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Implementation of a Commitment
Machine for an Adaptive and Robust
Expected Shortfall Estimation

Marco Bagnato'*, Anna Bottasso?* and Pier Giuseppe Giribone®3*

"Data and Al, SoftJam, Genoa, Italy, °Department of Economics, University of Genoa, Genoa, ltaly, 3Financial Engineering and
Data Mining, Banca CARIGE, Genoa, ltaly

This study proposes a metaheuristic for the selection of models among different
Expected Shortfall (ES) estimation methods. The proposed approach, denominated
“Commitment Machine” (CM), has a strong focus on assets cross-correlation and allows
to measure adaptively the ES, dynamically evaluating which is the most performing
method through the minimization of a loss function. The CM algorithm compares four
different ES estimation techniques which all take into account the interaction effects
among assets: a Bayesian Vector autoregressive model, Stochastic Differential Equation
(SDE) numerical schemes with Exponential Weighted Moving Average (EWMA), a
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) volatility model
and a hybrid method that integrates Dynamic Recurrent Neural Networks together with a
Monte Carlo approach. The integration of traditional Monte Carlo approaches with
Machine Learning technologies and the heterogeneity of dynamically selected
methodologies lead to an improved estimation of the ES. The study describes the
techniques adopted by the CM and the logic behind model selection; moreover, it
provides a market application case of the proposed metaheuristic, by simulating an
equally weighted multi-asset portfolio.

Keywords: expected shortfall, monte carlo methods, stochastic differential equation, bayesian vector autoregressive,
dynamic neural networks, nonlinear auto-regressive networks, artificial intelligence, commitment machine

INTRODUCTION

The cross correlation of assets and the time-varying behavior of conditional volatility are two
important risk factors for an investment portfolio. Volatility tends to grow during periods of financial
crisis, as shown for example by Ang and Chen (2002). This leads to periods of volatility clustering
where conditional, short term volatility is very different from the long term unconditional one, with
substantial effects on portfolio shocks that can be modeled through GARCH and EWMA volatility
models. Under these conditions, an increase in correlation can intensify the effects of correlated
shocks on portfolio losses. Therefore, the objective of this work is to create a Risk Management
system able to estimate the coherent statistical measure of Expected Shortfall through the
implementation of models that take into account the cross-correlation between assets and the
trend of variance clustering over time; moreover, the study suggests a possible solution to the
problem of selecting adaptively the most performing ES models.

In particular, the proposed solution consists in the implementation of a metaheuristic, called
Commitment Machine (CM), that allows to choose, day by day, the ES estimation that best fits the
financial market conditions.

Frontiers in Artificial Inteligence | www.frontiersin.org 1

August 2021 | Volume 4 | Article 732805


http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.732805&domain=pdf&date_stamp=2021-08-31
https://www.frontiersin.org/articles/10.3389/frai.2021.732805/full
https://www.frontiersin.org/articles/10.3389/frai.2021.732805/full
https://www.frontiersin.org/articles/10.3389/frai.2021.732805/full
http://creativecommons.org/licenses/by/4.0/
mailto:m.bagnato@softjam.it
mailto:bottasso@economia.unige.it
mailto:pier.giuseppe.giribone@economia.unige.it
mailto:pier.giuseppe.giribone@economia.unige.it
https://doi.org/10.3389/frai.2021.732805
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.732805

Bagnato et al.

TABLE 1 | Implemented models in the Commitment Machine.

Model

Bayesian Vector autoregressive model (BVAR)
Euler-Maruyama SDE numerical scheme
Euler-Maruyama SDE numerical scheme
Hybrid Monte Carlo method with NAR

Differently from our previous study (see Bagnato et al. (2021)),
we decided to implement the Expected Shortfall risk measure
rather than Value-at-Risk, because the former is always a
coherent statistical measure of risk. In other words, only the
ES satisfies the sub-additivity property: it is true that
ES(X + Y)<ES(X) + ES(Y) but it is not always verified that
VaR(X + Y) < VaR(X) + VaR(Y), where X and Y are random
variables representing the returns of a portfolio (see Acerbi
and Tasche (2002)). Indeed, the risk of two portfolios (or
assets) together (ie., X and Y) cannot be any worse than the
sum of the two single risks: this is the well-known financial
diversification principle. Although VaR is a less theoretically
consistent measure than ES, it is worth noting that it
continues to be a very popular risk measure among Financial
Institutions because in the majority of cases the mathematical
property is anyhow empirically verified.

Taking into account the important role of correlation, we have
decided to employ four ES estimation models that are able to
incorporate this fundamental factor in the simulation. As a result,
we decided not to include in the CM the more traditional
backward-looking methods, such as historical ES and
parametric ES, but to adopt more dynamic techniques.

The four ES estimation techniques (see Table 1) implemented
in the CM are:

e a Bayesian Vector AutoRegressive model (BVAR) with a
prior distribution that simulates a stochastic behaviour for
both the cross correlation among asset components and
their volatility;

e a Euler-Maruyama SDE numerical scheme with a EWMA
volatility and a Cholesky Decomposition for the correlation;

¢ a Euler-Maruyama SDE numerical scheme with a GARCH
volatility and a Cholesky Decomposition for the correlation;

¢ a hybrid Monte Carlo method that uses the predictions of
Non-linear AutoRegressive (NAR) networks as drift, a
GARCH volatility and a Cholesky Decomposition for the
correlation.

