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People are able to describe images using thousands of languages, but languages share
only one visual world. The aim of this work is to use the learned intermediate visual
representations from a deep convolutional neural network to transfer information across
languages for which paired data is not available in any form. Our work proposes using
backpropagation-based decoding coupled with transformer-based multilingual-
multimodal language models in order to obtain translations between any languages
used during training. We particularly show the capabilities of this approach in the
translation of German-Japanese and Japanese-German sentence pairs, given a
training data of images freely associated with text in English, German, and Japanese
but for which no single image contains annotations in both Japanese and German.
Moreover, we demonstrate that our approach is also generally useful in the multilingual
image captioning task when sentences in a second language are available at test time. The
results of our method also compare favorably in the Multi30k dataset against recently
proposed methods that are also aiming to leverage images as an intermediate source of
translations.

Keywords: vision and language, multimodal machine translation, backpropagation-based decoding, feedback-
propagation, multimodal machine learning, computer vision, natural language processing

1 INTRODUCTION

Learning a new language is a difficult task for humans as it involves significant repetition and
internalization of the association between words and concepts. People can effortlessly associate the
visual stimuli of an apple sitting on top of a table with either the word “apple” in English or Êç in
Chinese. However, current machine translation models usually learn these mappings between
languages through large amounts of parallel multilingual text-only data. In the past few years, there
have been several efforts in taking advantage of images to discover and enhance connections across
different languages (Gella et al., 2017; Nakayama and Nishida, 2017; Elliott and Kádár, 2017). While
some works have exploited alignments at the word-level (Bergsma and Van Durme, 2011; Hewitt
et al., 2018), recent work has moved forward to finding alignments between complex sentences
(Barrault et al., 2018; Surís et al., 2020; Sigurdsson et al., 2020; Yang et al., 2020).

Multimodal machine translation aims to build word associations grounded in the visual word,
however there are still some challenges. For instance, multimodal machine translation is most
effective when images are provided on top of parallel text where the images enhance the traditional
machine translation corpora, and a second limitation is that translation models are still required for
every language pair even if there is a single common visual representation. The present work
significantly extends our prior work on backpropagation-based decoding (Yang et al., 2020) using

Edited by:
Raffaella Bernardi,

University of Trento, Italy

Reviewed by:
Parisa Kordjamshidi,

Michigan State University,
United States
Marco Turchi,

Bruno Kessler Foundation (FBK), Italy

*Correspondence:
Ziyan Yang

zy3cx@virginia.edu

Specialty section:
This article was submitted to

Machine Learning and Artificial
Intelligence,

a section of the journal
Frontiers in Artificial Intelligence

Received: 05 July 2021
Accepted: 03 November 2021
Published: 17 January 2022

Citation:
Yang Z, Pinto-Alva L, Dernoncourt F

and Ordonez V (2022)
Backpropagation-Based Decoding for

Multimodal Machine Translation.
Front. Artif. Intell. 4:736722.

doi: 10.3389/frai.2021.736722

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7367221

ORIGINAL RESEARCH
published: 17 January 2022

doi: 10.3389/frai.2021.736722

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.736722&domain=pdf&date_stamp=2022-01-17
https://www.frontiersin.org/articles/10.3389/frai.2021.736722/full
https://www.frontiersin.org/articles/10.3389/frai.2021.736722/full
http://creativecommons.org/licenses/by/4.0/
mailto:zy3cx@virginia.edu
https://doi.org/10.3389/frai.2021.736722
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.736722


LSTMs for language pairs. Instead, we adapt transformer-based
decoders for language triplets and beyond. Since our proposed
approach does not train models to associate parallel texts (we do
not use a language encoder), it does not require access to parallel
text for any specific language pair as long as enough images with
text in each target language are available. We show in Figure 1
two sample images used during training where the first image has
two captions associated with it, one in German and another in
English, and the second image has one caption in English and
another in Japanese. Notice how the English caption for the first
image is “A black and white dog leaps to catch a frisbee,” but the
color of the dog is not mentioned by the German caption for the
same image. Unlike some prior work in this area, our work does
not assume that captions in different languages for the same
image have to be translations of each other.

