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Recently, we are seeing the emergence of plan- and goal-recognition algorithms which
are based on the principle of rationality. These avoid the use of a plan library that
compactly encodes all possible observable plans, and instead generate plans
dynamically to match the observations. However, recent experiments by Berkovitz
(Berkovitz, The effect of spatial cognition and context on robot movement legibility in
human-robot collaboration, 2018) show that in many cases, humans seem to have
reached quick (correct) decisions when observing motions which were far from rational
(optimal), while optimal motions were slower to be recognized. Intrigued by these
findings, we experimented with a variety of rationality-based recognition algorithms
on the same data. The results clearly show that none of the algorithms reported in the
literature accounts for human subject decisions, even in this simple task. This is our first
contribution. We hypothesize that humans utilize plan-recognition in service of goal
recognition, i.e., match observations to known plans, and use the set of recognized plans
to conclude as to the likely goals. To test this hypothesis, a second contribution in this
paper is the introduction of a novel offline recognition algorithm. While preliminary, the
algorithm accounts for the results reported by Berkovitz significantly better than the
existing algorithms. Moreover, the proposed algorithm marries rationality-based and
plan-library based methods seamlessly.
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1 INTRODUCTION

The last dozen years are seeing the emergence of plan- and goal-recognition algorithms which are
based on the principle of rationality (Ramirez and Geffner, 2010; Sohrabi et al., 2016; Vered et al.,
2016; Vered and Kaminka, 2017; Kaminka et al., 2018; Masters and Sardina, 2019). These avoid the
use of a plan library that compactly encodes all possible observable plans, and instead generate plans
dynamically, on-the-fly, to match the observations. They therefore offer an approach to eliminating
one of the fundamental assumptions of most recognition methods of the field, since its inception in
the late 1970s (Schmidt et al., 1978). Moreover, their reliance on rationality seems to be compatible
with studies of human recognition capabilities (Baker et al., 2007; Baker et al., 2009; Bonchek-Dokow
and Kaminka, 2014).

In a sense, these rationality-based recognition algorithms (henceforth, RGR for Rational Goal
Recognition) do goal recognition first, plan recognition second. The likelihood of hypothesized goals
is evaluated on the basis of the dynamically-generated plans, rather than pre-existing knowledge of
potential plans. In particular, RGR algorithms dynamically generate optimal (i.e., rational) plans that
match the observations as best as possible. These plans are compared against other generated plans,
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which are not constrained to match the observations1. The
comparison between these plans leads to conclusions as to
which goal is more likely, given the observations (see Section
2 below for detailed treatment).

Recently, we came across a series of experiments carried out by
Berkovitz and Parush (reported in (Berkovitz, 2018)), which may
cast some doubt as to the use of RGR as a model of human
recognition capabilities. In particular, Berkovitz and Parush
examined a relatively simple goal-recognition task, where a
robot arm moves towards one of two possible goal locations.
On different trials, the motion of the arm followed different
trajectories: Sometimes, an optimal (direct) trajectory to a goal,
and other times, a curving, inefficient trajectory. A cursory
examination of their results shows that in many cases, humans
seem to have reached quick (correct) decisions when observing
motions which were far from optimal, while in other cases,
incorrect (and much slower) decisions were reached when
observing optimal motions. The results also showed the
reverse; the difference did not appear to lie in the optimality
of the trajectory.

Intrigued by these findings (which we detail in Section 3) we
created a simulation of the experiments carried out in (Berkovitz,
2018), allowing us to evaluate various recognition algorithms on
approximately the same data. We experimented with a variety of
rationality-based state-of-the-art goal-recognition algorithms,
contrasting their predictions with the data from the human
subjects2. The results clearly show that none of the algorithms
reported in the literature accounts for human subject decisions,
even in this simple task. This is our first contribution.

