recipes, for each operator in this tree
(bottom). Each OR node is translated into a list of recipes, for
example, (OR A93 A97) is translated into two recipes: B1→ A93
and B1→ A79. Each AND node is translated into a single recipe,
for example: B4 → B1 B2 B3. Notice that the complex actions
were implicit in the AND/OR tree, and become explicit in the
translation into recipes.

As a baseline, we used the same configuration as (Kabanza
et al., 2013). In the baseline PL, the actions are fully ordered, the
number of possible goals is set to be 5, the depth is set to 2, the
alphabet size to 100, the AND branching factor is set to 3, and the
OR branching factor is set to 2.

In the following experiments, we also varied the depth of the
domain (from 1 to 4), the or branching factor (from 1 to 4) and
the and branching factor (from 2 to 5). We did not change the
number of goals and ordering because they add an additional
complexity to the PL that causes PHATT and SBR to behave
differently, as discussed in Section 4.2. We did vary the alphabet
size in our experiments (to 20 actions instead of 100), but the
results where not significantly different from the baseline domain
in any aspect, so we do not show them here.

In this section, we present the evaluated runtime of the algorithms
on the various PLs. Both algorithms are implemented in Python and
are tested on the same commodity i7 computer. It is important to
highlight that this is a single implementation of each algorithm, and
hence we do not provide direct runtime comparison but rather count
basic operations.We also stress that this comparison is onlymeant to
provide with general notion of the algorithms’ abilities, and that the
theoretical evaluation of their performance can be found in
Section 4.4.

5.2 Time and Memory Consumption
Figures 10, 11 show a comparison of PHATT and SBR (with the
HSQ process called once after the last observation) in terms of node
creations and time on 10 domains with different domain values, as

described in the previous subsection. The domain parameters that
were evaluated are depth, or-branching and and-branching. Each
parameter with its permutations is shown in a different graph, while
the other parameters are set to the baseline values as described in the
previous section. For each combination of domain and algorithm, the
bar is divided into three sections:

• Initialization, which is the time (memory) requires to
process the domain and create initial structures.

• Observation Processing, the time (memory) requires to
process the observations.

• Explanation Creation, the time (memory) requires to
combine the information gathered in the previous stages
in order to output the final explanations. Notice that in
PHATT, this time is always zero, as the observation
processing itself requires to construct the explanations.

Figures 10, 11 show respectively the time requires for each
algorithm to run and the nodes created (a node is considered a
simple structure of constant size, e.g. an action in our
representation), where the x-axis is divided into the different
domains and algorithms and the y-axis shows the average
runtime of 100 instances, counted in seconds. Notice that for
the Depth variations, the y-axis is presented in log scale. These
two figures show that the depth of the domain is the parameter
that has the most impact on the runtime. This is not surprising, as
both algorithms produce a number of explanations that is
exponential in the depth of the PL, as presented in Section
4.4. PHATT is more affected than SBR from the change in the
or-branching. This is probably attributed to the fact that PHATT
works in a combinatorial fashion, where it needs to consider every
alternative branch to combine into an existing explanation when
introduced with a new observation. In all of the domains, SBR
pays a penalty for constructing the PL in the initialization phase.
However, if we only look at the actual observation processing
phase (as the initialization can be processed offline beforehand
and the complete explanation construction is not always
required), the actual recognition phase in SBR takes an order
of magnitude less time than PHATT’s, with smaller usage
of space.

Regarding node construction, it is apparent that SBR does
not construct nodes in the observation processing phase, but

FIGURE 9 | An example of generated plan library (A) and its translation
to a set of recipes (B).

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 73217710

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

rather in the initialization phase to create the PL and in the
explanation output phase (when HSQ is executed). PHATT,
on the other hand, builds more compact structures in the
initialization phase, but then requires to copy these structures
for every new explanation. Thus, most of PHATT’s node

construction happens in the observation processing stage.
We will now dive deeper to analyze the effects of
initialization vs observation processing and explanation
construction, by looking at the most demanding domain
presented here, with a depth value of 4.

FIGURE 10 | A comparison of execution time by SBR with HSQ and PHATT. In the Depth graph, the y axis is in log scale.

FIGURE 11 | A comparison of space usage by SBR with HSQ and PHATT. In the Depth graph, the y axis is in log scale.