Our setup follows other works in natural language processing
(Radford et al., 2019; Devlin et al., 2019) and vision and language
(Lu et al., 2019; Chen et al., 2020; Tan and Bansal, 2019) that rely
on transformer models (Vaswani et al., 2017) trained on generic
datasets. However, we pretrain our model in the generic task of
encoding a given input image and decoding associated sentences
in several target languages. Once this model is pre-trained, we use
energy-based decoding that relies on the backpropagation
algorithm to use the output from a source language decoder as
additional input to generate a sentence in a target language
decoder. Backpropagation as a decoding mechanism has been
used in some recent language generation work (Qin et al., 2020;
Yang et al., 2020).

We evaluate our approach using a combination of a subset of
the Multi30k dataset (Elliott et al., 2015) containing 31,014
images associated with English and German captions, and the
COCO + STAIR dataset (Yoshikawa et al., 2017) containing
123,287 images associated with English and Japanese captions.

Our experiments show that backpropagation-based decoding
coupled with transformer-based models can produce
reasonable translations among all language pairs, including for
language pairs that do not share the same images. Our
contributions can be summarized as: 1) Proposing a
backpropagation-based decoding process using Transformers
as the decoder to get machine translation results from image-
text encoder-decoder models. 2) Showing that our model is
effective to get translations from two languages that do not
share any training image. 3) Demonstrating superior results
compared to embedding training works and our earlier work
on backpropagation-based decoding on recurrent neural
networks.

2 RELATED WORK

Our work is related to several efforts in computer vision and
natural language processing. We first review image captioning
methods which also rely on encoder-decoder image-to-text
neural architectures. Then we discuss some representative
work in unsupervised machine translation where prior work
has attempted to use single modality non-parallel textual data
as a source of training. Then we review two recent works on
vision-language embedding methods that have used for machine
translation in some capacity, that are more directly related to our
work. Finally, we describe several works that have leveraged
backpropagation as a decoding step during test time in the
context of language models.

2.1 Image Captioning
Generating descriptions of images generally involves an image
encoding and a text decoding step. These models are designed to

FIGURE 1 |Machine translation can be done by using images as a bridge between language pairs. We show that translations between German and Japanese is
possible even from a training dataset without any images annotated in both of these languages at the same time.
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recognize the contents of an input image and then use an output
representation to generate understandable captions that describe
the image. Vinyals et al. (2015) and Xu et al. (2015) were among a
large first set of works proposing to use convolutional neural
networks as the image encoder and recurrent neural networks as
the text decoder to map images to text. Anderson et al. (2018)
proposed to use off-the-shelf image features from an object
detector, and several later works including Huang et al. (2019)
and Cornia et al. (2020) follow such design. As in image
captioning models, we propose training an image encoder and
several text decoders, one for each language. However, while our
models are trained under an image captioning objective, our final
goal is finding alignments across the target languages. While most
previous work on image captioning focuses on English text,
recent works such as Gu et al. (2018) focused on the
multilingual scenario, proposing to generate target language
descriptions through pivoting language descriptions by jointly
training an image captioner and an encoder-decoder translator.
Unlike this previous work, our proposed approach does not use
an encoder-decoder sequence-to-sequence model for machine
translation, bypassing the need to train language encoders.

