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Goal or intent recognition, where one agent recognizes the goals or intentions of another,
can be a powerful tool for effective teamwork and improving interaction between agents.
Such reasoning can be challenging to perform, however, because observations of an
agent can be unreliable and, often, an agent does not have access to the reasoning
processes and mental models of the other agent. Despite this difficulty, recent work has
made great strides in addressing these challenges. In particular, two Artificial Intelligence
(Al)-based approaches to goal recognition have recently been shown to perform well:
goal recognition as planning, which reduces a goal recognition problem to the problem
of plan generation; and Combinatory Categorical Grammars (CCGs), which treat goal
recognition as a parsing problem. Additionally, new advances in cognitive science with
respect to Theory of Mind reasoning have yielded an approach to goal recognition
that leverages analogy in its decision making. However, there is still much unknown
about the potential and limitations of these approaches, especially with respect to
one another. Here, we present an extension of the analogical approach to a novel
algorithm, Refinement via Analogy for Goal Reasoning (RAGeR). We compare RAGeR
to two state-of-the-art approaches which use planning and CCGs for goal recognition,
respectively, along two different axes: reliability of observations and inspectability of the
other agent’s mental model. Overall, we show that no approach dominates across all
cases and discuss the relative strengths and weaknesses of these approaches. Scientists
interested in goal recognition problems can use this knowledge as a guide to select the
correct starting point for their specific domains and tasks.

Keywords: goal recognition, reliability, inspectability, hierarchical task networks, combinatory categorial
grammars, analogical reasoning

1. INTRODUCTION

Recognizing another agent’s goals is key for many types of teamwork. Shoulder-to-shoulder
teamwork requires knowing a teammate’s goals so that one can either assist or, at a minimum,
not detract from their progress (Geib et al., 2016). Virtual agents also benefit from knowing a
teammate’s goals; such an agent can, for example, facilitate a task by highlighting information
relevant to a user’s goals in a display.

Frontiers in Artificial Intelligence | www.frontiersin.org 1

February 2022 | Volume 4 | Article 734521


https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.734521
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.734521&domain=pdf&date_stamp=2022-02-02
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:irabkina@oxy.edu
https://doi.org/10.3389/frai.2021.734521
https://www.frontiersin.org/articles/10.3389/frai.2021.734521/full

Rabkina et al.

Evaluation of Goal Recognition Systems

In contrast to its utility, however, goal recognition is a very
challenging problem to solve. There are many reasons behind this
difficulty. Primary among them is that goal recognition agents,
by nature of the problem, typically can only indirectly inspect
another agents intentions/goals/etc.; the goals of the observed
agents need to be inferred via their actions and behaviors.
This is made even more challenging by obstacles such as noisy
sensor readings.

In this work, we assess how well goal recognition algorithms
handle different levels of agent inspectability and different
forms of data reliability. Specifically, we look at three levels
of inspectability (low, medium, and high), which refer to the
amount of unobservable information (i.e., information that is
internal to an agent) that is available to the goal recognition
algorithm. Lower inspectability means less internal information
is available, such as only seeing outward behavior, while higher
means more internal information, such as accessing the agent’s
thought processes. We also consider two forms of data reliability:
missing actions and incorrect action parameters. Missing actions
can occur if an agent either actively does not complete the action
or completes it, but the action does not register due to a faulty
sensor. Incorrect action parameters occur as result of perception
failure or mistakes, such as confusing a cup with a jar.

Many different methods for goal recognition have been
proposed in past work (Vered and Kaminka, 2017; Shvo
et al., 2020), as well as methods for its sibling problems plan
recognition (Ramirez and Geffner, 2009; Mirsky and Gal, 2016;
Holler et al.,, 2018), activity recognition (Hussain et al., 2019),
and theory of mind reasoning (Hiatt et al., 2011; Rabkina
et al., 2017, 2020). In particular, three goal recognition methods
have recently been shown to perform well: goal recognition
as Hierarchical Task Network (HTN) planning (Holler et al.,
2018), goal recognition as a language parsing via Combinatory
Categorial Grammars (CCGs) (Steedman, 2001; Geib, 2009), and
goal recognition via analogy (Rabkina et al., 2020). We focus on
these methods.

The contributions of this work are two-fold. First, we
introduce a novel goal recognition algorithm called Refinement
via Analogy for Goal Reasoning (RAGeR). This method
extends an existing approach for goal recognition via analogical
reasoning, Analogical Theory of Mind (Rabkina et al., 2017,
2020) by allowing it to leverage pre-existing goal recognition
models. Second, we conduct an evaluation of RAGeR and two
state-of-the-art goal recognition algorithms, PANDA-Rec (Holler
et al, 2018) and Elexir-MCTS (Kantharaju et al, 2019),
on data with varying inspectability and reliability from the
open-world computer game Minecraft, and from the disaster
management domain Monroe. We find that each approach
to goal recognition has their own strengths and weaknesses.
Specifically, our results indicate that PANDA-Rec performs
well-compared to RAGeR and Elexir-MCTS on data with
high inspectability, while Elexir-MCTS performs better with
data on medium to low inspectability. However, we see that
unreliabilty resulting from incorrect action parameters and
missing noise on data from Minecraft and Monroe decreases
the performance of Elexir-MCTS, PANDA-Rec, and RAGeR,
but RAGeR’s performance decreases more slowly than that of

Elexir-MCTS and PANDA-Rec. We hope these results inform
the community about the conditions under which a particular
approach works well, so as to help guide others in choosing a goal
recognition algorithm.

2. RELATED WORK

Goal Recognition is the process of inferring the top-level goal
of a partial plan executed by an agent (Mirsky et al., 2021) and
is of interest to a variety of Al-related research communities
and topics, including cognitive science (Rabkina et al., 2017),
gaming (Gold, 2010), human-robot teaming (Hiatt et al., 2017),
and others. Related work falls along two axes: techniques for goal
recognition, and assumptions placed on the information available
to goal recognition. We will return to these axes in section 4.1
to describe how our work helps to better describe the relative
strengths and weaknesses of the approaches in different types
of situations.

2.1. Goal Recognition Techniques

While there are many types of approaches that can be used
for goal recognition, we focus on four conceptually different
approaches here: theory of mind-based approaches, plan-based
goal recognition, goal recognition as planning, and learned
goal recognition.

2.1.1. Theory of Mind-Based Approaches

Work in theory of mind, which can include inferring another
agent’s intentions (i.e., goals), has yielded rich computational
models that can model human judgments (Baker et al., 2011;
Hiatt et al., 2011; Rabkina et al., 2017). Goriir et al. (2017) is one
approach that performs theory of mind-based intent recognition
that incorporates a human’s emotional states into its recognition,
focusing on determining when a human may or may not want a
robot’s assistance with their task. Our work, in contrast, focuses
on improving the accuracy of the recognition step itself.

2.1.2. Case-Based Reasoning

Goal recognition can also be done via case based reasoning
(CBR) as demonstrated by Cox and Kerkez (2006) or Fagan and
Cunningham (2003). Such approaches use case libraries that store
sets of actions or observations of an agent along with the goal
that the agent was accomplishing while performing those actions.
The case libraries can be learned incrementally over time (Kerkez
and Cox, 2003), and so do not always explicitly model an agent’s
behavior. When trying to recognize a goal, these approaches
retrieve a case from their library that best matches the current
situation, and use the goal of that case as the recognized goal.
This is similar in spirit to one of the approaches we discuss
here, RAGeR; however, RAGeR is unique in that its retrieval
mechanisms is based on cognitive analogy.

2.1.3. Plan-Based Goal Recognition

Plan-based goal recognition approaches generally utilize a
library of the expected behaviors of observed agents that
is based on a model of its behavior. These libraries have
been represented in a variety of ways, including context-free
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grammars (CFGs) (Vilain, 1990), probabilistic CFGs (Pynadath
and Wellman, 2000), partially-ordered multiset CFGs (Geib
et al.,, 2008; Geib and Goldman, 2009; Mirsky and Gal, 2016),
directed acyclic graphs (Avrahami-Zilberbrand and Kaminka,
2005), plan graphs (Kautz, 1991), hierarchical task networks
(HTNs) (Holler et al, 2018), and combinatory categorial
grammars (CCGs) (Geib, 2009). The last two are among the most
popular, which is why PANDA-Rec and Elexir-MCTS, two of the
approaches we explicitly analyze in this paper, are based on them.