FIGURE 12 | A comparison of time for PHATT, SBR with HSQ after the last observation and SBR without HSQ in the domain with extended depth of 4.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 73217711

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Figure 12 shows the results of the comparison between SBR
without explanation creation (the HSQ process), SBR with HSQ
and PHATT, in a domain with extended depth value of 4. We
remind the reader that even when SBR does not run the HSQ
process, it does run the CSQ process for computing a set of
hypotheses regarding the current state of the acting agent. As seen
in Figure 12, SBR takes up a lot of time to create the map of the
complete PL in the initialization phase, but later it does not
require any more node constructions (when not applying the
HSQ component). PHATT, on the other hand, is relatively light
in terms of time in the initialization phase, but then it grows
exponentially with the number of observations. The construction
of complete explanations from the labeled PL in the HSQ phase,
makes SBR’s runtime and node construction exponential, but in a
smaller rate than PHATT. Again, the trend of these lines suggests
that eventually SBR’s approach will prevail in terms of time-
consumption, but this change will happen at a much later stage of
the recognition.

So far, Figure 11 showed the benefits of SBR both in terms of
runtime and space, and Figure 12 exemplified a complex domain

in which SBR’s performance is less impressive. However, it is clear
that the observation processing time of SBR is significantly better
than PHATT’s in all domains. Next, we wish to show the price
that it pays for this speed, which is the type of plans it can capture.

5.3 Completeness
As discussed in Section 4 and exemplified in Figure 4, PHATT
can inherently capture interleaving plans, while SBR can’t.

Figure 13 shows the percentage of instances in each original
domain that does not include interleaving plans. Since PHATT
can capture interleaving, its performance is always 100%. As for
SBR, it manages to output a complete set of explanations only in
the instances that does not include interleaving. As seen in this
figure, Or4 is the domain in which interleaving is most prevalent,
with 12% of the instances containing explanations with
interleaving plans.

6 GETTING THE BEST OF BOTH
ALGORITHMS

Using the evaluation so far regarding the similarities and
differences of the two algorithms, we can now leverage
insights that were learned in the process of this work to
improve one of the algorithms.

As part of the work on SBR, Avrahami-Zilberbrand and Kaminka
presented a component that can match observations to nodes in the
PL. In the representation used in this work, each observation can be
mapped clearly to a single basic action. However, when SBR was
developed, it was required to deal with more complex inputs, where
an observation is not necessarily mapped to a basic action, but rather
to a complex one. Moreover, there might be some uncertainty
regarding the action to map the observation to. There have been
previous attempts to deal with this challenge. For example, RESC
(REal-time Situated Commitments) (Tambe et al., 1999) handles
ambiguous observations by first committing to one interpretation
and backtracks when needed. Bui H. H. (2003) presents an algorithm
that relies on particle filtering to disabmiguate hypotheses.
Sukthankar and Sycara (2011) propose methods to identify team
behaviors from traces of agent positions over time. In the original SBR
paper, this challenge was address by introducing a Feature Decision
Tree (FDT), which efficiently maps observations to matching nodes
in the PL. Determining the node that match a set of observation
features is efficiently achieved by traversing the FDT top-down,
taking branches that correspond to the observed values of
features, until a leaf node is reached. While FDT was meant to
provide an efficient process to match observations to actions, it also
contributed to an improved runtime, by using a predefined dictionary
that is used to reach specific nodes in the PL instead of traversing all of
the plans for every new observation. We generalized this idea of
matching an observation to an entity–either a structure, an action or a
set of actions–to make both algorithms more efficient.

In SBR, the matching functionality replaces the function
FindNode in Algorithm 2, line 4 with a dictionary that is
created in the initialization together with the structure of the
PL. This dictionary saves the traversal over the complete PL by
keeping all nodes with the same label together. In PHATT, the

FIGURE 13 | Percentage of instances that each algorithm captures if
interleaving is allowed.

FIGURE 14 | A comparison of runtime (in seconds) with and without
using the Matching functionality.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 73217712

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

matching process refers to a track kept for previously created
generating sets in a dictionary ordered by actions. The matching
functionality replaces the call for GenSet in Algorithm 1, line 16
and line 26 with an extraction from that dictionary when possible.
It is basically makes a memoization of the GenSet process.
Importantly, this matching can result in significant
improvements both in runtime and space usage, since it can
save constructing a new generating set for every observations.