2.2 Unsupervised Machine Translation
Neural machine translation (NMT) has proposed two main
directions: multilingual and multitask. For multilingual NMT,
several solutions are designed to improve parameter sharing
between languages. For example, Firat et al. (2016) builds one
encoder and one decoder for each language, but the attention
mechanism is shared by all languages. Ha et al. (2016) builds an
unified approach, constructing one encoder and one decoder for
all languages using language-specific coding. For multitask
scenario, Luong et al. (2015) proposes to train machine
translation task with other tasks such as syntactic parsing,
showing quality improvement on machine translation.
Anastasopoulos and Chiang (2018) combines speech
transcription with machine translation, obtaining good
performances on low-resource datasets. However, training
machine translation models generally requires hiring
professional human translators to create parallel text datasets.
This expensive process of data annotation has prompted the
natural language processing community to investigate
unsupervised methods that do not require perfectly aligned
data between source and target languages. Lample et al. (2018)
uses a monolingual corpus and maps text into the same latent
space; Artetxe et al. (2017) builds upon similar ideas by training
shared encoders for both source and target languages; Conneau
et al. (2017) learns a mapping matrix between word embeddings
of different languages using nonparallel data. Pre-training on
large amounts of monolingual data and conducting back
translation have also demonstrated to be of importance. XLM
(Lample and Conneau, 2019) and MASS (Song et al., 2019) use
pre-training on a masked sequence-to-sequence task. Under the
multimodal scenario, Su et al. (2019) combines visual
information with encoded text information to reconstruct text
input; while Huang et al. (2020) uses visual information through a
back translation process. Most unsupervised machine translation
systems however are still designed for training under individual

bi-lingual translation tasks. Our proposed approach works does
not require training on individual language pairs and does not
require annotators that are fluent in more than one language.

2.3 Joint Visual-Language Embeddings
Recent methods that leverage images for multilingual text
alignment have proposed training a joint visual-language
embedding space. Sigurdsson et al. (2020) proposed to train a
joint embedding space between visual data and text in different
languages by leveraging instructional videos. Surís et al. (2020)
proposed to jointly train a text encoder and an image encoder
shared by all the visual data and all the text in 50 different
languages using a contrastive loss. Our work does not explicitly
train a joint visual-textual embeding space but our joint
representation is induced by the captioning task and leveraged
at test time by using the backpropagation algorithm to synthesize
visual features from textual features.

2.4 Backpropagation-Based Decoding
In the training process of deep neural networks, models are
optimized through backpropagation. However,
backpropagation has also been used at test time for making
predictions. Wang et al. (2018) designs a feedback-propagation
mechanism for multi-label image classification. This work

FIGURE 2 | This is the detailed structure of our Transfomer-based image
captioner. It adapts the original Transformer model (Vaswani et al., 2017), but
inputs for the transformer encoder are obtained as image features from a pre-
trained convolutional neural network.
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assumes partial labels are available during inference time, and
uses the additional partial labels to improve the performance on
other categories by backpropagating known information from the
label space to update intermediate representations of the model.
Qin et al. (2020) adopt a similar idea in the decoding process for a
sequence prediction model. This last work achieves bi-directional
sequence generation by backpropagating information from the
token predicted in the current time step to the decoder so that this
can potentially update the tokens predicted earlier in the
sequence. Unlike prior works, our work goes further by
considering the more challenging scenario where we are
required to provide translations at test time for languages for
which there is no image in the training data that contain
annotations for both languages.

3 METHODS

Our approach leverages the transformer architecture as an
encoder of the features obtained from a pre-trained
convolutional neural network and as the language decoder
for multiple languages. We will first discuss some details about
combining convolutional neural networks (CNNs) and
transformers to generate descriptions for images. The
Transformer model proposed by Vaswani et al. (2017) was
designed for the machine translation task where the input and
output were text sequences. For image captioning, the input is
an image instead of a sentence but the region-level feature
vectors obtained from a convolutional neural network can be
arranged as an input sequence of features. Figure 2 illustrates
our model coupled with a single transformer-based decoder.
The input images are fed into a pre-trained convolutional
neural network, where the output after the last convolutional
layer with adaptive pooling is represented as I ∈ Rw×h×c. Then
we reshape this image feature into I ∈ Rk×c where k � w × h.
The feature for the whole image can be treated as a sequence of
tokens, where the sequence length is k and the embedding
dimension for each token is c. Similarly as in Vaswani et al.
(2017), we apply positional encodings on this input sequence
of image features but we adapt the formulation to 2D
positional encodings. Then we feed these encoded features
into a transformer encoder. We ensure that all images are the
same size, therefore, when treated as a sequence of encoded
features, the sequence length k is fixed.