2.1.4. Goal Recognition as Planning

Goal recognition as planning (e.g., Hong, 2001; Ramirez and
Geffner, 2009; Ramirez and Geffner, 2010; E-Martin et al., 2015;
Sohrabi et al.,, 2016; Vered and Kaminka, 2017; Pereira et al.,
2020; Shvo and Mcllraith, 2020; Shvo et al., 2020) do not use
explicit plan libraries. These approaches use off-the-shelf classical
planners to solve the goal recognition problem. Generally, when
recognizing goals, these approaches generate plans for different
possible goals and see which best match the observed behavior.
The main advantage is that they then require only a model of
the domain’s actions instead of one that explicitly contains the
expected behavior of observed agents. However, they are not
always robust to differences between the generated plan and the
executed plan.

2.1.5. Learned Goal Recognition

Gold (2010) uses an Input-Output Hidden Markov Models
(Bengio and Frasconi, 1994) to recognize player goals from
low-level actions in a top-down action adventure game. Ha
et al. (2011) uses a Markov Logic Network (Richardson and
Domingos, 2006) to recognize goals in the educational game
Crystal Island. Min et al. (2014) and Min et al. (2016) use
deep learning techniques (i.e., stacked denoising autoencoders,
Vincent et al., 2010; and Long Short-Term Memory, Hochreiter
and Schmidhuber 1997) to also recognize goals in Crystal Island.
Pereira et al. (2019) combine deep learning with planning
techniques to recognize goals with continuous action spaces.
Amado et al. (2018) also use deep learning in an unsupervised
fashion to lessen the need for domain expertise in goal
recognition approaches; Polyvyanyy et al. (2020) take a similar
approach, but using process mining techniques. To learn
these models, existing data of agents’ behaviors is required
to learn these models. In our approach, in contrast, we use
domain knowledge to construct a model and so do not require
this learning.

2.2. Characteristics of Goal Recognition
Data

We consider here work related to what data is available for goal
recognition. Specifically, we consider levels of inspectability of
the other agent’s mental model in the data and levels of reliability
of the observations that comprise the data.

With respect to inspectability, most approaches evaluate on
data that has a constant level of agent inspectability. Generally
speaking, that is at the level of knowing the actions that an agent
takes (vs. the full plan, or vs. only observing their behavior). We

therefore focus this discussion on work related to the reliability
of data.

As with inspectability, most prior work uses a single dataset
with a particular set of characteristics (whether reliable or not)
to evaluate competing goal recognition approaches. Sohrabi et al.
(2016) provides one exception to this, and considers unreliable
observations that can be missing or noisy (i.e., incorrect). They
show that noisy observations can, for some approaches that
perform goal recognition as planning, prove more challenging
than missing observations; this can be mitigated, however,
by adding penalties for missing or noisy observations into
the “costs” that rank candidate plans. Borrajo and Veloso
(2020) handle such noise by using plan-based distance measures
between observed execution traces and candidate plan traces. We
also consider these two types of reliability in our experiments.

Ramirez and Geffner (2011) look at how a partially-observable
Markov decision process (POMDP) performing goal recognition
can handle missing or noisy observations, in part because
of its probabilistic representation of agent behavior. POMDPs
can be fairly computationally expensive to compute, however,
precluding our use of them here.

Another prior study that looked at inspectability compared
a goal recognition via analogy approach, Analogical Theory of
Mind (AToM) with an HTN-based goal recognition approach
(Rabkina et al., 2020). It showed that while the HTN-based
approach performed better under high inspectability, the HTN-
based approach degraded quickly as inspectability lessened, while
AToM maintained a fairly high accuracy throughout. We include
the same HTN-based approach, PANDA-Rec, in this paper, as
well as RAGeR, a goal recognition approach that is an extension
of AToM.

A long line of work focuses on learning action models from
partial or noisy traces. Wang (1995) created a system to learn
the preconditions and effects of STRIPS planning operators
from expert traces and demonstrated that having the system
refine the learned knowledge was able to obtain results as good
as expertly crafted operators. Amir and Chang (2008) develop a
method for online, incremental learning of action models for
partially observable deterministic domains. They demonstrate
that the approach can learn exact action models from a partially
visible subset of the traces from benchmark PDDL problems
from the 1998 and 2002 International Planning Competition.
Mourao et al. (2012), in turn, are able to learn STRIPS planning
operators from noisy and incomplete observations by using
classifiers, which are robust to noise and partial observability,
as an intermediate step in the translation. Pasula et al. (2007), in
contrast, look at learning symbolic models of domains with noisy,
non-deterministic action effects. Plan rules are both relational
and probabilistic, and are learned by selecting the model that
maximizes the likelihood of the input action effects. Zhuo and
Kambhampati (2013) consider how to learn action models where
actions are not always correctly specified (i.e., “pickup” instead of
“putdown”). Gregory and Lindsay (2016) developed an approach
for the automated acquisition of models for numeric domains
(such as tracking resource usage). Related approaches also can
operate when their underling model may not be correct, and
take steps to update it iteratively during execution (Chakraborti
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et al,, 2019). While we assume that the models used by the three
approaches we consider are pre-existing and correct, this prior
work could be incorporated into the approaches discussed here
to initially learn the domain models, or to improve their model
and goal recognition over time.

3. GOAL RECOGNITION APPROACHES

We define the goal recognition problem as a 4-tuple (D, o, s, G),
where D is a recognition model which encodes the expected plans
that an observed agent would pursue for any known goal, 0 =
(01,...,0i) is sequence of observed actions, sy is the initial state
in which o was executed, and G is a set of known goals. We note
that action models (i.e., preconditions and effects) are optional
for actions in D. Goal recognition can still be done even if the
action models do not exist. The solution to the goal recognition
problem is a goal g € G that is being pursued in o. Goal
recognition approaches differ in how they fulfill and represent
D, the recognition model. Thus, using this definition, we next
present the three state-of-the-art approaches to goal recognition
that we compare in this article.

3.1. Goal Recognition via Hierarchical Task

Network Planning
To perform goal recognition as planning, we use a Hierarchical
Task Network (HTN)-based planning algorithm called
Planning and Acting in a Network Decomposition Architecture
(PANDA)! (Bercher et al., 2014). Hierarchical Task Networks are
a type of plan representation where higher-level goals or tasks
decompose into component subgoals or subtasks in a tree-like
structure; the “leaves” of the tree serve as primitive actions that
can then be sequentially executed to achieve the top-level goal.
The primitive actions in the HTNs used by PANDA are typed in
that the parameters of each primitive action is associated with
a type characterizing objects in a domain (e.g., the action move
takes an object of type agent). PANDA-Rec is a goal recognition
algorithm that uses PANDA in its reasoning. Fundamentally,
PANDA-Rec fulfills D by, at run time, generating candidate
plans that both accomplish known goals and match the agent’s
behavior. To do this, the search for plans that is typical for HTN
planning is constrained such that any candidate plan found
must begin with o. In other words, PANDA-Rec finds goals that
match the agents behavior by enforcing a prefix requirement
when matching candidate plans to an agent’s observed behavior,
where o exactly matches either an entire candidate plan or the
beginning of a candidate plan for any given goal in the planning
domain. If there is only one such goal, that is returned as the
recognized goal. Otherwise, PANDA internally breaks the tie (see
Holler et al., 2018 if interested in this tie-breaking process).
Throughout this section, we will refer to a running example
from the game of Minecraft, which is an open-world sandbox
world where a character collects resources to build items that are
used to progress the game further. We will focus our example
on how an agent collects wheat to craft bread. Usually, the agent
will need to plant wheat seeds, apply bonemeal to encourage fast

Uhttps://www.uni-ulm.de/en/in/ki/research/software/panda

growth, strike the mature wheat to harvest it, and then gather
the wheat from the ground. However, the gathering step can
sometimes happen automatically if the agent is near enough to
the wheat after harvesting it. Once gathered, three wheat can then
be used to construct bread. To accomplish the use of an item
in inventory, the agent must select and use it. There are similar
recipes for harvesting other food items in the game.