Figure 14 shows the runtime of both PHATT and SBR with and
without the added matching functionality on 4 different domains
(Baseline, increased And, increased Or, and increased Depth). As
seen in the figure, the matching mechanism creates a significant
improvement in PHATT’s runtime but not in SBR’s. This is
understandable, as the mechanism in PHATT improves its most
complex functionality (the observations processing), while in SBR it
improves a function that was not its bottleneck in the first place. In
complex domains, such as Or4 and Depth3, the improvement of the
matching functionality to the PHATT algorithm can reduce the
runtime by 80%.

7 CONCLUSION

In this work, we compared and analyzed the differences between
two leading PL-based plan recognition algorithms. We conclude
by detailing the lessons learned from the use case evaluation
above. It contains a list of major points for consideration and a
methodical sequence of steps required when comparing new
algorithms.

There are a few factors that can effect the outcome when
comparing the performance of two algorithms, hence needed to
be reasoned about:

Each algorithm focuses its computational efforts in different
parts of the recognition process. For example, SBR relies heavily
on the construction of the initial PL. Constructing this library
takes up a lot of time. However, afterwards, the computation time
of the observation processing is very fast as it only needs to label
nodes along the created PL. This effect even increases when using
the matching ability as discussed below. PHATT, on the other
hand, does not need to initialize the complete PL in advance.
However, PHATT’s initialization is not memory-free: first it
creates the “generating set,” which is the set of all branches
that can be grown as a first observation, so even this initialization
is not lightweight in terms of memory. We tried to keep these
branches using the matching ability, but they are created at some
point which takes time and memory. In the observation
processing part, PHATT needs to construct new plans for
describing new observations, which SBR does not. This in the

main computational effort of PHATT, which makes its runtime
exponential in the number of observations.

Another difference observed between the algorithms’
processes is the final construction of the outputted
explanations: History State Query (HSQ) is a component of
the SBR algorithm in which the labeled PL structured is being
compiled into a new structure of consistent sequences that can
produce explanations. Without it, SBR can still provide an answer
regarding the current state of the observed agent, but not the
complete explanation. Constructing this new graph has an
additional cost, which is exponential in the number of
observations in the worst case. However, unlike the
explanation construction in PHATT that is an integral part of
the algorithm and occurs with every observation, HSQ is called
only when the complete explanations are required.

Table 1 summarizes the different computational overload of
the two algorithms. Given these points, PHATT is expected to
outperform SBR in terms of memory when: 1) the PL is complex
enough and 2) we see only a few observations. If 1) does not
occur, SBR’s overhead for building all plans is insignificant
compared to all possible explanations. If 2) does not occur,
PHATT needs to create many explanations, and as the
number of explanations is exponential in the number of
observations, the initial construction of the whole PL as in
SBR is a lighter process in terms of nodes creation. Of course
these two measures are connected, and the larger the initial PL is,
the more head-start PHATT has to process observations before
SBR overcomes it in terms of runtime.

Using the above domain representation, use case and empirical
results, we wish to enable different algorithms to receive the same
input and to be evaluated on the same grounds. Before measuring
any quantitative value, it is crucial to make sure that the output of
the algorithms is the same as well, and that they are trying to solve
the same problem. After this stage is done, there are several types of
criteria that can be used to evaluate the algorithms in terms of
efficiency, robustness and more. The following list is a proposal for
the order of the evaluations and tests to perform, as learned from
the use case evaluation in this paper.

1) Problem definition Each algorithm focuses on different
problems with different features. For example, some
algorithms only output the goals of the actor. Others
output the goal and a prediction about future actions, but
no plan decomposition. In order to compare algorithms, one
must first make sure that the algorithms try to solve the same
problem. In this work, we chose two of the most
comprehensive plan recognition algorithms, that can
output the complete plans of the actor.

TABLE 1 | Algorithmic components of PHATT and SBR.