The transformer encoder for images is similar to the one for text. It
consists of N multi-headed self attention layers and feed-forward
layers. For each attention head in a given layer, it takes a set of queries
Q, keys K and values V as input. The output of each self-attention
head is computed as softmax(QKT�

d
√ )V, where ��

d
√

is a normalization
factor that depends on the number of dimensions d of the query and
key vectors. In both encoder and decoder, the queries, keys, and
values are the input sequences. The image encoder particularly uses
the image features as the set of queries, keys, and values in the first
layer. In the joint encoder-decoder layers the queries come from the
decoder, and the keys and values come from the encoder layers. We
follow the same setup as in Vaswani et al. (2017) and illustrate this
model along with our image input in Figure 2.

In our full setup we train a single image encoder with
multiple language decoders. Each language has a specific text
decoder, but all of the decoders share the same convolutional
neural network and transformer encoder. Let us assume we
have captions that can come from three different sets: X, Y,
and Z, each corresponding to a different language, and a set of
images represented as I. We can define the
shared image encoder as f(·) and three individual
decoders for each language as gx(·), gy(·) and gz(·).
Then, we can train the whole image captioning model with
objective:

min
f,gx,gy,gz

L f,gx( ) X, I( ) + L f,gy( ) Y, I( ) + L f,gz( ) Z, I( ). (1)

In our case, we use two bilingual datasets D1 and D2. None of
them has captions for all three languages for the same image.
Assume D1 has n images with captions in X and Y, D2 has m
images with captions in X and Z, then we can define specifically
(X, I) � {xi, Ii}i�n+mi�1 ∈ D1 ∪ D2, (Y, I) � {yi, Ii}i�ni�1 ∈ D1 and
(Z, I) � {zi, Ii}i�mi�1 ∈ D2. Then, each term in Eq. 1 can be
expanded as:

L f,gx( ) X, I( ) � L f,gx( ) xi, Ii{ }i�n+mi�1( )

� ∑
i

CrossEnt gx f Ii( )( ), xi( ), (2)

L f,gy( ) Y, I( ) � L f,gy( ) yi, Ii{ }i�ni�1( ) � ∑
i

CrossEnt gy f Ii( )( ), yi( ),

(3)

L f,gz( ) Z, I( ) � L f,gz( ) zi, Ii{ }i�mi�1( ) � ∑
i

CrossEnt gz f Ii( )( ), zi( ),

(4)

where CrossEnt(·,·) represents the cross entropy loss. Figure 3
shows our method during inference time. To define the
backpropagation-based decoding, we will choose an
intermediate layer in the convolutional neural network so that
f1(·) represents the function defined by the layers before the
chosen layer, and f2(·) represents the function defined by the
layers after the chosen layer. The generated captions for the three
languages can then be obtained as:

x̂i � gx f2 f1 Ii( )( )( ), (5)

ŷi � gy f2 f1 Ii( )( )( ), (6)

ẑi � gz f2 f1 Ii( )( )( ), (7)

where the input Ii can be any image, and x̂i, ŷi, and ẑi are the
generated captions in each language. This model so far is just a
regular image captioning model trained with multilingual
decoders and can be used as such.