The metaheuristic of the CM is able to evaluate the four
approaches by calculating every day, for each of them, the value
assumed by a loss function in the previous days. The model with
the best performance is then chosen to estimate the ES of the
following day. In our case, the loss function is equivalent to the
sum of portfolio returns below the ES threshold, and it represents
the effects of extreme events that are of greater magnitude than
the expected value of losses below the ES threshold.

The CM overall performance and selection capacity have been
assessed by analysing the losses with respect to the ES threshold

CM Implementation for ES Estimation

Volatility Correlation

a prior distribution a prior distribution

EWMA Cholesky Decomposition
GARCH Cholesky Decomposition
GARCH Cholesky Decomposition

and the comparative performances of the single methods when
they are selected by the CM. The results clearly indicate that the
CM is able to make an efficient selection among the various
methods, by choosing ES thresholds that are less likely to be
violated. The proposed Risk Management approach is extremely
customizableé Indeed, thanks to the flexibility of the code written
in MATLAB , the CM approach can be used to select among a
great variety of ES methods.

DATASET AND PORTFOLIO
CONSTRUCTION

For the purposes of the analysis, we built an equally weighted
portfolio using four l}@istorical time series retrieved from the info-
provider Bloomberg . These series track four different indices
representing three of the main asset classes available to investors
(equities, bonds and gold). The components of these indices are
representative of the investment choices of most financial
intermediaries and allow us to represent a balanced portfolio:

e European Stock Index (SXXP Index): the Stoxx 600 index
tracks the trend of large, mid and small cap stocks in 17
different European countries. With its 600 components, it
allows to simulate a highly diversified equity portfolio across
UK, Switzerland and the Eurozone.

e US Stock Index (RAY Index): The Ray Index includes 3,000
listed companies which represent 98% of the universe of US
listed shares (in terms of market cap), allowing US stock
markets to be incorporated into the portfolio.

e World Bond Index (Legatruh Index): the Bloomberg®
Barclays Global Aggregate Index collects investment
grade debt listed on 24 markets, in both developed and
emerging economies. The inclusion of this index allows to
increase diversification by adding a second asset class
distinct from the stock market and by minimizing the
geographic risk.

¢ Gold (XAU USD currency): this series tracks the historical
exchange rate between gold and the US dollar. Gold has
traditionally been considered a safe-haven asset and its
inclusion can offer significant diversification potential.

Since the European stock index is denominated in Euro, we
have retrieved the historical Euro/Dollar exchange rates for the
analysed period and used them to convert all the data into US
dollars. In order to achieve a reasonable sample size, we decided
to analyze the data of the daily closing prices for the period from
Ist June 2000 to 30th September 2020. This time span contains a
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TABLE 2 | Analysis of portfolio and components time series.

CM Implementation for ES Estimation

Distributional and descriptive statistics of daily returns

Min Max Median
US equity -11% 10% 0,026%
EU equity -12% 13% 0,061%
Bond market -2% 2% 0,024%
Gold -9% 1% 0,045%
Portfolio 7% 6% 0,04%

TABLE 3 | Cross correlation matrix of portfolio components.

Cross correlation matrix of portfolio components

EU equity US equity Bond market Gold
EU Equity 1,00 0,51 -0,29 -0,01
US Equity 0,51 1,00 -0,18 0,002
Bond market -0,29 -0,18 1,00 0,18
Gold -0,01 0,002 0,18 1,00

total of 5,305 market observations for each considered asset. The
analysis requires the choice of a time window that allows to
dynamically evaluate the evolution of the risk measures and of all
other relevant variables (particularly the evolution of cross
correlations in order to have a correct measurement of
portfolio risk). This observation window (“rolling windows”)
must be large enough to be statistically significant, but at the
same time it should not be too wide in order to concretely capture
the effects of relatively short-term shocks (for example the
collapse and subsequent recovery of the markets due to the
Covid-19 pandemic in the spring of 2020).

In order to balance the above-mentioned trade-off, in
accordance with the practice used for this type of analysis, we
decided to use a rolling window of 260 observations, which is
equal to 1year and is considered large enough for an overall
analysis of market risk.

Table 2 shows the main descriptive statistics (minimum,
maximum, median and the first four moments) for each
historical time series. The various data are calculated on the
entire history available without the use of rolling windows. All
series show a high level of kurtosis and this seems to suggest a
non-normal distribution for our data.

In order to analyse data distribution, we performed a
Kolmogorov-Smirnov test at 5% significance level that
prompted us to reject the normality hypothesis for all four
time series (p value ~0 for all the series). The rejection of the
normality hypothesis of our dataset prevents the adoption of the
variance-covariance method in the ES calculation. Consequently,
this approximated method of estimation has not been adopted in
this study.