As an example, suppose PANDA-Rec observes that an
agent in the open-world computer game Minecraft wants
to obtain bread, and thus harvests and gathers two
wheat [i.e., o is harvest(wheat), gather(wheat), harvest(wheat),
gather(wheat)]. Next suppose we have an HTN that defines the
plan for obt ai n bread as harvest(wheat), gather(wheat),
harvest(wheat), gather(wheat), harvest(wheat), gather(wheat).
The observed actions o matches the prefix for the plan of
obtai n bread, and so PANDA-Rec will return that as the
recognized goal. However, suppose that the agent harvests two
wheat without gathering them, such as if the agent wanted to
harvest multiple wheat before gathering them (i.e., o is harvest,
harvest). This will not match a candidate plan (or plan prefix)
for obt ai n br ead and PANDA-Rec will fail to recognize the
agent’s goal.

We note that for each action in o, it is crucial that the types
of the action’s parameters match the types of its corresponding
primitive action in the HTN; PANDA-Rec will fail to recognize
a goal if there is a type mismatch. For example, if the
primitive action harvest expects a parameter of wheat type [e.g.,
harvest(wheat)], but the action in o contains a parameter of
type animal [harvest(chicken)], then PANDA-Rec will fail to
recognize a goal as a chicken is not a type of wheat.

While we have described here the details of PANDA-
Rec that are critical for our evaluation and discussion, for
interested readers, the full details of this process are described by
Holler et al. (2018).

3.2. Goal Recognition via Combinatory

Categorial Grammars
Elexir-MCTS (Monte-Carlo Tree Search) solves goal recognition
as a form of language parsing (Vilain, 1990), where the model D
is fulfilled via a Combinatory Categorial Grammar (CCG) (Geib,
2009). The CCG is an expressive grammar formalism made up
of a finite set of rules that combine the semantic and syntactic
structure of plans. CCGs can naturally represent interleaved
plans for similar or different goals, and can efficiently capture
plans or actions that can be done in any order. One example of
interleaved plans in the computer game Minecraft would be an
agent doinga plan to obt ai n br ead while simultaneously also
doing a plan to obt ai n pot at o (such as by gathering wheat
and a potato before actually making the bread). Elexir-MCTS has
demonstrated strong performance and improvement in scaling
goal recognition over comprehensive search (Kantharaju et al.,
2019); this recent success led us to use Elexir-MCTS in our study.
During goal recognition, Elexir-MCTS leverages the rules
of the CCG to recognize the goals behind observed actions.
Importantly, the rules of the CCG are specific pairs of actions
and plans, and encode parts of the plan that need to be seen
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prior to executing the action (i.e., the plan prefix) and parts of
the plan that should be done after executing the action (i.e., the
plan suffix). Using these prefix/suffix rules, Elexir-MCTS searches
for a set of weighted hypotheses E, where each e € E is a rule
that may correspond to what is being executed in o. Intuitively,
a rule is included in E if, at minimum, the plan prefix of the rule
matches some subsequence of o; failure to match the prefix of a
rule will result in the rule not being included in E. Any part of
the plan suffix that is matched additionally increases the weight
of the rule.

Elexir-MCTS then uses these weighted rules to make an
informed decision about the goals being pursued by the agent.
Specifically, Elexir-MCTS computes a belief value for each goal
g € G by adding the weights of each rule in E that achieves g
(i.e., each rule that corresponds with a plan that achieves g), and
the highest-belief goal is returned as the goal of o (see Geib, 2009
for information on how the belief values and weights for each
hypothesis are computed).

While, on its surface, Elexir-MCTS may seem to enforce
a strict prefix requirement as PANDA-Rec did above, its
representation of D as action-plan pairs (rather than as plans
only) means that it has some implicit robustness to missing
actions. These action-plan pairs encode different lengths of
suffixes and prefixes for a given plan. Shorter prefixes are more
likely to match to o than longer ones are as there are less parts
of the plan that need to match with o. Therefore, even when an
action is missing in o, there will be rules in E that match to the
correct goal that may collectively still lead Elexir-MCTS to return
the correct answer.

To illustrate further, suppose o contains harvesting two wheat
and gathering one wheat (i.e., it is missing the gathering action for
the second wheat). This will not match with a rule for obt ai n
bread where the plan prefix is to harvest and gather two
wheat [i.e., o is harvest(wheat), gather(wheat), harvest(wheat)
and plan-prefix of rule requires harvest(wheat), gather(wheat),
harvest(wheat), gather(wheat)]. However, it will match to a
rule obt ai n br ead where the plan prefix is to harvest and
gather one wheat [i.e., the prefix of rule is harvest(wheat),
gather(wheat)]. Suppose instead that o contains harvesting and
gathering both of the two wheat [ie, o is harvest(wheat),
gather(wheat), harvest(wheat), gather(wheat)]. Then, both the
above plan prefixes of the rule for obt ai n bread will be
matched, giving obt ai n bread a higher weight than if the
second gathering action were missing.

Similar to PANDA-Rec, it is possible for Elexir-MCTS to fail to
recognize a goal if the parameters of an action in o are different
than expected. For each action in o, the types of the action’s
parameters must match the types of its corresponding action in
the CCG; Elexir-MCTS will fail to recognize a goal if there is a
type mismatch.

3.3. Refinement via Analogy for Goal
Reasoning
Refinement via Analogy for Goal Reasoning (RAGeR) solves the

goal recognition problem using analogical reasoning. RAGeR
is based on the Analogical Theory of Mind (AToM) model

(Rabkina et al., 2017). AToM is primarily a computational
cognitive model of children’s Theory of Mind (ToM) reasoning
(Rabkina et al., 2017, 2018). AToM learns to reason about the
mental states of others by analogically aligning an ongoing
situation with previously-encountered stories or scenarios and
making inferences based on overlapping structure (see below).
For example, if it has previously seen that people expect cookie
boxes to have cookies inside, AToM can infer that a person who
sees a shoe box will expect it to have shoes inside. Similarly,
AToM can make inferences about agents’ goals based on prior
observations (Rabkina and Forbus, 2019; Rabkina et al., 2020).
However, AToM must be trained before it can perform
goal recognition and, because it compares entire scenarios,

cannot leverage the hierarchical knowledge available
in preexisting domain models. RAGeR solves both
of these problems, while maintaining AToM’ robust

inference capabilities.

For RAGeR, the goal recognition problem (D,o0,sp,G) is
translated into the 3-tuple (o, £, G) (the initial state sy is not
needed). The main difference is representational, as RAGeR uses
a form of analogical reasoning that compares two cases—sets
of logical expressions written in predicate calculus. Hence, o
must be represented as a case, and D as a set of cases, called a
case library.

When o is represented as a case, each individual observation is
a single logical expression. The set of all expressions representing
all the observations in o form a single case. Because this is not,
in principle, different from the typical o, we keep the notation
the same.

The set of cases £, on the other hand, is somewhat different
from D. Assuming that D is an HTN (as is the case in the
present experiments), each possible task decomposition must
be converted into a case. Each decomposition consists of
a parent task, some set of parameters, and a sequence of
subtasks (see Figurel). Each parameter is converted to an
expression of the form parameter_type(parameter_name).
Additionally, the parameters are used to construct an
expression relating the task name to the list of parameters
[e.g., select_and_use_bone_meal(?meal)]. The subtasks are
represented in the case as a set of statements that relate
the task to one of the subtasks. Once the observations
o and domain model D are represented as cases for o
and £, the RAGeR algorithm is ready to begin the goal
recognition process.