In the machine translation task however we only have an
input text x in a source language and an output text y in a
target language. Our goal then is to synthesize an intermediate
visual feature vector f̃1 ≈ f1(I) such that the text in the source
language can be decoded from this input vector as
x̂ � gx(f2(f̃1)). We can approximate f1 iteratively by using
the backpropagation algorithm to solve the following
optimization setup:
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f̃1 � argmin
c

∑
i

CrossEnt gx f2 c( )( ), x( ), (8)

where c is iteratively updated until the cross-entropy loss between
the predicted caption gx(f2(c)) at the current iteration and the true
caption x is small. The variable c is initialized as c � f1(ϵ) where ϵ
is a dummy input image where every pixel value is sampled from
a uniform distribution U(0, 1). This extends our earlier reported
method (Yang et al., 2020) and demonstrates the validity of this
type of approach in the trilingual scenario where one set of
language pairs is not represented in the training annotations. We
use a held-out set to determine the optimal amount of updates in
the optimization process in Eq. 8. Once f̃1 is obtained, then we
can obtain decodings for the target language y as y � gy(f2(f̃1)),
and similarly for any other target language by using the
corresponding language decoder.

The source and target languages can be any pair among X, Y,
and Z, even though Y and Z, in our setup, do not share any visual
information during training. One possible issue for testing our
method is the lack of paired text data for Y and Z. For example,
in Figure 3, X is English, Y is German and Z is Japanese. We are
showing German as the source language and Japanese as the
target language. Our datasets do not have German and Japanese
captions for the same image. Therefore, we pick English as an
intermediate language and translate German captions from
English captions that describe the same image as Japanese
captions. Since English captions and Japanese captions are
created independently, the German captions translated from
English captions are also independent from Japanese captions.
Besides machine translation, we can also get better image
captions for target languages as conducted in Yang et al.

(2020) by conditioning on the source language and a given
input image I. The only difference is during validation and test
time, where c is initialized as c � f1(I) instead of using random
noise as input to f1.

4 EXPERIMENTAL SETUP

4.1 Data and Preprocessing
In order to conduct experiments and compare with previous
work, we use image and multilingual text data from the
benchmark datasets Multi30k (Elliott et al., 2016) and COCO
+ STAIR Captions (Yoshikawa et al., 2017). Multi30k includes
two versions for two tasks: Task 1 for multimodal machine
translation and Task 2 for multilingual image captioning. Task
1 has 29,000 images for training, 1,014 images for validation and
1,000 images for testing. Each image is paired with four captions
in English, German, Czech and French. These four captions are
translations of each other. Task 2 has the same image splits as
Task 1, but each image is paired with five independently-created
English captions and five independently-created German
captions. As in our earlier work, we use Task 2 data for both
training and testing. We preprocess the data by tokenization,
making the tokens lowercase, and selecting tokens with frequency
larger than 3 to construct the vocabulary for English and German.
To compare with Sigurdsson et al. (2020) and Surís et al. (2020),
we train on Task 2 but test on the testing splits for Task 1
corresponding to German and English. We apply a Byte Pair
Encoding (BPE) tokenizer and use the same vocabulary as Surís
et al. (2020).

FIGURE 3 | An overview of our machine translation setting where only an input text in a source language is provided. Since the model was trained as an image-to-
text model, the first inference step uses noise as input to the image encoder and then generates sentences for both source and target languages. While the generated
sentences from random inputs are initially meaningless, we iteratively update the intermediate image features by backpropagating information from the source caption in
order to generate a meaningful sentence in the target language.
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COCO + STAIR Captions include 123,287 images, where
Japanese captions were collected for each image and the
English captions are from the original COCO Captions
Dataset (Chen et al., 2015). Each image in COCO + STAIR
Captions has five independently-created English and Japanese
captions. We conduct experiments on English and Japanese using
this dataset. We choose to use the same split as in Karpathy and
Fei-Fei (2015), which includes 113,287 images for training, 5,000
images for validation and 5,000 images for testing. To evaluate on
the totally disjoint set of German and Japanese caption pairs, we
combine Multi30k Task 2 and COCO + STAIR Captions to
conduct experiments.