PHATT SBR

Initialization Relatively light (generating set only) Heavy (constructs the complete PL once)
Observation processing Heavy (exponential in the number of observations) Light (matching observations to nodes using a hash function)
Explanations generation No additional cost (integral part of the processing part) Heavy (constructs a new structure to find consistent plans)

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 73217713

Mirsky et al. Comparing Plan Recognition Algorithms

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

2) Abilities While we require all compared algorithms to use the
same problem definition and output similar results, we know that
every algorithm is designed differently, to solve different
challenges. This is why we also wish to allow qualitative
evaluation of the various abilities of the algorithms. This part
of the comparison is also meant to allow each algorithm to
highlight its novelty. For example, even given the same input,
PHATT and SBRmight output different set of explanations if the
domain contains interleaving of two plans.

3) Runtime While runtime measurements are practical, it might
not be enough for a thorough evaluation. However, as shown
in our empirical work, it can provide with some insights when
the run times are significantly different between compared
algorithms. The runtime measure is divided into the main
processes of each algorithm in order to gain insights about the
strengths and weaknesses of each algorithm. For example,
initialization runtime measures a process that can be executed
offline before the actor begins to act, while processing runtime
is the actual recognition in real-time.

4) Space Since this measure depends heavily on the
implementation, we tried to provide with a more general
metric, which is the number of nodes in the plans each
algorithm creates. This measure is also good as a sanity
check, as there is a lower bound to it, which is the number
of nodes in all of the plans that should be outputted. Any
algorithm can be evaluated in comparison to this ideal number.
This metric should also be divided into two: the total number of

nodes created and the average/maximumnumber of nodes used
by the algorithm at a given point in time. The first metric gives
us insights about the general space-complexity of the
algorithms, while the latter gives us insights about its robustness.

As the aim of this work is to highlight the diversity and
variability of plan recognition algorithms by showing one such
comparison use-case, we encourage additional standardization
efforts that will continue to promote the plan recognition
research thrust.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
ReuthMirsky/Standardization-Project.

AUTHOR CONTRIBUTIONS

RM, KG, and GK contributed to conception and design of the
study. RM and RG implemented the algorithms. RG performed
the experiments. All authors were involved in the writing the first
draft of the manuscript. All authors contributed to manuscript
revision, read, and approved the submitted version.

REFERENCES

Albrecht, S. V., and Stone, P. (2018). Autonomous Agents Modelling Other Agents:
A Comprehensive Survey and Open Problems. Artif. Intell. 258, 66–95.
doi:10.1016/j.artint.2018.01.002

Amershi, S., and Conati, C. (2006). “Automatic Recognition of Learner Groups in
Exploratory Learning Environments,” in Intelligent Tutoring Systems (ITS),
Jhongli, Taiwan, June 26-30, 2006. doi:10.1007/11774303_46

Amir, O., and Gal, Y. a. (2013). Plan Recognition and Visualization in Exploratory
Learning Environments. ACM Trans. Interact. Intell. Syst. 3 (16), 1–23.
doi:10.1145/2533670.2533674

Avrahami-Zilberbrand, D., and Kaminka, G. (2005). “Fast and Complete
Symbolic Plan Recognition,” in International Joint Conference of Artificial
Intelligence (IJCAI), Edinburgh (International Joint Conferences on
Artificial Intelligence).

Avrahami-Zilberbrand, D., and Kaminka, G. (2007). “Incorporating Observer
Biases in Keyhole Plan Recognition (Efficiently!),” in Association for the
Advancement of Artificial Intelligence (AAAI), Vancouver, British
Columbia, Canada (AAAI Press) July 22–26, 2007, 944–949.

Avrahami-Zilberbrand, D., Kaminka, G. A., and Zarosim, H. (2005). Fast and
Complete Plan Recognition: Allowing for Duration, Interleaved Execution, and
Lossy Observations, Edinburgh, Scotland, July 30 - August 5, 2005.

Barták, R., Maillard, A., and Cardoso, R. (2018). “Validation of Hierarchical Plans via
Parsing of Attribute Grammars,” in Proceedings of the International Conference on
Automated Planning and Scheduling, Delft, The Netherlands, June 24 – 29, 2018.

Bisson, F., Kabanza, F., Benaskeur, A. R., and Irandoust, H. (2011). “Provoking
Opponents to Facilitate the Recognition of Their Intentions,” in Association for
the Advancement of Artificial Intelligence (AAAI), San Francisco, CA, USA,
August 7–11, 2011.