We hypothesize that humans utilize plan-recognition in
service of goal recognition, i.e., plan-recognition first, goal
recognition second. We believe humans match observations to
known plans, and use the (sometimes ambiguous) set of
recognized plans to conclude as to the likely goals, in stark
contrast to RGR algorithms. We conjecture that the within-
subjects experiment design in (Berkovitz, 2018) primed the
subjects to expect the type of inefficient trajectories they may
observe. In other words, the subjects formed a plan library in the
early parts of the experiment, which they utilized in latter stages.

To test this hypothesis, a second contribution in this paper is
the introduction of a novel offline recognition algorithm, Library-
based Rational Goal Recognition (LRGR). The proposed
algorithm marries rationality-based and plan-library based
methods. It can handle incomplete plan libraries (indeed, with
no plan library, it is identical to rationality-based recognition
methods), while still utilizing a plan library when available. While
preliminary, the algorithm accounts for the human subject results
much better than the existing algorithms.

We conducted additional experiments contrasting LRGR,
RGR, and idealized (classic) library-based plan-recognition on

plan recognition problems, varying the size of the plan library
available. Experiments in close to 800 randomly-generated goal-
recognition problems in the same domain demonstrate that
LRGR consistently outperforms both RGR and the classic
library-based plan recognition methods on this data set.
Furthermore, LRGR seems remarkably robust to plan-library
size and incompleteness with respect to the observations.

2 BACKGROUND: GOAL- AND PLAN-
RECOGNITION

Plan, Activity, and Intent (goal) Recognition (collectively called
PAIR) is the field of study in AI which investigates how one agent,
observing another, may infer on the basis of these observations
the other agent’s plan of action, the goal of the plan, or the class of
activity taking place. Generally, this is an abductive inference task:
the observations are partial with respect to the full plan (the full
sequence of actions); the goal is not observed, etc. In plan
recognition the focus is mostly on recognizing the sequence of
future actions. In goal (sometimes called intent) recognition we
are interested in inferring the final goal state of the agent. A
comprehensive survey of the field, which has started in the late
1970s (Schmidt et al., 1978), is well beyond the scope of this
paper. We refer the interested party to several comprehensive
recent surveys by Sukthankar, Goldman, Geib, Pynadath and Bui
(Sukthankar et al., 2014), by Mirsky, Keren, and Geib (Mirsky
et al., 2021), and by Van-Horenbeke and Peer (Van-Horenbeke
and Peer, 2021), as well as to an earlier survey by Carberry
(Carberry, 2001).

Since its early beginnings, many—if not most—approaches to
goal and plan recognition utilized plan libraries (Carberry, 2001;
Sukthankar et al., 2014; Mirsky et al., 2021). These compactly
encode all potential plans the observed agent may be carrying out,
in a form allowing a plan recognition algorithm to efficiently
identify plans matching the observations. The recognition of
plans is carried out by identifying the plans, within the library,
matching the observations. Each plan in the library is associated
with a goal, and thus any recognized plan also leads to the
recognition of its associated goal, i.e., plan recognition first,
leads to goal recognition second. In general, several plans may
match the same set of observations; often, probabilistic ranking of
the recognition hypotheses is carried out by the plan recognition
algorithm.

A great variety of recognition techniques relying on such plan
libraries have been investigated, e.g., (Kautz and Allen, 1986;
Carberry, 1990; Charniak and Goldman, 1993; Goldman et al.,
1999; Pynadath and Wellman, 2000; Bui, 2003; Avrahami-
Zilberbrand and Kaminka, 2005; Pynadath and Marsella, 2005;
Blaylock and Allen, 2006; Avrahami-Zilberbrand and Kaminka,
2007; Geib and Steedman, 2007; Sukthankar and Sycara, 2007;
Geib and Goldman, 2009; Kabanza et al., 2010; Bisson et al., 2011;
Blaylock and Allen, 2014; Wiseman and Shieber, 2014; Mirsky
et al., 2016; Mirsky and Gal, 2016; Chakraborti et al., 2017; Mirsky
et al., 2017). These are used in a variety of applications, often
those involving human-machine interactions: natural language
(Cohen et al., 1981; Carberry, 1990; Charniak and Goldman,

1Depending on the actual algorithm used, they may even be constrained to not
match the observations.
2We gratefully acknowledge the help of Avi Parush and Inbal Berkovitz in
understanding the experiments, and for providing us with the necessary data
for comparison. See also Supplementary Appendix C.
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1993), assistant agents (Lesh et al., 1999; Geib and Goldman,
2001; Babaian et al., 2002; Yang, 2009), computer games (Fagan
and Cunningham, 2003), and intelligent tutoring systems (Greer
and Koehn, 1995; Gal et al., 2008; Amir and Gal, 2013).