The second consideration deals with the most volatile among
the indices ie., the two equity indices. The matrix of daily
correlations across the indices, reported in Table 3, shows that
the greatest correlation is observed between the US stock index
and the European stock index. The correlation between portfolio
assets can be considered as a possible risk factor. The greater

Average St. Dev. Kurtosis Skewness
0,006% 1,21% 10,49 -0,22
0,032% 1,44% 12,06 -0,12
0,020% 0,16% 11,60 -0,41
0,042% 1,07% 9,19 -0,19
0,025% 0,65% 12,77 -0,27

riskiness of the two equity indices has been confirmed by the
Euler decomposition of portfolio risk (see Tasche (2008)),
suggesting that more than 75% of the portfolio volatility is
generated by the two most volatile equity indices. More
specifically, the Euler decomposition attributes portfolio risk
among different components as follows: 32.3% to the
European stock index, 43% to the American stock index, 1.2%
to the bond market index, 23.5% to the gold one. This calculation
highlights how the correlation structure is by itself a risk factor, as
it has the potential to amplify losses due to the most volatile
indices in the portfolio.

Another important feature of the cross-correlations between
assets is the opportunity to use them to build less procyclical
models. Over the sample period, the two major negative events
(the 2008 crisis and the Covid shock) came after a long period of
positive equity market returns; in both cases, the value of the
portfolio reached an all-time high just before the crisis. This is an
obvious issue for Risk Management: the most common models of ES
are strongly backward looking, with obvious negative effects when
indices suddenly shift from growth to collapse. However, an analysis
of the cross-correlations between assets can help to solve this
problem: in both cases mentioned above, the correlation between
the two equity indices started to rise before the onset of the crisis. In
the case of the 2008 crisis, in the previous 2 years both the variance of
each of the two indices and their covariance increased, while before
the 2020 crisis the two variances were stable.

More generally, it is clear that a Risk Management model that
includes the cross-correlation between assets among its input
arguments can provide a more risk-sensitive estimate than a
model that does not take these variables into account.

Leaving aside a more in-depth analysis of the patterns observed in
2008 and 2020 during the crises (which is not the aim of this study),
it can however be assumed that a higher level of speculative
investment in the markets leads to an increase in returns and
therefore to a greater degree of vulnerability in case of a shock;
in this scenario, the presence of diversified portfolios in the markets
can lead to an increase in the risk of contagion between different
assets, as experimentally shown by Cipriani et al. (2011), even when
the same assets continue to have positive returns for a certain period.

Another point of view—from an econophysics perspective -
expressed in particular by Sornette (2017), who analyzes the
financial markets by using systems theory, sees financial crises as a
“critical point” of a system, that happens due to the effects of the
collective and increasingly correlated behaviour of several operators. In
this sense, Sornette defines an “emergent cooperative behavior” which
reaches its maximum in the moment immediately preceding the
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collapse of the market, leading to the outbreak of the crisis. More
generally, as observed by Khandani and Lo (2007) in a case study on a
sudden shock of the US hedge fund market in August 2007, in recent
years the interconnection between different financial institutions (see
also Agosto et al. (2020)) has led to an increase in systemic risk, which
is also reflected in the cross-correlations between different financial
instruments and assets.

The main point of this analysis, beyond the possible explanations,
is that the cross correlation between the most volatile assets is a proxy
of the overall risk and incorporating it into a Risk Management system
seems to offer great modeling benefits. This is even more true to the
extent that this risk takes the form of a sudden increase in market
volatility (see Ahelegbey and Giudici (2020), Giudici et al. (2020)).

In this perspective, the inclusion in all our models of a stochastic
component related to both correlation (a priori distribution for the
Bayesian method, Cholesky decomposition for the Monte Carlo
method) and volatility (EWMA and GARCH for the Monte Carlo
method, a priori distribution for the Bayesian model) can be seen as a
two-stage adaptation process: in the first stage, pre-crisis and forward
looking, the Risk Management model collects information on the
increase in correlations, and this information generates a more
prudential approach to the extent that the correlation affects the
simulated shocks. At this stage, systemic risk is rising, but the only
proxy for such risk (besides the large returns) is correlation.

In the second phase, portfolio returns fall and the inclusion of
models that consider short-term conditional volatility (Monte
Carlo GARCH and in particular the EWMA version) accelerates
the “adaptation” of the models to the new scenario. At this stage, a
GARCH volatility representation attributes a greater weight on
long-term volatility, and is therefore less conservative in a context
where short-time volatility is higher than the long-term one.
Hence, the Monte Carlo simulation with the GARCH method has
been enriched with a non-linear autoregressive structure (i.e., a
Neural AutoRegressive - NAR Network), which replaces the
expected value of the returns in the drift of the stochastic
differential equation. In this case, the model maintains a high
degree of dynamism by giving the right consideration in terms of
weight to the most recent components of the information set.

Description of the Expected Shortfall
Methodologies

After choosing the dataset, we have built a Risk Management
system that can serve as a basis for the analyses. For the purpose of
calculating the ES, four different methods have been implemented
in order to take into account both sudden changes in variance (or,
in other words, to distinguish between conditional and
unconditional variance) and the effects of the cross-correlations.