The RAGeR algorithm details are shown in Algorithm 1. At
a high level, to infer the goal of an agent, RAGeR iteratively
refines the o until it is abstracted up to a set of expressions that
includes a goal. This is done by repeatedly replacing a subset
of o with its corresponding parent task, which is found using
analogical reasoning. Once the refined o contains a goal g € G,
the process is considered complete, and g is inferred to be the
agent’s goal. The process is analogous to walking up the HTN
until the top of the tree-like structure is found. The key novelty in
the RAGeR algorithm is in how, in the refinement process, it uses
analogical reasoning, based on the AToM model, to find cases in
the case library that correspond to parent tasks whose children
are present in o.
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HTN task method

(:method m_select_and_use_bone_meal_1
( ?bone_meal_1 - bone_meal_type)
(select_and_use_bone_meal)

tparameters

:task

:ordered-subtasks (and
(select ?bone_meal_1)
(use ?bone_meal_1)))

CCQG rules

[ (select_and_use_bone_meal (0)) \{select_c(0)}]1;
[select_c(0)];

action:
action:

use (item_type)
select (item_type)

RAGeR case

(taskName select_and_use_bone_meal)
(bone_meal_type ?meal)

(subtask
(subtask

FIGURE 1 | A method in the HTN model used by PANDA-REC, and corresponding CCG rules used by Elexir-MCTS and case in the case library used by RAGeR.

(select_and_use_bone_meal ?meal)
(select_and_use_bone_meal ?meal)

(select ?meal))
(use ?meal))

Algorithm 1: RAGeR Algorithm

Input: observations o, case library £, possible goals G
Output: Inferred goal g € G
1 while —3o {0 € 0 A g = predicate(o) A g € G} do
M <« best Mat ch(o,L) ; [l M=(T,C]I)
if M = () then
DEL < {rl[re oA <r,p) e C}
t < task(T)
ADD <« {ala € I A predicate(a) = t}
0 < (0 — DEL)UADD; /'l update o
else
‘ return ¢}
end
end
return ¢ where g € G A g = predicate(o) Ao € o

L - R - . T

- e
N = o

Key to the refinement process is the retrieval of a case, from
the case library £, that is similar to the current observation case
o. Since the cases in the case library are task decompositions,
RAGeR is effectively looking for the task decomposition that is
most similar to the current set of observations. It then uses this
task decomposition to update o and repeats the process until a
goal is found.

The process of finding the best decomposition case to o,
designated in the RAGeR algorithm as best Mat ch, uses
analogical retrieval (Forbus et al., 1995) to search the case library
for the most similar case in £ (i.e., the best match). Similarity is
defined as analogical similarity—overlap in the structure of two
cases (see Figure 2).

To make this comparison, RAGeR uses the Structure Mapping
Engine (SME; Forbus etal,, 2017). SME determines the degree
of analogical similarity and produces a similarity score, which
is used as a metric during retrieval. SME also produces sets
of correspondences and candidate inferences (described below).
Together, the best matching case in the case library, T, the set of
correspondences, C, and the set of candidate inferences, I, form
the result of the best Mat ch function. If no case in the case
library is sufficiently similar to o, best Mat ch returns null.

More concretely, when subtasks of a method are represented
as a graph, as they are at the top right of Figure?2, the
graph is typically connected via shared arguments. The actions
comprising o can similarly be represented as a graph. These graph
structures are the basis of the analogical comparison—similar
structures in the graphs imply analogical similarity. SME
identifies such corresponding structures between two cases. The
pair (r,p) is a correspondence, where r is an element of the
retrieved case and p is an element of the probe. The dashed
lines in Figure 2 represent the correspondences in this example.
Due to a one-to-one correspondence constraint (Gentner, 1983;
Forbus et al., 2017), each element (whether entity or predicate)
has at most one element in the other case with which in can be
in correspondence.

SME also produces a set of candidate inferences, which
are projections from the retrieved case onto the probe.
In other words, they are parts of the retrieved case that
correspondences suggest should be present in the probe, but
are not. Candidate inferences include at least one element
that is part of a correspondence. In the example in Figure 2,
sel ect _and_use_bone_n®eal is in the retrieved case but
not in the probe. In the retrieved case, this element is part
of the expression select_and_use_bone_meal(?meal). Since
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original

subtask subtask

ADD: select_and_use
_bone_meal
( bone_meal )

?meal

FIGURE 2 | An illustration of RAGeR recognizing the subtask select and use bone meal in an observation of an agent completing an obtain potato task. The original o
is the sequence of observations [look_at(farmland5), move(farmland5), select(bone_meal), use(bone_meal), select(potato), use(potato), harvest(potato)],
T is the retrieved case, DEL and ADD are the expressions being used to update o, and the refined o’ is the updated observations, which are be used in the next round

of refinement.

?meal corresponds with meal in the probe, the expression
select_and_use_bone_meal(meal) is supported by this
correspondence and is thus a candidate inference.

RAGeR uses the best Mat ch function to retrieve the case
from the case library that is most similar to the current o. If
best Mat ch is successful, it returns M = (T, C,I), where T is
the retrieved case, C is the set of correspondences, and I is the
set of candidate inferences. Given this match, RAGeR refines o
by deleting the lower-level entries and replacing them with their
parent expression. The set of expressions to be deleted are all
of those that are in o and have a corresponding expression in
the retrieved case T. In the example in Figure 2, the expressions
select(bone_meal) and use(bone_meal) are to be removed from
0. The deleted expressions are replaced by one expression
representing the task described in the retrieved case. To identify
this expression, RAGeR considers the expressions in I and selects
the one where the predicate of the expression is the name of
the task (identified by the t askName relation in the case). In
our example, the expression select_and_use_bone_meal(meal)
is a candidate inference, and it can be added to o because
select_and_use_bone_meal is the task name.

RAGeR repeats this process of refining o until it contains
a task that is a goal. When a goal ¢ € G is found to be in
0, RAGeR returns g. RAGeR also has a configurable maximum
number of iterations to prevent infinite looping and to constrain
reasoning time.

4. EXPERIMENT SETUP

To explore and analyze the relative strengths and weaknesses
of the approaches, we conducted a series of experiments
that focused on comparing and contrasting the three goal

recognition approaches along two different axes: the reliability
of observations, and the inspectability of the other agent’s mental
model. We evaluated the approaches in two different domains:
the open-world computer game Minecraft, where the goal
recognition approaches observed an agent procuring different
food items, and the disaster management domain Monroe, where
the goal recognition approaches observed an agent performing
various disaster relief tasks.

4.1. Data Observability
4.1.1. Inspectability
We compare the performance of the approaches with data
representing three levels of inspectability: high, medium and low.
The level of inspectability relates to the availability of information
pertaining to the agents mental state. At a high level, high
inspectability means having access to the mental representations
the agent uses to execute the plan. Low inspectability, on
the other hand, limits the information to what a third agent
can observe (i.e., no access to the performing agent’s mental
state). Medium inspectability provides direct access to an agent’s
intended executed actions, but not the reasons behind them.
Practically speaking, each type of data arises from accessing
an agent’s mental “architecture” (whether real or artificial) in a
different place (Figure 3):

e High Inspectability: Data for high inspectability comes from
the plan traces, which are the actions that an agent plans
to execute before execution begins. High inspectability is the
result of having direct knowledge of what the agent intends to
do, given what it knows about the world, to accomplish some
unknown goal. This includes both actions and the arguments
of those actions (such as what target an agent is walking
to). In our experiments, a plan trace is the output of the
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FIGURE 3 | Three types of traces provide three levels of inspectability.

observations

agent’s planner. Plan traces are commonly used in plan and
goal recognition. For example, Sohrabi et al. (2016) generate
optimal and suboptimal plans to test their plan recognition
approach. Similarly, Blaylock and Allen (2006) use plan traces
from the Monroe domain (see description below) for goal
recognition. While the domain model used to generate these
plans is not directly used in any of our goal recognition
approaches, some knowledge of how the domain operates
must be present in both the agents planner as well as the goal
recognition models.

e Medium Inspectability: Data for medium inspectability
comes from the execution traces, which are the actions that
an agent executes in the world during execution. When an
agent goes to execute a plan, the world may not be exactly
as expected (changes in the world) and some actions may not
perform exactly as intended (errors). As a result, the sequence
of actions that the agent executes deviates from the ideal
sequence of actions in the plan trace. The execution trace,
which is a record of the agent’s actions as it interacts with
the world (simulated or real), may have actions skipped or
repeated, and the parameters to the actions might slightly
differ (e.g., slightly different coordinates). Execution traces
can be captured from real or simulated world interactions.
Traces recording the behaviors of game-playing agents in Real-
Time Strategy games have been used to recognize agents
goals (Kantharaju et al., 2019). Others have generated synthetic
traces using a stochastic simulator in constrained domains
(Ramirez and Gefner, 2009) and goal-directed agent in an
open-world simulated environment (Rabkina et al., 2020). The
execution traces can provide some internal knowledge of the

agent, reflected in the parameters of each action. Since the
environment in which the agent is performing the actions is
recording the actions, the intended target of the action is clear.
This can be reflected in the parameters of actions, creating
consistency in names of objects that is only possible through
this greater access.

e Low Inspectability: Data for low inspectability comes from
the observation traces, which is what an external agent can
observe about an agent’s behavior. Low inspectability means
there is limited knowledge about the agent, since the actions
that are recorded are from the perspective of another agent
in the world. In many real-world scenarios, an observer
will only have a partial view of states, actions, and effects,
and recognizing goals from observation traces is necessary
(Borrajo and Veloso, 2020). For example, an observing agent
can see what object is in the performing agent’s hand when it
does an action with the object. However, the observing agent
may not be able to discern the destination of a move action, as
there are many ways to characterize any given location.