4.2 Implementation
We provide here some concrete details about our implementation
of the model described earlier. The number of transformer
encoder layers is 2 and the number of transformer decoder
layers is 4, both with eight heads. The backbone image
encoder is Resnet-50 (He et al., 2016) pre-trained on
ImageNet’s large scale visual recognition challenge
classification task (Deng et al., 2009). We have separate
decoders for different languages, but all the decoders share the
same image encoder and transformer encoder. We fine-tune both
image encoder and the transformer encoder and decoders during

training with learning rate 4e-4. During inference time, we use
Conv-40 as the pivoting layer, as this proved to be most effective
on a held out set. All of our code and experimental setup will be
distributed using a public repository to ensure reproducibility
upon publication and code is included in this submission as
supplementary material. The datasets used in this project are all
public datasets, Multi30k and COCO + STAIR.

5 RESULTS AND DISCUSSION

For this section, we will discuss our results under two settings:
first, we compare our method with Yang et al. (2020) and adapt to
the same settings on real image inputs and noise image inputs on
Multi30k Task2 and COCO + STAIR to evaluate on English-
German English-Japanese and German-Japanese language pairs;
then, we follow the settings of Surís et al. (2020) using Multi30k
Task1 + Task2 data to show the machine translation results.

5.1 Bilingual Results
First, we conduct experiments on Multi30k Task 2 for multi-
lingual captioning and translation in German and English. We
compare our results against a baseline using LSTMs as decoders
while keeping the vocabulary and convolutional neural network
encoder the same. Table 1 reports results under three conditions:
1) the model takes only images as inputs without additional
information (standard image captioning); 2) the model takes
images as inputs and uses additional captions as “partial
evidence” (Wang et al., 2018) to improve the caption in a
second language (image captioning with partial evidence); and
3) the model takes as input only text from a source language to
generate text for a target language (machine translation). Our
method shows better results in all the conditions for all the
metrics compared to the LSTM baseline as described in our
earlier work in Yang et al. (2020).

Next, we report in Table 2 experimental results on COCO-
STAIR Captions for Japanese and English. We report results on
the karpathy testing split consisting of 5,000 images on this
dataset. As in our prior experiment we compare against a
strong baseline of LSTM-based decoders under the same three
conditions: standard image captioning, image captioning under

TABLE 1 |Results onMulti30k with German and English unpaired textual captions
for training and testing under three task setups: standard image captioning,
image captioning under partial evidence, and machine translation.

Decoder Input Target BLEU-4 ROUGE-L CIDEr

LSTM Image German 16.08 46.53 43.13
Image English 24.40 50.94 51.30
Image + English German 22.21 52.12 59.63
Image + German English 28.15 54.06 61.53
English German 17.24 48.65 44.67
German English 20.82 49.71 44.57

Transformer Image German 16.51 47.02 45.26
Image English 25.18 51.47 53.21
Image + English German 23.45 53.32 65.76
Image + German English 29.13 55.13 66.49
English German 17.84 49.32 48.26
German English 22.88 51.29 51.76

TABLE 2 | Results on COCO + STAIR with Japanese and English unpaired textual captions for training and testing under three task setups: standard image captioning,
image captioning under partial evidence, and machine translation.

Decoder Input Target BLEU-4 ROUGE-L CIDEr

LSTM Image Japanese 37.71 57.13 92.26
Image English 32.31 53.79 99.62
Image + English Japanese 40.26 58.57 100.71
Image + Japanese English 34.34 55.31 107.71
English Japanese 29.51 51.59 68.78
Japanese English 21.70 45.10 67.43