Bayesian Vector Autoregressive Model
(Bayesian VAR)

Taking as a reference an econometric model written in the form:
y=XB+ée £€~N(0,X) (1)

Where y is the Txn matrix that collects the predicted returns for
the n endogenous variables and X is the Txk matrix that collects

CM Implementation for ES Estimation

the past returns. T is the length of the considered time series and
k = n - p where p are the lags. The main parameters are the matrix
of the coefficients S (whose dimension is kxn) and the nxn
variance-covariance matrix of the errors Z, which in this case
is distributed according to a multivariate Normal and is used to
generate the Txn error vector &. The principle of Bayesian analysis
consists in putting together the information that is available in
advance on the distribution of these parameters (the so-called
prior distribution) with the information that we can obtain from
the data (i.e., the likelihood function). In this way it is possible to
obtain a new probability function that considers both factors, the
so-called posterior distribution. The essential step for putting
together the prior distribution and the likelihood function is the
Bayesian rule. For a vector of parameters 0 and a dataset y, given
the density function f (y | 0), the Bayesian rule can be expressed as:

_10i6) |

The formula states that, given y, the probability that the “true
value” that the parameter vector is 0 is equal to the likelihood
function of the data multiplied by the a priori distribution of the
vector of parameters 7 (0) and divided by the density of the data f
(y). This probability is expressed as the posterior distribution of 6
given vy, indicated as ni(6]y).

The vector of the parameters 8 mentioned above is made up of
two different elements: the vector of the coefficients § and the
variance-covariance matrix of the errors 2. For each of these
elements, it is necessary to specify a prior probability distribution
that allows - together with the likelihood function - to implement
the “Bayesian rule” One of the most widely used prior
distribution is the “Minnesota prior” (see Dieppe et al. (2018)).

The Minnesota prior assumes that the variance-covariance
matrix 2 is already known. Therefore, only the vector of the
coefficients B remains to be estimated: for this purpose, it is
necessary to identify the likelihood function of §3, f (y| B), and a
prior distribution m(B). The starting point is the likelihood
function: Eq. 1 implies that y is distributed as a normal
multivariate distribution with mean YP and variance-
covariance matrix 2. Various techniques can be employed in
order to estimate the matrix 2. With enough computational
power it is possible to relax the hypothesis of the diagonality
of the 2 matrix as described by Litterman (1986) and derive it
from the variance-covariance matrix of a similar VAR model
estimated via Ordinary Least Squares-OLS. Consequently, the
maximum likelihood function can be written as:

2

Yexp[ - 12(y-TB)'S " (v - TB)]
(3)

Where n is the number of endogenous variables in the
considered model.

The notation can be simplified by collecting under the «
parameters the terms that do not depend on f:

fOIBT) =aexp[ -12(y-YB)S " (y-YB)]  (4)
Where

fOIB.2) = Cm ™

Frontiers in Artificial Inteligence | www.frontiersin.org

August 2021 | Volume 4 | Article 732805


https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Bagnato et al.

a= (2n) "z (5)

Distribution of 8 is supposed to follow a normal multivariate
distribution with mean f, and variance-covariance matrix Qq. In
the original formulation by Dieppe et al. (2018) the expected
value for each parameter (which contributes to the specification
of the f3, vector) is equal to 1 for the coefficients that multiply the
variables in the first time lag (i.e., the time interval immediately
before the one for which we aim to forecast the value, for example
the day before in case of daily returns) and equal to O for the
following lags, since most of the time series are characterized by
the presence of a unit root. The variance-covariance matrix Q) is
a diagonal matrix whose terms are defined by a set of parameters
usually derived from the econometric theory.

The chosen approach uses a slightly more complex variant of
prior distribution compared to the Minnesota prior: the normal-
inverse-Wishart prior. The main difference is related to the
variance-covariance matrix of the errors Z, which is also an
unknown and is no longer known in advance, meaning that it
has a stochastic behaviour (in line with the approach adopted in
the Monte Carlo GARCH which also stochastically considers
non-homoskedastic components). It is assumed that 2 follows an
inverse Wishart distribution which has as input parameters the
matrix ) and the number of degrees of freedom v. In
mathematical notation: Zywsgarr~W™' (Q, v), where the
matrix Q is equal to the amount (v-number of parameters -
1) multiplied by the diagonal matrix that contains in the main
diagonal the variance of the errors of each single variable
calculated with AR models. For a discussion of the estimation
of these parameters and other theoretical aspects linked to this
econometrical model, we suggest the works of Karlsson (2012)
and Giannone et al. (2015).

Euler-Maruyama SDE numerical scheme
with a EWMA volatility and a Cholesky
Decomposition for the correlation

The Monte Carlo method in this context is interpreted as a
numerical method that allows to simulate the possible trajectories
of one or more assets that follow a Brownian geometric motion. A
Brownian geometric motion is meant as a stochastic process
defined by the SDE:

ds; = uS;dt + ¢S,dW, (6)

Where 1 is the mean of the asset returns, ¢ > 0 is the standard
deviation represented by a EWMA approach with a smoothing
factor equal to A = 0.94 (Haug, 2007), S; is the price of the asset at
time t and W, is a Wiener process, that is a stochastic process
defined by independent increments over time with mean equal to
0 and variance equal to the time interval considered: Wr-W, is
normally distributed with mean 0 and variance T.

In order to extend the model to a multi-asset portfolio it is
necessary to take into consideration the correlation. We use the
Cholesky decomposition in order to incorporate the correlation
matrix for the four assets in the Monte Carlo simulation.
Assuming you have a set of uncorrelated random numbers
E =€, 63 .. .67, the Cholesky decomposition allows to

CM Implementation for ES Estimation

. . N
transform them into a set of correlated variables @ =
- - .
ai, dz,a3,. . ...ar. If '€ and '@ are column vectors with ¢ and
. . . NN
a; in the rows, it is possible to transform € to @ by:

a=Mz (7)

Where M is the matrix that must satisfy the condition MMT = R,
where R is a symmetric positive definite correlation matrix. M can
be obtained by applying the Cholesky decomposition to R.
Subsequently, the correlated shocks (@) are substituted to the
errors (€). From this point, the various possible paths of the assets
are simulated, thus obtaining a set of possible values of the returns
from which to calculate ES with the quantile method. See Haug
(2007) for a more detailed explanation.