4.1.2. Reliability

We examine two ways in which an observation may be more
or less reliable: missing actions and incorrect parameters to
an action. Missing actions are actions that are necessary for a
goal to be achieved but are missing from the list of observed
actions. A common way for missing actions to naturally appear
in datasets is those that happen incidentally while accomplishing
other actions. For example, in Minecraft (see section 4.2.1), an
agent automatically picks up items as they walk by them, which
can lead to missing actions when an agent incidentally already
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has completed an action that is required. Also, an observer
may get to see only some of the actions an agent performs,
making the agent’s behavior partially observable. One approach
to constructing synthetic data to measure the effects of missing
observations is to filter the observations, often with three levels
of filtering (Ramirez and Geffner, 2009; Sohrabi et al., 2016). We
instead remove actions probabilistically (see sections 6 and 7).

Alternatively, observations can be incorrect, possibly due to
sensor or judgment errors. One type of incorrect observation
is to perceive the agent as doing a different action (Zhuo and
Kambhampati, 2013). A more likely scenario may be that the
parameters to an action may be incorrect. For example, an agent
could be gathering carrots but the observation suggests the agent
is gathering potatoes. The notion of unreliable observations due
to incorrect parameters is somewhat similar to the definition of
“noisy” observations from Sohrabi et al. (2016), who describe an
observation as being noisy if there are state changes unrelated
to the actions being performed. An agent holding potatoes
would be construed to be a noisy observation if the agent was
actually gathering carrots. We use this definition of incorrect
observations here.

4.2. Datasets

4.2.1. Minecraft

The first domain we consider is the open-world sandbox
computer game Minecraft. Minecraft has been shown to be an
interesting and challenging domain for studying many facets
of AI (Johnson et al, 2016), and is particularly appropriate
for studying goal recognition because (1) the set of possible
goals an agent can have is open-ended and (2) because
there are many flexible plans that can be constructed to
achieve any given goal. For our experiments, we use the three
Minecraft datasets introduced by Rabkina et al. (2020), where
a Minecraft agent has one of seven top-level goals to procure
food: obt ai n bread, obt ai n beef, obtai n chi cken
meat ,obt ai n pot at o,obtai n punpki n pie,obtain
cake,andobtain carrot.

Table 1 shows metrics and measures of these three datasets.
The first dataset consists of 100 high inspectability traces which
contain the agent’s mental deliberation on how it intends to
achieve these goals. This mental deliberation takes the form of
planning out the necessary sequence of actions to achieve these
goals in ideal conditions. For example, to obt ai n punpki n
pi e, an agent has to individually gather an egg, a bucket of
milk, and a pumpkin that it finds in the environment. To
obt ai n pot at 0, an agent must first gather and then use a
potato sprout and bonemeal, which is used during farming to
speed up growth. When the potato has grown, the agent must
harvest and then gather it. Similarly, obt ai ni ng chi cken
or beef involves attacking the animal and then gathering
its meat. To obt ai n br ead, an agent requires three wheat,
which means gathering three wheat seeds, using them so they
grow, then harvesting and gathering the wheat. Many of these
actions also require the agent to move to the appropriate place
to execute them, such as moving to a wheat seed it has found
to collect it. Each instance in the dataset, then, is a plan that is
constructed using an HTN planner paired with its corresponding

top-level goal. Here, planning is done over the above seven top-
level goals and 16 actions (e.g., craft-item, move-near-target,
look-at-entity, gather, etc.).

Once a plan has been developed, the agent attempts to achieve
the plan by taking some sequence of observable actions in the
game environment. The second dataset captures 849 of these
medium inpsectable sequences of actions paired with their top-
level goals. Here, the agent takes actions drawn from a set of seven
actions: gather, select, move, look at, attack, harvest, and use.

There are three noteworthy features of this dataset to discuss.
First, because of their relative values in Minecraft, the agent does
not pursue goals with equal likelihood, so we see an imbalance
in the types of possible goals. For example, obt ai n beef
results in a large number of Minecraft “food points” and so it is
the most frequently pursued goal. This corresponds to real-life
situations, where people pursue goals with different frequencies.
Second, as shown in Table 1, the goal obt ai n carr ot is not
found in this second dataset, but is found in the first dataset.
This occurs if an agent plans for a goal and later discards it
if a situation arises where a better goal can be pursued. This
illustrates one key difference between deliberation and execution;
while the agent can plan to do something, they may not
actually do it.

Third, this dataset is unreliable in that missing actions can
occur with some frequency in this dataset because an agent
sometimes accomplishes the purpose of an action by pure luck,
without explicitly executing it. For example, an agent needs
to move near a chicken or cow before attacking it. However,
when the agent is already next to a chicken or cow, it skips
the move step. Another example occurs with gather, which
only requires the agent to be near an item. An agent can, for
instance, accidentally gather an egg while pursuing the obt ai n
chi cken nmeat goal. It may later use the egg to make a
pumpkin pie, obviating the gather action for the egg. Another
common cause of missing gathering actions is when an agent is
close enough to plant that they are harvesting that they gather it
without trying to. These examples, while situated in the Minecraft
domain, have many analogues in real-life situations where goal
recognition may be desirable.

The final dataset is a modification of the second dataset to
have low inspectability. Specifically, the key changes made to this
dataset were related to movement (i.e., move) and perceptual
actions (i.e., look at). Both of these actions are applied over
specific objects in the Minecraft environment, such as a particular
chicken or cow. However, these specific objects in which the
agent acts over is internal to the agent; we would not know
if an agent moved to a specific chicken if we saw them move
to a group of chickens. As such, we generalized these actions
by adjusting their parameters such that the actions is applied
over general locations than specific objects (i.e., movement to
a chicken is translated into movement to a location within the
chicken’s vicinity).

4.2.2. Monroe

The Monroe domain captures plans for disaster relief, including
providing medical attention, plowing snow, and clearing debris
from roads, and has been used in past plan and goal recognition
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TABLE 1 | Metrics and measures for the three Minecraft datasets used in our experiments.

Dataset Minecraft high inspectability

Goal Obtain pumpkin Obtain Obtain Obtain chicken Obtain Obtain Obtain Al
pie bread potato meat beef cake carrot

Number of plans 5 18 22 13 35 3 4 100

Average plan length 5.00 37.0 19.0 5.00 5.00 47.0 19.0 19.6

Goal Obtain pumpkin Obtain Obtain Obtain chicken Obtain Obtain Al
pie bread potato meat beef cake

Dataset Minecraft medium inspectability

Number of plans 33 101 201 154 360 43 - 892

Average plan length 2.30 16.7 6.54 3.75 3.76 14.6 - 7.94

Dataset Minecraft low inspectability

Number of plans 33 101 201 154 360 43 - 892

Average plan length 2.30 16.7 6.54 3.75 3.76 14.6 - 7.94

work (Bisson et al., 2015). This domain was developed as
part of a larger framework for generating artificial datasets for
machine learning research, and for benchmarking plan and goal
recognition systems (Blaylock and Allen, 2005). As such, we also
use the Monroe domain for evaluating and comparing Elexir-
MCTS, PANDA-Rec, and RAGeR.