Transformer Image Japanese 37.74 57.08 91.67
Image English 30.70 52.77 95.08
Image + English Japanese 40.87 58.91 102.87
Image + Japanese English 33.12 54.78 106.87
English Japanese 31.10 52.60 76.40
Japanese English 22.76 46.80 75.82
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partial evidence, and machine translation. We observe that
sometimes the best model for image captioning does not
necessarily lead to the best model for decoding under the
backpropagation-based decoding process. For instance, as can
be observed in Table 2, the LSTM-based image captioner obtains
32.31 points in BLEU score while the Transformer-based image
captioner obtains 30.70 points in BLEU score under the same
conditions. However, the Transformer-based decoder is more
effective under the backpropagation-based decoding needed for
the machine translation task (22.76 BLEU) compared to the
LSTM-based decoder (21.70 BLEU). Therefore, when we select
models for testing, we also consider the performance using
backpropagation-based decoding as a stopping criteria since it

is not our goal in this work to obtain the best image captioning
model but the most useful model for pivoting across languages.
We keep the model selection criterion the same for both models.
As a consequence, the selected Transformer-based model does
not outperform the LSTM-based model in image captioning
(when taking only images as inputs), but the backpropagation
decoding works better for the Transformer-based model in both
conditional image captioning and multimodal machine
translation.

5.2 Trilingual Results
Next we demonstrate how our proposed method can be easily
extended to multilingual cases using multiple datasets. We
particularly evaluate our method on two disjoint languages,
which means these two languages do not have any parallel
corpora or common set of images annotated in both
languages. In this case, we train a trilingual image captioning
model for English, German, and Japanese caption generation
using both Multi30k Task 2 and COCO + STAIR Captions. This
model consists of one shared image encoder and three
independent decoders for three languages: English, German,
and Japanese. During training, every batch samples the same
number of images from Multi30k Task 2 and COCO + STAIR
Captions, then the corresponding captions are used to train the
model end-to-end. At test time, since we need German captions
for COCO + STAIR Captions and Japanese captions for Multi30k
Task 2 in order to evaluate the image captioning task under
partial evidence, and the machine translation task, we use Google
Translate to generate translations from English captions in these

TABLE 3 | Results on Multi30k Task2 and COCO + STAIR with Japanese and
German unpaired textual captions.

Decoder Input Target BLEU-4 ROUGE-L CIDEr

LSTM Image Japanese 36.62 56.31 88.51
Image German 16.28 46.58 43.90
Image + German Japanese 37.45 56.76 91.41
Image + Japanese German 17.92 48.15 47.75
German Japanese 17.36 43.19 31.16
Japanese German 8.38 39.45 19.30

Transformer Image Japanese 37.76 57.24 91.50
Image German 16.64 46.79 46.78
Image + German Japanese 39.18 57.93 95.80
Image + Japanese German 19.80 49.14 53.18
German Japanese 16.69 42.30 31.68
Japanese German 9.45 39.16 22.47

FIGURE 4 |We show some examples of using additional source language information to improve target language caption generation. The first column shows the
input images, the second column shows generated captions conditioned only on the input images, the third column shows ground truth text for that image in either
German or Japanese, the fourth and last column shows the predicted caption conditioned both on the input image (first column) and the additional input text (third
column). English sentences obtained with Google Translate are provided for reference inside the brackets.
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two datasets. While these are not ground truth, they are of
sufficient quality to assess the extent of the potential
improvements obtained with our method over baseline
accuracies.

We report the results on Table 3 The improvement from
baseline image caption generation to conditional image
captioning is still consistent even though the provided source
language captions are translations from another language
(English). Transformer-based models outperform LSTM-based
models in most cases, but in the case of using only German
captions to generate Japanese and using only Japanese captions to
generate German, the LSTM-based model and Transformer-
based model demonstrate similar results. German captions and
Japanese captions in the training process do not share any images,
but during inference, German and Japanese text can still help
each other to generate better captions. Qualitative examples from
the Transformer-based model are provided in Figure 4, for
German and Japanese. For example, in the first instance, the
generated Japanese caption (second column) incorrectly
identified the gender of the subject as “女性” which translates
as “female.” However, after we provide the German caption “Ein

Mann mit einem Snowboard neben einem Mann mit einer
Maske” to the decoder, then the gender is identified correctly.
These results show the possibility to apply our method in a more
general situation: during training, the image captioner is trained
on several independent monolingual image captioning datasets,
and the image features can be used as a shared feature space to
transfer information among languages, even for languages for
which no available bilingual annotators can be found, as long as
people can be instructed to annotate images, translations can be
obtained.