With r®egards to the implementation of the model in the
MATLAB environment, the Cholesky function has been used
to transform the correlation matrix R into an upper triangular
matrix M that would guarantee the respect of the condition
MMT = R. Subsequently, for each simulation, the Hadamard
product has been used to multiply the innovations and the M
matrix.

Euler-Maruyama SDE numerical scheme
with a GARCH volatility and a Cholesky
Decomposition for the correlation

This approach inherits the structure from the previous approach
and generalizes the volatility modelling using a GARCH
process.

In a GARCH process (Engle, 1982), the conditional variance
depends on the long-term unconditional volatility, the p most
recent values of the variance and the square of the last g past
returns, according to equation:

)4 q
o, =Viy+ Y aixu;, +) Bxo;, (8)
i1

=1

Where V;, is the unconditional (or long term) volatility, u? | is
the squared log-return observed in t-1, and ¢, is the
conditional volatility observed in t-1.y , a; and f5; are the
three weights whose sum is equal to 1 (i=1,...,p and
j=1,...,9). In the case of a GARCH(1,1) and assuming
w = V1Y, the equation can be rewritten as:

oco=w+axu , +p*o;, 9)

By applying a Maximum Likelihood (ML) approach, it is
possible to estimate the three parameters w, o and P, obtaining
then y, where y = 1-a-p. Writing the estimated variance in t as
v = o2 and assuming that the probability distribution of u
conditional to the variance u? is normal, the ML equation that
has to be maximized becomes:

m 1 u’
L= H v, exp( - 2—v,> (10)

By applying the natural logarithm and ignoring constant
multiplicative factors, the previous equation can be rewritten
as Hull (2014):
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FIGURE 1 | Feed-forward dynamic neural net with single-delay, single-
layer and single-neuron (A), recurrent dynamic neural net with single-delay,
single-layer and single-neuron (B).

L= Z[—ln(v,-)—‘fﬂ:il,,- 11

i=1

The next step has a computational nature: by using a
traditional numerical optimization, it is possible to obtain the
value of the weights that maximize L. Once these weights have
been estimated, we can insert the GARCH volatility in the Monte
Carlo simulation that describes the dynamics of correlated assets
with the Cholesky decomposition.

Hybrid Monte Carlo Method That Uses the
Predictions of NAR Network as Drift, a
GARCH Volatility and a Cholesky

Decomposition for the Correlation

In contrast to static neural networks, dynamic neural networks
are characterized by the presence of feedback or delay at time t.
Consequently, outputs at time t do not depend only on inputs,
but also on outputs and state variables related to previous
instants. Therefore, the dynamics are characterized by
different memory levels and so neural networks, which can
be trained with time dependent data, are suitable to be used as
forecasting tools. NAR dynamic neural networks are widely used

CM Implementation for ES Estimation

for forecasting; they are able to predict future values of a time
series through the past values of the same series. If the time
series is called y(t), it is possible to write: y(t) = f(y(t-1), y(t-2),
..., y(t-n)), where the regressors y(t-1), y(t-2), . . ., y(t-n) are the
past values of the time series.

Another important distinction within the class of dynamic
neural networks is the one between feedforward and
recurrent dynamic neural networks. In the former case,
the memory of the network is limited to the delays on the
input. Let us consider Figure 1A. In this case, the current
network output a(t) depends on the current input p(t)
weighted by w(1,1) and the previous input p(t-1) weighted
by w(l1,2), that is a(t) = w(L1)*p(t)+ w(L,2)*p(t-1).
Nevertheless, older inputs p(t-2), p(t-3),..., do not have
an explicit influence on the network output; as a result, its
memory is limited.

In the latter case, the presence of feedback connections makes
the memory of the network theoretically limitless, let us consider
the following Figure 1B.

In this case, the current network output a(t) is a function of the
current input p(t) weighted by its input weight, iw(1,1) and the
preceding network output a(t-1) weighted by its layer weight,
Iw(1,1), that is: a(t) = iw(1,1)*a(t-1)+lw(1,1)*a(t-1). In turn, a(t-1)
is a function of p(t-1) and a(t-2), going backward in the chain, you
obtain that the current network output a(t) is a function of all the
input past values.

Extending these concepts to a more generalized recurrent
architecture, we can say that a dynamic neural network is
typically characterized by: a set of weight matrices (the
number of which depends on the number of both network
layers and delays) that can be associated with inputs or layers
(IW and LW); a bias vector for each layer (b); a function
combining inputs (or layer outputs) with biases, and usually
expressed as a weighted sum for each neuron (adder block @); a
transfer function for each neuron (f); a variable number of delays,
which can be applied to the inputs and/or the outputs of the
layers. The outputs of Tapped Delayed Layers (TDL) can be
reintroduced into the network in other layers.