The Monroe domain contains 10 top-level goals and 30
actions navigate-snowplow, hook-up, clean-hazard, etc. This
is in contrast to the Minecraft domain, which contains 6-7 top-
level goals and 16 (high inspectability dataset) and 7 (medium
and low inspectability) actions. For our experiments, we used
the first 100 plans from the publicly-available monroe5000
dataset (Blaylock and Allen, 2005)2. Table 2 provides the
distribution of the plans in the dataset and the average plan
length for each goal. Compared to the Minecraft datasets, this
Monroe dataset is more similar to the high inspectability dataset
than the medium or low inspectability as it (1) does not contain
missing actions due to execution (i.e., dataset is reliable) and
(2) the plans in the dataset represent deliberation to provide
disaster relief.

4.3. Focus of Study

To analyze the relative strengths and weaknesses of the

approaches, we conducted three experiments on two
evaluation axes: inspectability and reliability. Figure 4
provides an overview of our experiments based on

these axes.
Experiment 1—Section 5: The first experiment seeks to
understand the performance of the three goal recognition

Experiment 2—Section 6: The second experiment focuses
on examining how sensitive each goal recognition approach
is to unreliable actions from the Minecraft domain. We
look at two different variants of unreliability over the
actions: missing actions and incorrect action parameters.
We model these variants of unreliability and apply them
to the medium inspectability Minecraft dataset presented
in section 4.2.1.

Experiment 3—Section 7: The third and final experiment
aims to evaluate the goal recognition methods on unreliable
actions from the Monroe domain. Similar to the second
experiment, we look at two variants of unreliability: missing
actions and incorrect action parameters. We model these variants
of unreliability and apply them to the Monroe dataset presented
in section 4.2.2.

5. EXPERIMENT 1: EVALUATING
HIERARCHICAL RECOGNITION WHILE
VARYING INSPECTABILIY

First, we evaluate PANDA-Rec, Elexir-MCTS, and RAGeR on
goal recognition in the Minecraft domain with varying levels of
agent inspectability®. Recall that high inspectability data are plans
sent from the planner to the executive, medium inspectability
data are action execution instructions sent from the executive
to the agent, and low inspectability data are observations that
are available to a third party, and are generated by removing
knowledge that would only be available to the agent from
medium inspectability traces.

systems presented in section 3 while exploring the — ) ) )
. . - . . For reproducibility of our experiments, Elexir-MCTS was configured with an e-
axis of inspectability. Specifically, each approach is . . .

. greedy tree policy (¢ = 0.5), a random playout policy, and a maximum number
analYled on the three Minecraft datasets presented of search iterations of 200,000 (high inspectability traces) and 30,000 (medium
in section 4.2.1. and low inspectability traces). For RAGeR, the maximum search iterations was

set to 10 for all traces in Minecraft, and 15 in Monroe. All experiments were run
on standard desktop machines/servers; none of the presented methods required
Zhttps://www.cs.rochester.edu/research/cisd/resources/monroe-plan/ GPU resources.
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TABLE 2 | Metrics and measures for the Monroe dataset used in our experiments.

Dataset Monroe

Goal Setup Fixwater Clearroad Clearroad Plowroad Provide medical Provide temp Quellriot Fix power Clear road Al
shelter main hazard wreck attention heat line tree

Number of plans 6 2 9 19 21 11 10 6 9 7 100

Average plan length 12.3 12.5 12.3 10.5 7.67 4.82 20.8 6.83 10.8 14.9 11.3

Open-world Computer Game (Minecraft)

Disaster Management (Monroe)

Inspectability

Reliability

pE—
(Sections >

Elexi-rMCTS
RAGeR
PANDA-Rec

S— e’

G

Elexi-MCTS
RAGeR
PANDA-Rec

S— e’

Monroe in section 7.

FIGURE 4 | Diagram of study presented in paper. We evaluate inspectability of observations provided to Elexir-MCTS, RAGeR, and PANDA-Rec on data from the
open-world computer game Minecraft in section 5. We then evaluate reliability of observations provided to Elexir-MCTS, RAGeR, and PANDA-Rec on data from
Minecraft in section 6. We finally look at reliability of observations provided to Elexir-MCTS, RAGeR, and PANDA-Rec on data from the disaster management domain

G e
(Section7 >

Elexir-MCTS
RAGeR
PANDA-Rec

S— e’

For this experiment, we constructed an HTN and a CCG
representing the goals and actions in the Minecraft domain
(for PANDA-Rec and Elexir-MCTS, respectively), as well as a
corresponding analogy case library for RAGeR. The HTN and
CCG were hand-authored by one of the authors with knowledge
about the Minecraft domain. We ensured that the HTN and CCG
capture the same knowledge to the best of our ability. The analogy
case library used by RAGeR was semi-automatically* generated
from the HTN model for consistency.

We also include two random baselines for each experimental
condition. The first is a uniform random baseline; it generated its
interpretation of the agent’s goal by sampling uniformly across
goals that appear in the data set. The second is a biased random
baseline, with each potential goal weighted by its prevalence in
the data set.

5.1. Inspectability: High

We begin by evaluating PANDA-Rec, Elexir-MCTS, and RAGeR
on recognition of goals when the available traces are from the
agent’s internal planner. Precision, recall, and F1 scores for
each algorithm can be found in Table 3. As the table shows,
PANDA-Rec performs perfectly on this dataset, with 100% on

4Hand edits were minor and only affected representation, not knowledge. For
example, analogy requires that predicates have consistent arity and argument
order, whereas PANDA-Rec does not.

all metrics. Elexir-MCTS and RAGeR also perform well, but
do not match PANDA’s performance, with F1 scores of 0.857
and 0.824, respectively.

Figure 5 shows F1 scores for individual top-level goals. All
three algorithms were able to recognize obt ai n chi cken
neat, obtain beef, obtain potato, and obtain
carrot perfectly. Interestingly, the obtain cake goal
accounts for most of the errors for both Elexir-MCTS and
RAGeR—Elexir-MCTS was unable to recognize several of the
obt ai n cake plans within the provided time limit, while
RAGeR always confused it for obt ai n punpki n pi e. While
obt ai n cake was the goal for only 3 cases in this dataset,
it is clear that recognizing it is more difficult than the others.
Notably, the average number of actions in a plan for obt ai n
cake was 47, in contrast to, for example, 5 for obt ai n beef
(Table 1). Furthermore, the models for obt ai n cake share
many actions and parameters with both obt ai n br ead and
obt ai n punpki n pi e, making it the most complicated goal
in the data set.

5.2. Inspectability: Medium

In the high inspectability condition, the algorithms had access
to plan traces, which provide perfect information about the
plans being executed by an agent. However, the execution of
a plan is rarely perfect, and may not correspond exactly to a
plan. As such, we next evaluate PANDA-Rec, Elexir-MCTS, and
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TABLE 3 | Macro Precision, Recall, and F1 scores for Elexi-MCTS, PANDA-Rec, RAGeR, and two baselines (Random Uniform and Biased recognition).

High inspectability Medium inspectability Low inspectability
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
Elexi-MCTS 1.000 0.810 0.857 0.965 0.780 0.852 0.965 0.780 0.852
PANDA-Rec 1.000 1.000 1.000 0.801 0.678 0.727 0.801 0.678 0.727
RAGeR 0.804 0.857 0.824 0.841 0.840 0.806 0.814 0.714 0.651
Uniform 0.131 0.139 0.111 0.162 0.168 0.143 0.162 0.168 0.143
Biased 0.151 0.146 0.145 0.169 0.169 0.169 0.169 0.169 0.169

Macro values are averaged over 10 runs for Uniform and Biased. Bold values indicate the best performance in each condition.