Blaylock, N., and Allen, J. (20061999). “Fast Hierarchical Goal Schema
Recognition,” in National Conference on Artificial Intelligence, Menlo Park,
CA; Cambridge, MA; London (AAAI Press; MIT Press), July 16–20, 2006, 796.

Bui, H. (2003). “A General Model for Online Probabilistic Plan Recognition,” in
Proc. 18th International Joint Conference on Artificial Intelligence (IJCAI),
Acapulco, Mexico, August 9-15, 2003.

Bui, H. H. (2003). “A General Model for Online Probabilistic Plan Recognition,” in
International Joint Conference on Artificial Intelligence (IJCAI) (Citeseer),
1309–1315.

Carberry, S. (2001). Techniques for Plan Recognition. User Model. User-Adapted
Interact. 11, 31–48. doi:10.1023/a:1011118925938

Chakraborti, T., Sreedharan, S., Zhang, Y., and Kambhampati, S. (2017). “Plan
Explanations as Model Reconciliation: Moving beyond Explanation as
Soliloquy,” in International Joint Conference on Artificial Intelligence
(IJCAI), Melbourne, Australia, August 19-25, 2017. doi:10.24963/
ijcai.2017/23

Conati, C., Gertner, A. S., VanLehn, K., and Druzdzel, M. J. (1997). “On-line
Student Modeling for Coached Problem Solving Using Bayesian Networks,” in
Proceedings of the Sixth International Conference on User Modeling, Sardinia,
Italy, June 2–5, 1997, 231–242. doi:10.1007/978-3-7091-2670-7_24

Erol, K., Hendler, J., and Nau, D. (1995). Semantics for Hierarchical Task-Network
Planning, Washington DC: Maryland University College Park Institute for
Systems Research.

Fikes, R. E., and Nilsson, N. J. (1971). Strips: A New Approach to the Application of
Theorem Proving to Problem Solving. Artif. Intell. 2, 189–208. doi:10.1016/
0004-3702(71)90010-5

Freedman, R., and Zilberstein, S. (2017). “Integration of Planning with Recognition
for Responsive Interaction Using Classical Planners,” in Association for the
Advancement of Artificial Intelligence (AAAI), San Francisco, CA, USA,
February 4-10, 2017, 4581–4588.

Gal, Y., Reddy, S., Shieber, S. M., Rubin, A., and Grosz, B. J. (2012). Plan
Recognition in Exploratory Domains. Artif. Intell. 176, 2270–2290.
doi:10.1016/j.artint.2011.09.002

Geib, C., andGoldman, R. (2001). “PlanRecognition in IntrusionDetection Systems,” in
Proceedings DARPA Information Survivability Conference & Exposition II, 2001.
DISCEX’01, Anaheim, CA, USA, (IEEE), June 12-14, 2001, 46–55.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 73217714

Mirsky et al. Comparing Plan Recognition Algorithms

https://github.com/ReuthMirsky/Standardization-Project
https://github.com/ReuthMirsky/Standardization-Project
https://doi.org/10.1016/j.artint.2018.01.002
https://doi.org/10.1007/11774303_46
https://doi.org/10.1145/2533670.2533674
https://doi.org/10.1023/a:1011118925938
https://doi.org/10.24963/ijcai.2017/23
https://doi.org/10.24963/ijcai.2017/23
https://doi.org/10.1007/978-3-7091-2670-7_24
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/j.artint.2011.09.002
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Geib, C. W., and Goldman, R. P. (2009). A Probabilistic Plan Recognition
Algorithm Based on Plan Tree Grammars. Artif. Intell. 173, 1101–1132.
doi:10.1016/j.artint.2009.01.003

Geib, C., Maraist, J., and Goldman, R. (2008). “A New Probabilistic Plan
Recognition Algorithm Based on String Rewriting,” in International
Conference on Automated Planning and Scheduling (ICAPS), Sydney,
Australia, September 14-18, 2008, 91–98.

Geib, C. W. (2009). “Delaying Commitment in Plan Recognition Using
Combinatory Categorial Grammars,” in International Joint Conference on
Artificial Intelligence (IJCAI), Pasadena, CA, USA, July 11–17, 2009,
1702–1707.