Just as in static networks, the training phase is based on a
gradient descent algorithm which calibrates the network
parameters (IW, LW and b) in order to minimize a loss
function (e.g. Mean Squared Error-MSE) which measures the
error (estimated outputs vs. training values) observed during the
training. The training phase of the net parameters is carried out
taking into consideration all the best-practices used for having a
reliable forecasting (Giribone, 2021). In particular, random
splitting of the dataset is used to avoid overfitting and a
double check of goodness of fitting and absence of error
autocorrelation is carried out for each time prediction of the
neural network.

THE COMMITMENT MACHINE

A more precise ES estimation requires to selectively use the
models described in the previous section. To this end, it has
been decided to opt for an algorithmic solution, that we refer to
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TABLE 4 | Overall value of loss function for the four ES methods and the CM.

CM Implementation for ES Estimation

EWMA vol GARCH vol Bayesian method NAR Monte CM
Monte Carlo Monte Carlo Carlo
Sum of ES losses 68,9% 76% 83,8% 88,1% 50,1%
ES overrun frequency (as % of total days) 4,01% 3,23% 3,01% 3,25% 2,21%
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FIGURE 2 | Cumulated losses below the ES threshold.

as Commitment Machine (CM), which, given a set of ES
methods considered statistically reliable, allows to select on
each day t the method that best performed in the previous
period and to use it in order to calculate the risk measure for
the t+1 observation.

Given these specifications, the CM algorithm has been defined
starting from three elements:

1) A set of methods for calculating the risk measures used, whose
adequacy has been tested by the CM, together with the
portfolio return data to be used for the back-testing and
for the calculation of the loss function.

2) A loss function to be minimized that allows the metaheuristic
to select the different calculation methods.

3) An observation window of n observations ranging from T-
(n-1) to T which is used for estimating the loss function.

Regarding the first point, all methodologies are tested
singularly on the portfolio and we obtain results that confirm
the choice of including them in the basket of methods considered
by the CM.

The second step needed in order to design the CM is the choice
of the loss function to be minimized. Defining Ry and ESr
respectively as the returns at date T and the corresponding ES
threshold, the possible loss functions are defined as:

The ES threshold overruns function f, (Ry) = {(1): ﬁ; ; gg;
(12)
The ES threshold loss function f, (Rr)
ES - Ry, Ry < ESt (13)
B { 0, Rr > ES;

Minimizing the objective function, therefore, is equivalent to
iteratively choosing the method of ES estimation which leads to
lower ES losses as calculated in Eq. 13 or a lower overrun frequency as
counted by Eq. 12. On average, for each method, we observed nearly
one ES overrun every 30 market days, so Eq. 12 has a low sensibility.
We therefore used Eq. 13 as the loss function to be minimized by the
CM. These loss functions are very similar to the original ones
proposed by Lopez (1998) and Sarma et al. (2003), however we
use the Expected Shortfall as threshold instead of Value-At-Risk
because it is a coherent risk measure.

The third step for the CM design is the determination of the
time interval used for its calibration. This process defines the time
interval where the metaheuristic selects the best method to use in
the following step, according to the minimum loss functions. So,
for example, if the CM has a time interval of 50 days, it will choose
the method that has the lowest loss function calculated over the last
50 days.
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TABLE 5 | Comparative average of losses below the ES threshold.

CM Implementation for ES Estimation

Average ES threshold loss when the CM selects one of these methods

EWMA vol Monte Carlo

GARCH NAR Monte Carlo Bayesian method
vol Monte Carlo
EWMA vol Monte Carlo 0,020% 0,042% 0,048% 0,052%
GARCH vol Monte Carlo 0,027% 0,017% 0,018% 0,018%
NAR Monte Carlo 0,024% 0,017% 0,017% 0,017%
Bayesian method 0,027% 0,019% 0,019% 0,017%

Performances of the individual methods on the days in which they have been selected are highlighted in bold.

In order to implement this calibration, we decided to test the
algorithm over 11 possible observation windows of different
lengths ranging between 50 and 100 days (50, 55, 60 ... 100
days) and to evaluate the ex-post performance of the CM for each
observation window. For this case-study, we adopted a CM
calibrated on an observation window of 55 days.

Among all the tested variants, the CM has the lowest overrun
count (calculated as in Eq. 12) and a lower sum of losses
(expressed for each method as the sum of the values estimated
using Eq. 13 over the entire time series). Table 4 reports the
values of the two loss functions for the four ES methods and the
CM. The values of the loss functions for the other observation
windows are very close to the optimum values obtained in
Table 3; as a result, we can assert that the methodology is
quite robust (Sum of ES losses varies between 50 and 54%,
and ES overrun frequency spans from 2.21 to 2.48%).

RESULTS

The analysis of the CM performances, tested on the realized returns
of an equally weighted portfolio made up of four market indices from
2001 to 2020, shows that the use of the algorithm provides interesting
advantages compared to the implementation of a single Expected
Shortfall method. In particular, the analysis is divided into two steps: a
disaggregated analysis of the performances of each CM on the days in
which one of the four methods has been selected (NAR Monte Carlo
ES, standard Monte Carlo with EWMA ES, standard Monte Carlo
GARCH ES, Bayesian ES) and a general analysis of the performances
of the CM over the entire dataset.

Thanks to its adaptive logic selection, the CM records lower ES
violations and losses with respect to the four methods individually
implemented, as shown in Table 4. Figure 2 shows, for the time
interval considered, the cumulative losses with respect to the ES
threshold of the four methods considered by the CM and of the two
variants of CM. The cumulative loss on a certain date t is equal to the
sum of the historical values from 0 to t of the loss function specified in
The Commitment Machine in Eq. 13 and it represents the total
amount of losses below the ES threshold up to that day.