N Elexir-MCTS mmm RAGeR mmm Biased
mmm  PANDA-Rec W= Uniform

| "L I‘ kb “I | ‘llll I“il |“il “I

obtain pumpkin pie obtain cake obtain chicken meat obtain beef obtain bread obtain potato obtain carrot
Top-level Goals

F1 Score
) o o &
> o =

o
N

o

FIGURE 5 | Performance of PANDA-Rec, Elexir-MCTS, RAGeR, and two baselines (Random Uniform and Random Biased Recognition) over the high-inspectability
Minecraft traces. Metric shown in the figure is the F1 score for each top-level goal in the Minecraft domain. Random Uniform and Random Biased bars are
calculated for each top-level goal by taking the average F1 score over 10 runs.

RAGeR on recognition of goals using the agent’s report of its  continued to perform perfectly on obt ai n beef and obt ai n
executed actions. All results are reported in Table 3. As before, chi cken meat goals.
PANDA-Rec, Elexir-MCTS, and RAGeR were provided models
corresponding to the executed actions. 5.3. Inspectability: Low

PANDA-Rec’s performance decreased the most between the  In many human-machine teaming scenarios, knowledge of an
high and medium inspectability conditions, from 1.00 F1 score  human’s mental/internal state (including knowledge, beliefs,
to 0.727. As shown in Figure 6, its performance on the obt ai N and desires—but also specific targets and intended outcomes
cake goal dropped to 0, and its scores on obt @i n punpki N of actions) is not observable by a third-party agent making
pi e, obt ai n bread, and obt ai n pot at o also decreased.  inferences about goals. Instead, agents must reason based only on
PANDA-Rec performed poorly on traces for the obt ai n cake  their own observations of compatriots’ behavior without access
goal because it either failed to recognize any goal from the to internal state information, such as what is available in our
traces or mistook obt ai n cake for obtai n bread (both  high and medium inspectability data sets. To mimic this reality,
require harvesting and gathering three wheat). Elexir-MCTS,  we evaluate the goal recognition algorithms’ performance on
on the other hand, maintained performance with an aggregate  low inspectability data, in which information that would not be
F1 score of 0.852. Its distribution of errors shifted, however,  available to an outside observer is removed.
with decreases in performance on obt ai n punpkin pie As shown in Table3, Elexir-MCTS and PANDA-Rec’s
and obt ai n pot at 0, and increases for obt ai n cake and  performance metrics did not change between the medium
obt ai n br ead. RAGeRs performance also decreased slightly, ~ and low inspectability conditions. However, RAGeR performed
to an F1 score of 0.806. Much like Elexir-MCTS, RAGeR’s F1  worse, dropping in F1 score from 0.806 to 0.651. Figure 7 shows
forobt ai n cake improved, while obt ai n punpki n pi e,  that,similar to the medium and high inspectability results, Elexir-
obt ai n bread, and obt ai n pot at 0 decreased. All three ~ MCTS, RAGeR, and PANDA-Rec have near perfect F1 scores
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FIGURE 6 | Performance of PANDA-Rec, Elexir-MCTS, RAGeR, and two baselines (Random Uniform and Random Biased Recognition) over the
medium-inspectability Minecraft traces. Metric shown in the figure is the F1 score for each top-level goal in the Minecraft domain. Random Uniform and Random
Biased bars are calculated for each top-level goal by taking the average F1 score over 10 runs.
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FIGURE 7 | Performance of PANDA-Rec, Elexir-MCTS, RAGeR, and two baselines (Random Uniform and Random Biased Recognition) over the low-inspectability
Minecraft traces. Metric shown in the figure is the F1 score for each top-level goal in the Minecraft domain. Random Uniform and Random Biased bars are
calculated for each top-level goal by taking the average F1 score over 10 runs.

6. EXPERIMENT 2: EVALUATING THE
IMPACT OF MISSING ACTIONS AND
NOISY PARAMETERS

on obtain chicken meat and obtain beef. Similar
to the medium inspectability condition, PANDA-Rec has an
F1 score of 0 for the obtai n cake goal. In general, the
biggest change between the medium- and low-inspectability

condition was RAGeRs ability to recognize obt ai n br ead,
which dropped from an FI score of 0.78 to 0.04. This was
due to confusion with obt ai n pot at o, which had several
shared subgoals.

In this experiment, we take a closer look at the medium
inspectability results from the first experiment. We introduce
here a new variable: reliability of the data source. We compare
the baseline result from experiment 1 (the no noise condition)
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with two ways in which unreliable sensor data may manifest itself:
missing actions and incorrect parameters on actions. For each
type of noise, we tested all three algorithms at 25, 50, and 75%
percent noise.

To generate the incorrect parameters data sets, we modified
the no noise baseline data set by randomly replacing parameters
with objects in the domain, according to the noise percentage
of the condition. More specifically, given a trace and a set
of objects in the domain, each parameter of the actions was
replaced with a random object with a probability corresponding
to the noise percentage of the data set (i.e., in the 25% noise
dataset, each parameter was replaced with a probability of 0.25).
Parameters were replaced with an object sampled uniformly
across all objects in the domain—including those shared across
the data set (e.g., iron-sword or air) and those specific to a
particular trace (e.g., chicken34).

The missing actions data sets were generated similarly.
However, instead of randomly replacing parameters of actions in
traces, we removed actions entirely. That is, each action in each
trace was removed with a probability corresponding to the data
set’s noise percentage. This sometimes resulted in empty traces,
as noted in the analyses below.

6.1. Reliability: Missing Actions

Elexir-MCTS, PANDA-Rec, and RAGeR’s performance on data
with missing actions can be found in Table 4. Elexir-MCTS
and PANDA-Rec’s performance decreased with missing actions.
Without noise, Elexir-MCTS had an F1 score of 0.852. This
dropped to 0.541 with 25% missing actions, and continued to
drop to 0.368 at 50% and 0.196 at 75%. Similarly, PANDA-Rec
had an F1 score of 0.727 in the original dataset, and fell to
0.459 at 25% missing actions, 0.376 at 50% and 0.315 at 75%.
RAGeR, on the other hand, maintained performance, increasing
slightly from 0.806 F1 without noise to 0.814 F1 with 25%
probability of missing actions. Its F1 score continued to increase
slightly to 0.821 at 50% missing actions and 0.831 at 75%. This
counter intuitive improvement in performance, while slight, can
be attributed to non-deterministic actions (i.e., those that are not
discriminative between goals) being more likely to be removed
(because there are more of them), and therefore leaving behind a
stronger signal to noise ratio for RAGeR.

To determine whether RAGeR, Elexir-MCTS, and PANDA-
Rec differed in performance across noise levels, A 3 x 3 Two-
Factor ANOVA with Repeated Measures was used’. It revealed
a main effect of algorithm [F(,, 15) = 6,639, p <0.0001] and noise
level [F(3, 1) = 937, p <0.0001]. A significant interaction between
algorithm and noise level [F(4 35y = 823, p <0.0001] was also
found. As can be seen in Figure 8, while performance generally
decreased as data became less reliable, RAGeR was not affected by
missing actions, while than Elexir-MCTS and PANDA-Rec were.

6.2. Reliability: Incorrect Parameters

Table 4 shows how Elexir-MCTS, PANDA-Rec, and RAGeR’s
performance change as the reliability of the Minecraft
data changes due to incorrect parameters. Similar to their

°The no noise condition was left out of analyses due to a lack of variance.

TABLE 4 | Average macro Precision, Recall, and F1 scores for PANDA-Rec, Elexir-MCTS, RAGeR, and two baselines (Random Uniform and Random Biased Recognition) over unreliable traces from the Minecraft

domain.
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FIGURE 8 | Performance of PANDA-Rec, Elexir-MCTS, RAGeR, and two baselines (Random Uniform and Random Biased Recognition) over unreliable traces from
the Minecraft domain. Figures represent the performance of methods with regards to unreliability resulting from missing actions (left) and incorrect actions (right). We
varied the noise percentage from 0 to 75% in increments of 25%, and all methods were run for 10 runs for each noise percentage (excluding 0% noise). Each line
represents a 95% confidence interval for the average macro F1 scores over the 10 runs.

performance on lowered reliability due to missing actions,
Elexir-MCTS and PANDA-Rec steadily drop in performance as
reliability decreases due to incorrect parameters, while RAGeR
remains relatively stable. Unlike in the missing actions condition,
howev, RAGeR’s performance does decrease slightly, from an
F1 score of 0.806 with no noise to 0.0.777 at 25% incorrect
parameters, to 0.705 at 50% and 0.688 at 75%. PANDA-Rec’s
performance degrades more rapidly with incorrect parameters,
falling from 0.727 with no noise to 0.026 at 75%. This is due to
strict type checking in PANDA-Rec—it cannot match actions
in an observation sequence whose parameters are not of the
expected type found in the HTN.