Geib, C. (2017). “Partial Observability in Grammar Based Plan Recognition,” in
Proceedings of the AAAI Workshop on Plan, Activity, and Intent Recognition
(PAIR), San Francisco, CA, USA, February 4-10, 2017.

Kabanza, F., Filion, J., Benaskeur, A. R., and Irandoust, H. (2013). “Controlling the
Hypothesis Space in Probabilistic Plan Recognition,” in International Joint Conference
on Artificial Intelligence (IJCAI), Beijing, China, August 3–9, 2013, 2306–2312.

Kantharaju, P., Ontanón, S., and Geib, C. W. (2019). “Scaling up Ccg-Based Plan
Recognition via Monte-Carlo Tree Search,” in 2019 IEEE Conference on Games
(CoG), London, UK (IEEE), August 20-23, 2019, 1–8. doi:10.1109/
cig.2019.8848013

Kautz, H. A. (1987). A Formal Theory of Plan Recognition. Rochester, NY, USA,
University of Rochester. Ph.D. thesis.

Kim, P., Williams, B. C., and Abramson, M. (2001). “Executing Reactive, Model-
Based Programs through Graph-Based Temporal Planning,” in International
Joint Conference on Artificial Intelligence (IJCAI) (Citeseer), 487–493.

Kim, J., Woicik, M. E., Gombolay, M. C., Son, S.-H., and Shah, J. A. (2018).
“Learning to Infer Final Plans in Human Team Planning,” in International Joint
Conference on Artificial Intelligence (IJCAI), 4771–4779. doi:10.24963/
ijcai.2018/663

Konold, C., and Miller, C. (2004). TinkerPlots: Dynamic Data Exploration 1.0.
Emeryville, CA, USA, Key Curriculum Press.

Maraist, J. (2017). String Shuffling over a gap between Parsing and Plan Recognition,
(San Francisco: AAAI Press).

Masters, P., and Sardina, S. (2017). “Cost-based Goal Recognition for Path-
Planning,” in International Foundation for Autonomous Agents and
Multiagent Systems(IAAMAS), Sao Paulo - Brazil, May 8-12, 2017, 750–758.

Mirsky, R., and Gal, Y. (2016). “Slim: Semi-lazy Inference Mechanism for Plan
Recognition,” in International Joint Conference of Artificial Intelligence
(IJCAI), New York, NY, USA, July 9–15, 2016.

Mirsky, R., Gal, Y. a., and Shieber, S. M. (2017a). Cradle: an Online Plan
Recognition Algorithm for Exploratory Domains. ACM Trans. Intell. Syst.
Technol. 8, 1–22. doi:10.1145/2996200

Mirsky, R., Gal, Y., and Tolpin, D. (2017b). Session Analysis Using Plan
Recognition. Published on arxiv, no publisher or city, arXiv preprint arXiv:
1706.06328.

Mirsky, R., Galun, R., Gal, Y., and Kaminka, G. (2018). “Comparing Plan
Recognition Algorithms through Standard Libraries,” in Workshops at the
Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA,
USA, February 2–7, 2018.

Mirsky, R., Keren, S., and Geib, C. (2021). Introduction to Symbolic Plan and Goal
Recognition. Synth. Lect. Artif. Intell. Machine Learn. 15, 1–190. doi:10.2200/
s01062ed1v01y202012aim047

Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., et al. (2003).
Shop2: An Htn Planning System. jair 20, 379–404. doi:10.1613/jair.1141

Pereira, R., Oren, N., and Meneguzzi, F. (2017). “Plan Optimality Monitoring
Using Landmarks and Planning Heuristics,” in Proceedings of the AAAI

Workshop on Plan, Activity, and Intent Recognition (PAIR), San Francisco,
CA, USA, February 4-10, 2017.

Ramırez, M., and Geffner, H. (2010). “Probabilistic Plan Recognition Using Off-
The-Shelf Classical Planners,” in Proceedings of the Conference of the
Association for the Advancement of Artificial Intelligence (AAAI 2010),
Atlanta, GA, USA (Citeseer), July 11–15, 2010.