Data show two periods in which the portfolio faces large losses,
specifically the subprime mortgage crisis and the Covid shock in
the spring of 2020. Between these two periods there is a further
period of losses—of smaller magnitude compared to the other two
- corresponding to the crisis of the sovereign debts in the
Eurozone. During these two negative market events, the

cumulative losses increased considerably for the four ES
methods used and far less for the CM based on these methods.

Overall, the CM algorithm suffers far fewer losses than the
other four methods, particularly during the two periods of market
crisis. This is a further endorsement of the validity of the heuristic
approach adopted in the design phase, which prevents the
algorithm from selecting those methods that have the worst
performance.

To better contextualize these results, it is important to evaluate the
relative performances of all the ES calculation methods. To this end,
we proceed to further break down the analysis and we consider, for
each CM, the days in which each ES method has been selected. The
dataset has been divided into four sets, each containing the days in
which one of the four methods has been selected. Then, the average
losses below the ES threshold (that is, the sum of values assumed by
Eq. 13 divided by the number of days in which each method is
selected) have been calculated for each method in each of the four
sets, and these data have been compared with the performances of the
other methods on the same days. For example, a value of 0.1% means
that on average we have a 0.1% negative difference between ES
threshold and market percentage return.

Table 5 shows, for each method in each of the four sets, the
average values of Eq. 13 that computes total losses below the ES
threshold, expressed as the mean of total % value as explained in
the previous paragraph.

For example, the first row of Table 5 shows, for each ES
estimation method, the average amount of losses of the Expected
Shortfall threshold calculated on the days in which the method
selected is the EWMA volatility Monte Carlo ES. It is expected
that, on the days in which the CM chooses this method, this figure
will be lower for the EWMA volatility Monte Carlo ES. This
means that, when it is chosen, the EWMA is the best method: the
CM is able to choose, in T+1, the method with the smallest loss
below the ES threshold.

In order to simplify the analysis, performances of the
individual methods on the days in which they have been
selected are highlighted in bold. For each row, these
performances are expected to be the best. The analysis of the
results shows a significant selection ability of the CM: in all the
considered cases, the CM is able to manage the choice of the
method which guarantees the smallest losses. This is an important
confirmation of the statistical validity of our approach,

Relatively less brilliant performances for the Monte Carlo
method that takes into account the NAR are observed;
however, when selected, this method outperforms the more
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TABLE 6 | Comparative average of overruns below the ES threshold.

CM Implementation for ES Estimation

Average frequency of ES threshold overrun when the CM selects one of these methods

EWMA vol Monte Carlo

GARCH NAR Monte Carlo Bayesian method

vol Monte Carlo

EWMA vol Monte Carlo 0,021%
GARCH vol Monte Carlo 0,05%
NAR Monte Carlo 0,045%
Bayesian method 0,048%

0,041% 0,040% 0,045%
0,024% 0,027% 0,023%
0,028% 0,024% 0,027%
0,030% 0,030% 0,022%

Performances of the individual methods on the days in which they have been selected are highlighted in bold.

traditional Monte Carlo approaches based on EWMA. It also
outperforms the GARCH Monte Carlo and Bayesian method, but
by a very small quantity. When selected, the EWMA is the
method that has the greatest advantage in terms of
performances if compared with the other ones. As we will see,
it is selected during the moments of financial crisis because of its
very prudential representation of the short-term volatility.

Table 6 reports the same analysis as Table 5 but for the
frequency of the overruns of the ES threshold calculated as
reported in Eq. 12, instead of average losses below the ES
threshold. The results confirm the analysis presented in this
paragraph: the CM appears to provide a robust metaheuristic
in relation to the ability to select, day by day, a method that
provides a reliable ES selection by estimating a threshold that is
less likely to be violated. The only exception is the Monte Carlo
GARCH method, that has strictly larger losses than the Bayesian
method (0.024 vs. 0.023), when selected.

Another important feature of our CM is the stability of the
model. Figure 3 shows the type of ES model selected by the
algorithm (1 = standard Monte Carlo with EWMA, 2 = standard
Monte Carlo with GARCH, 3 = Bayesian method, 4 = Monte Carlo
with NAR) and the performance of the portfolio (measured by
cumulative returns) from the beginning of the dataset to the end.

Observing Figure 3, it can be noticed that the method chosen
by the CM remains the same for long periods. This is a very
important factor, as it highlights how the CM’s choices are
consistent over time. There is no random selection, but a
logical choice. In fact, for 98.6% of the days of our dataset, the
method chosen by the CM in that day is the same method chosen
in the previous market day.

It is worth noting that there are three different periods
(2004-2006, 2013-2014, 2017) in which the CM selects the
Bayesian method. These periods are characterized by low
volatility and (with the exception of 2017) relatively low
correlation coefficients between the two equity indexes. It is
reasonable to assume that in these conditions the normal-
inverse-Wishart prior described in paragraph 3.1 can generate
a more prudential forecast, because it includes in its simulation
the possibility of a growth of both correlation and volatility.