Elexir-MCTS’ performance degrades with more incorrect
parameters, dropping from 0.852 with no noise to 0.287 at 75%
noise. Similar to PANDA-Rec, Elexir-MCTS does not match
actions in a sequence whose parameters are not of the expected
type found in the CCG. However, Elexir-MCTS appears to be
more robust to incorrect parameters than PANDA-Rec.

As before, A 3 x 3 Two-Factor ANOVA with Repeated
Measures® revealed a main effect of algorithm [F(; 15) = 369,
p <0.0001] and noise level [F(,, 1) = 62, p <0.0001]. However,
no interaction was found between the two [F(4 36 = 2, p =
0.086]. This indicates that, while the algorithms differed in overall
performance, all three tended to perform worse as reliability
decreased and percent noise increased (Figure 8).

7. EXPERIMENT 3: GENERALIZING
RESULTS TO DISASTER RELIEF

Having used the Minecraft domain to examine how the various
approaches are impacted by inspectability and reliability, we
next test the approaches on a more complex domain. Like

Minecraft, the Monroe disaster relief domain was crafted to test
goal recognition systems. However, it has more top-level goals
and actions than the Minecraft domain, making goal recognition
more complicated. Thus, we use this data set to generalize our
findings, focusing on data reliability.

For the below experiments, we used the first 100 traces from
the monroe5000 dataset (Blaylock and Allen, 2006). These are the
equivalent of Minecraft high inspectability plans because they
come directly from the Monroe planner; there is no simulator
associated with this dataset. As with Experiment 2 above, we vary
the reliability of the data source in two ways: by removing actions
and adding incorrect parameters.

The HTN used by PANDA-Rec was the same as the one used
by Holler et al. (2018)°. This model was manually converted to
the CCG used by Elexir-MCTS by one of the authors. All effort
was taken to ensure that knowledge remained consistent between
the two models. The analogy case library used by RAGeR was
semi-automatically generated from the HTN.

7.1. Monroe Reliability: Missing Actions
Table 5 shows the Precision, Recall, and F1 scores for Elexir-
MCTS, PANDA-Rec, and RAGeR on the Monroe data set as
reliability decreases. When no noise is added, Elexir-MCTS has
the highest F1 score at 0.916. PANDA-Rec also performs well,
with an F1 score of 0.880. RAGeR’s performance is substantially
worse, with a 0.408 F1 score at 0% noise. However, while PANDA-
Rec and Elixir’s performance drops as reliability decreases (to
0.274 and 0.228 F1 with 25% noise), RAGeR’s remains at 0.406 F1.
A 3 x 3 Two-Factor ANOVA with Repeated Measures®
revealed a main effect of algorithm [F(, g) = 79, p <0.0001] and

SHTN can be found at https:/github.com/panda-planner-dev/domains/blob/
master/partial-order/Monroe/domain.hddl
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FIGURE 9 | Performance of PANDA-Rec, Elexir-MCTS, RAGeR, and two baselines (Random Uniform and Random Biased Recognition) over unreliable traces from
the Monroe domain. Figures represent performance of methods with regards to unreliability resulting from missing actions (left) and incorrect actions (right). \We
varied the noise percentage from 0 to 75% in increments of 25%, and all methods were run for 5 (missing actions) or 10 (incorrect actions) runs for each noise
percentage (excluding 0% noise). Each lines represent a 95% confidence interval for the average macro F1 scores over the 5 or 10 runs.

with an F1 score of 0.916. Like PANDA-Rec, however, Elexir-
MCTS is not robust to data reliability, and its performance
drops rapidly in both the Minecraft and Monroe data sets as
reliability decreases. In fact, both Elexir-MCTS and PANDA-Rec
have 0 precision, recall, and F1 with 75% incorrect parameters
on the Monroe data set. They perform only slightly better
at 25 and 50% incorrect parameters, and across the missing
actions conditions.

On the other hand, RAGeR is fairly robust to changes
in data reliability compared to Elexir-MCTS and PANDA-
Rec. Its performance does not change substantially actions
are removed and incorrect parameters are inserted in the
Minecraft data set. Similarly, it maintains performance well
above chance on the low reliability Monroe data sets, even
while Elexir-MCTS and PANDA-Rec drop to 0. Yet, RAGeR
tops out at 0.408 F1 on the fully reliable Monroe data
set (compared to 0916 and 0.880 for Elexir-MCTS and
PANDA-Rec, respectively).

One limitation of our findings is the differing goal recognition
models given to each of Elexir-MCTS, PANDA-Rec, and RAGeR.
While we did our best to keep the knowledge and representations
uniform, differences inherent to the algorithms made direct
transfer impossible: Elexir-MCTS needed a CCG, PANDA-Rec
needed an HTN, and RAGeR needed an analogical case library. It
is possible that, despite our best efforts, one algorithm or another
had access to knowledge that the others did not have. Conversely,
it is possible that one algorithm was able to make better use of
available knowledge than the others simply because the model
we created was a better fit. An interesting extension to this work
that would mitigate any differences is to update models during

run time to account for any discrepancies (e.g., Chakraborti et al.,
2019).

What is clear from our findings is that Elexir-MCTS
and PANDA-Rec have limitations when it comes to their
robustness to data reliability, especially with respect to incorrect
action parameters. These incorrect action parameters occur
when an observing agent’s perceptual systems fail or make
mistakes (i.e., confusing a cup with a jar). While computer
vision systems have seen drastic improvement over the years,
they are still susceptible to errors and mistakes due to
noise (Dodge and Karam, 2016). Given that Elexir-MCTS and
PANDA-Rec rely on the correctness of the action’s parameters
for goal recognition, these perceptual errors would make
it difficult or impossible for them to recognize goals. As
such, these methods (and other goal recognition methods)
should be extended to account for perceptual errors when
recognizing goals.

RAGeR, on the other hand, is more robust to these kinds
of errors. Yet, its baseline performance is lackluster, especially
on the more complicated Monroe dataset. This is likely due
to the fact that RAGeR is greedy: it always retrieves the case
with the highest analogical match score, and never considers
alternatives (even if their match score is equivalent or very
close). On the other hand, Elexir-MCTS considers multiple
possible goals before making a decision and PANDA-Rec
generates multiple candidate plans during its search. Keeping
parallel options available in this way keeps the algorithms
from committing to incorrect paths too early, and allows
them to prune as they go. Moving RAGeR to a Best First
Search implementation should similarly add flexibility to its
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reasoning without sacrificing its major strength: robustness to
unreliable data.

Given our results, we present a few suggestions on where
the methods compared in this work could be applied. We
note that these methods were evaluated on two domains in
the present work, and we encourage future work to evaluate
these methods on additional challenging domains. Our results
suggest that PANDA-Rec is more applicable than Elexir-MCTS
and RAGeR to high inspectability data, such as plan traces from
an Al planner. This makes sense as PANDA-Rec utilizes an Al
planner (specifically an HTN planner) in its reasoning. Elexir-
MCTS is more appropriate than PANDA-Rec and RAGeR for
medium to low inspectability data, such as traces from an agent’s
execution in an environment. Finally, RAGeR is much more
appropriate than Elexir-MCTS and PANDA-Rec when there
is unreliable data resulting from missing actions or incorrect
action parameters.

We also suggest two interesting areas for future work
in goal recognition. First, different variants of reliability
should be explored. In particular, there may be other
forms of noise than missing actions or incorrect action
parameters that are encountered when attempting to recognize
the plans of other agents in the real world. Second, it is
important that a method of evaluating across different
goal recognition approaches is developed. This work
evaluated three fundamentally different methods for goal
recognition, each with different model representations and
algorithms. Having a method of evaluating across different
goal recognition approaches that takes into account the
differences in the methods would enable a much broader
and comprehensive study of goal recognition methods in
the literature.
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