Schmidt, C. F., Sridharan, N. S., and Goodson, J. L. (1978). The Plan Recognition
Problem: An Intersection of Psychology and Artificial Intelligence. Artif. Intell.
11, 45–83. doi:10.1016/0004-3702(78)90012-7

Shvo, M., Sohrabi, , S., and McIlraith, S. (2017). “An Ai Planning-Based Approach
to the Multi-Agent Plan Recognition Problem,” in Proceedings of the AAAI
Workshop on Plan, Activity, and Intent Recognition (PAIR), San Francisco,
CA, USA, February 4-10, 2017.

Sohrabi, S., Riabov, A., and Udrea, O. (2016). “Plan Recognition as Planning
Revisited,” in International Joint Conference of Artificial Intelligence (IJCAI),
3258–3264.

Sukthankar, G., and Sycara, K. P. (2008). “Hypothesis Pruning and Ranking for
Large Plan Recognition Problems,” in Association for the Advancement of
Artificial Intelligence (AAAI), Chicago, IL, USA, July 13–17, 2008, 998–1003.8.

Sukthankar, G., and Sycara, K. (2011). Activity Recognition for Dynamic Multi-
Agent Teams. ACM Trans. Intell. Syst. Technol. 3, 1–24. doi:10.1145/
2036264.2036282

Sukthankar, G., Geib, C., Bui, H., Pynadath, D., and Goldman, R. (2014). Plan,
Activity, and Intent Recognition: Theory and Practice. Newnes.

Tambe, M., Kaminka, G., Marsella, S., Muslea, I., and Raines, T. (1999). “Two
Fielded Teams and Two Experts: A Robocup challenge Response from the
Trenches,” in International Joint Conference of Artificial Intelligence (IJCAI),
Stockholm, Sweden, July 31 - August 6, 1999, 276–283.

Uzan, O., Dekel, R., Seri, O., and Gal, Y. a. (2015). Plan Recognition for Exploratory
Learning Environments Using Interleaved Temporal Search. AIMag 36, 10–21.
doi:10.1609/aimag.v36i2.2579

Van-Horenbeke, F. A., and Peer, A. (2021). Activity, Plan, and Goal Recognition: A
Review. Front. Rob. AI 8, 106. doi:10.3389/frobt.2021.643010

Vered, M., and Kaminka, G. (2017). “Heuristic Online Goal Recognition in
Continuous Domains,” in International Joint Conference of Artificial
Intelligence (IJCAI), Melbourne, Australia, 19-25 August 2017, 4447–4454.
doi:10.24963/ijcai.2017/621

Wiseman, S., and Shieber, S. (2014). “Discriminatively Reranking Abductive Proofs
for Plan Recognition,” in International Conference on Automated Planning and
Scheduling, Portsmouth, NH, USA, June 21-26, 2014.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Mirsky, Galun, Gal and Kaminka. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 73217715

Mirsky et al. Comparing Plan Recognition Algorithms

https://doi.org/10.1016/j.artint.2009.01.003
https://doi.org/10.1109/cig.2019.8848013
https://doi.org/10.1109/cig.2019.8848013
https://doi.org/10.24963/ijcai.2018/663
https://doi.org/10.24963/ijcai.2018/663
https://doi.org/10.1145/2996200
https://doi.org/10.2200/s01062ed1v01y202012aim047
https://doi.org/10.2200/s01062ed1v01y202012aim047
https://doi.org/10.1613/jair.1141
https://doi.org/10.1016/0004-3702(78)90012-7
https://doi.org/10.1145/2036264.2036282
https://doi.org/10.1145/2036264.2036282
https://doi.org/10.1609/aimag.v36i2.2579
https://doi.org/10.3389/frobt.2021.643010
https://doi.org/10.24963/ijcai.2017/621
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Comparing Plan Recognition Algorithms Through Standard Plan Libraries
	1 Introduction
	2 Related Work
	2.1 Plan-Library Based Plan Recognition Algorithms
	2.2 Standardization

	3 Background: PHATT and SBR
	3.1 The PHATT Representation
	3.2 The SBR Representation

	4 Comparative Theoretical Analysis
	4.1 Bounded Recursion
	4.2 Completeness
	4.3 Algorithm-Specific Properties
	4.4 Algorithm Complexity

	5 Empirical Comparison
	5.1 Domain Generator
	5.2 Time and Memory Consumption
	5.3 Completeness

	6 Getting the Best of Both Algorithms
	7 Conclusion
	Data Availability Statement
	Author Contributions
	References