The periods of greater instability-in terms of CM
selection—are the 2 years leading to the two market crises of
subprime bonds and covid pandemic. Both these periods of
growing cross-correlations between the two stock market
indexes end up with a sudden market crash in which we
observe ¢! In our framework, a long term

t
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FIGURE 3 | Commitment machine ES selection.
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CM Implementation for ES Estimation

CM performance gain over the ES methods in terms of losses
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FIGURE 4 | Commitment machine performances and asset cross-correlations.
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each risk measure is calibrated (before the loss function
calculation), while the short term window is 50 days long and
describes the short term behaviour of the market more accurately.
In this context, a EWMA is a more prudential representation of
market conditions, because it gives very little weight to long term
volatility, far less than the GARCH representation.

More in general, correlation plays an important indirect role in
determining the CM performances and in order to analyse this
issue, we created a “reduced” CM machine variant, that considers
only the standard Monte Carlo representation with EWMA and
GARCH Volatility (that we will call CM2) with an observation
window of 55 days.

For each day, we calculated the difference between the cross
correlation between the two stock indexes computed over 55 days
(the observation window) and the same coefficient calculated over
260 days (the calibration period). This difference explains how the
correlation changes over time: a positive difference means that we
are in a period of rising market cross correlations, while a negative
difference means that we are in a period of declining cross
correlations. Also, if the difference is positive, this means that
the CM is working on a period of 55 days with high correlation,
and this correlation was lower in the previous period of 260 days.
The ES methods are likely suffering from the fact that they were
calibrated on a less correlated sample, one in which the risk
associated with market correlation was smaller. The opposite
holds if the difference is negative.

For the CM2, we find out that the EWMA variant is selected in
days with an average correlation coefficient difference of +0.032,
while the GARCH variant is selected in days with an average
correlation coefficient difference of —0.031. On average, the
EWMA is selected in periods in which the correlation is
increasing, while the opposite holds for the GARCH variants.
The fact that, on average, the short-term volatility representation
of EWMA is more prudential (and thus better than the GARCH)
in periods in which correlation increases is related to such
increase being associated with periods of market instability

and larger short-term volatility. On the contrary, periods of
decreasing correlation are relatively stable in terms of return
and volatility: in such periods, it is more prudent to give a larger
weight to long term volatility, that may represent periods of
bigger negative co-movements between assets.

If we look at the same data as used with the original
commitment machine that considers all of the four methods,
the average correlation difference for the days in which each
method is selected is positive for standard Monte Carlo with
EWMA and negative for all the other methods.

Figure 4 shows the difference between the cumulated
losses of the four methods and the losses of the CM during
periods characterized by different cross correlation of the two equity
indexes. Such difference can be interpreted as the relative performance
of the CM with respect to the original four methods and it turns to be
bigger during market crashes (the two spikes on the plot correspond to
the 2008 and the 2020 crises) when correlation between assets grows
and all the portfolio components start to move in the same downward
direction. These periods of rising correlations can be interpreted as
moments of change in the market behaviour, when the adaptive
selection of the CM has a distinct advantage over the individual
ES estimation methods: as the market conditions change, so
does the model used by the CM.

This pattern confirms that the CM machine is a reliable tool
for Risk Management during periods of instability and helps to
define a first context in which our CM can be effectively used.

CONCLUSION

Our analysis provides evidence in favor of the goodness of the design
of the proposed CM, thus making it a useful tool for managing
portfolio risk. In this paper we have designed an algorithm which
performs an automatic choice among different Expected Shortfall
methods, based on the minimization of a loss function that takes into
account the negative returns below the ES threshold.
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The proposed solution consists in the implementation of a
metaheuristic, called Commitment Machine (CM), that allows to
choose, day by day, the ES estimation that reasonably fits the financial
market conditions best. In accordance with the important role that
correlation plays in the financial contagion and systemic risk, we have
decided to employ four ES estimation models that are able to
incorporate this fundamental factor in the simulation:

A) a Bayesian Vector Autoregressive model (BVAR).

B) a Euler-Maruyama SDE numerical scheme with a EWMA
volatility and a Cholesky Decomposition for the correlation.

C) a Euler-Maruyama SDE numerical scheme with a GARCH
volatility and a Cholesky Decomposition for the correlation.

D) a hybrid Monte Carlo method that uses the predictions of
Non-linear Autoregressive (NAR) networks as drift, a
GARCH volatility and a Cholesky Decomposition for the
correlation.

These different models are able to take into account different
econometric aspects of the time series, particularly non-stationarity
and cross correlation. We tested the analysis of the CM performances
on the realized returns of an equally weighted portfolio made up of
four market indices from 2001 to 2020. Thanks to its adaptive logic
selection, the CM records lower ES violations and losses than the four
methods individually implemented.
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CM Implementation for ES Estimation

Moreover, the flexibility of the code written in MATLAB”
environment guarantees the possibility of generalizing the analysis
by including other ES estimation methods, other than the ones used
in this work. Finally, the proposed algorithm can be easily extended,
for example by modifying the loss function in order to consider the
needs of the various entities involved in the risk assessment or by
including a more realistic trade-off between excess losses and the
opportunity cost related to a too prudential ES threshold. As shown in
Bagnato et al. (2021), it is also possible to consider any risk measure
other than the ES and use it to calculate our loss function.

In conclusion, our applied analysis provides significant evidence in
favor of the goodness of the design of the proposed CM, thus making
it a useful tool for managing portfolio risk.
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