For the multimodal machine translation case, we show results
in Figure 5. Even though the model was not trained to align text
pairs, it can still provide reasonable translations by synthesizing
visual features using the source language text. For example, in the
first row of Figure 5, it is hard for the model to recognize the
gender of the subjects in the image without visual information,
but significant information in tokens such as “傘”(umbrella) and
“歩い”(walking) are successfully translated. There are other
details lost such as the color of the referred cat in the example
on the third row “eine graue Katze,” which is omitted in the
generated Japanese caption which only generates the token for cat

FIGURE 5 | We show some examples of German-Japanese translation. English sentences by Google Translate are provided for reference inside the brackets.
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(猫). This happens because the model works by taking the input
sentence in German and then “imagining” the visual features of
an image through the backpropagation-based decoding process,
and then translating these “imagined” visual features into
Japanese text. Some information is lost in the process
regarding gender which is impractical to obtain from an image
or other challenging attributes but important actions and objects
are often preserved.

5.3 Visual Grounding Results
Recent state-of-the-art works using visual information to align
languages include V-Grounding (Sigurdsson et al., 2020) and
Globetrotter (Surís et al., 2020). V-Grounding aligns languages by
learning a joint visual-language embedding space. This work
constructs separate text embeddings for different languages,
and one shared encoder for visual information. Globetrotter
learns cross-lingual representations by leveraging alignments
between text in multiple languages and images. They build
one text encoder and one image encoder that are shared by all
the languages and images. Both works do not need parallel
multilingual data during training, instead, they use paired
information between images and languages. To compare with
previous works, we use Multi30k Task2 English and German
caption data for training and Task1 translation data for inference.
We split 29,000 training images into 14,500/14,500 for English
and German, using disjoint image sets and text data to train an
image captioning model. We follow the experimental settings of
Surís et al. (2020), using the same Byte Pair Encoding (BPE)
tokenization (Sennrich et al., 2015) to construct a vocabulary, and
train our image captioning model with transformers as decoder.
During inference time, Multi30k Task1 data includes 1,014
images for validation and 1,000 images for testing. Each image
is paired with one English caption and one German caption, and
these captions are translations of each other. We generate
translations for the target language by feeding back source
language sentences using backpropagation-based decoding.

V-Grounding (Sigurdsson et al., 2020) and Globetrotter (Surís
et al., 2020) try to project text and visual information to a common
joint embedding space, and these works cannot do sentence
generation directly. Therefore, we extract text features of source
language sentences using their pre-trained embedding space and
retrieve the most similar target language sentences from the
training set. We use the models provided by Surís et al. (2020),

which are pre-trained using 50 languages and fine-tuned on
English captions using COCO, Flickr30k (Plummer et al., 2015)
and the Google Conceptual Captions dataset (Sharma et al., 2018).
In Table 4 we show that our method outperforms these competing
methods under all metrics (BLEU-4, ROUGE, and CIDEr) in both
the English to German and German to English translation pairs. In
general, German to English gets higher scores than English to
German for all the models–as German is generally considered
morphologically rich and less configurational (Fraser et al., 2013).

6 CONCLUSION

Our work shows that under backpropagation-based decoding we
are able to synthesize visual features from text in a source
language in order to decode text in a target language, thus
obtaining text translations even if the model was not trained
for translation. We demonstrated this capability for the first time
in a trilingual setting where two of the languages did not have any
pairings, as in no image in the training data contained
annotations in both of these languages. Our results show a
path to build multimodal and multilingual pre-trained models
that can implicitly learn alignments among languages. This is
especially relevant for low resource languages for which paired
data is not available due to lack of translators for that language but
for which monolingual native speakers can be found and directed
to annotate images instead of text. Our code is available as
supplementary material and will be released publicly upon
publication to ensure reproducibility.
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