However, the fundamental assumption of a complete plan
library accounting for all possible plans and all possible goals has
proven to be a key challenge in many applications. For example,
in applications requiring reasoning about continuous motions
such as those recognizing human motion plans and goals
(Devaney and Ram, 1998; Masters and Sardina, 2019), human
drawings (Vered and Kaminka, 2017), or various human-robot
interactions (Dragan et al., 2013; Kelley et al., 2014). But also in
other domains, where the number of possible plans and goals is
insurmountable, despite the relative simplicity of the domain. For
example, the famous planning blocks world domain has infinite
many possible goals and plans, despite having a small number of
discrete actions, taking place in a discrete world made of objects,
essentially all of the same type.

More recent approaches eliminate the use of plan libraries, and
rely instead on domain models, often specified in a formal
planning domain description language. The domain models
can be used in several ways.

Some techniques are used to generate data-structures or
heuristic knowledge offline, ahead of the observation input
and recognition process (e.g., (Hong, 2001; Martin et al., 2015;
Pereira et al., 2016; Pereira and Meneguzzi, 2016)). This
generated information can then be used to identify goals, but
without necessarily recognizing plans (in the sense of recognizing
a full sequence of actions based on the partial set of observations).

A different set of techniques, which we call here RGR (for
Rational Goal Recognition) generally evaluate the likelihood of a
hypothesized goal by generating and comparing the costs of two
dynamically-generated plans:

• First, the optimal (i.e., rational) plan to reach the goal, while
matching the observations (i.e., observed actions are part of
the plan).

• Second, the optimal plan for the same goal that is either
unconstrained to match the observations (Ramirez and
Geffner, 2009; Sohrabi et al., 2016; Freedman and
Zilberstein, 2017; Masters and Sardina, 2017; Shvo and
McIlraith, 2017; Vered and Kaminka, 2017; Kaminka
et al., 2018; Masters and Sardina, 2018; Masters and
Sardina, 2019), or is constrained to not match the
observations (Ramirez and Geffner, 2010).

Generally speaking, the closer the costs of these two plans, the
more likely the goal; RGR algorithms prefer goals that result from
plans that match the observations on one hand, and are optimal
(rational) on the other. The assumption is that the observed agent
is rational, thus it is more likely that it is taking an optimal plan
towards the goal. Note that in most of these methods (other than
(Vered and Kaminka, 2017; Kaminka et al., 2018)), the
dynamically-generated plan itself is not important, and is not
used as part of a plan recognition process.

The RGR approaches are considered to be a significant step
towards removing the plan library assumption existing in most

recognition works. The alternative assumption—rationality of the
observed agent—had been thought to be compatible with both
observed synthetic agents, as well as human recognition skills and
biases. For instance, Bonchek-Dokow and Kaminka propose a
model for human intention prediction (goal recognition)
(Bonchek-Dokow and Kaminka, 2014), similar to earlier [e.g.,
(Ramirez and Geffner, 2009)] and later approaches [e.g., (Vered
and Kaminka, 2017; Kaminka et al., 2018)]. In comparing the
model to human behavior, they showed that when an observed
motion was on an optimal (direct) path towards a goal location
that the subjects might not have thought of, the subjects
dynamically hypothesized the existence of a new goal. The
rationality of the motion was overriding previous knowledge
of potential goals. Somewhat similarly, Baker et al (Baker
et al., 2007; Baker et al., 2009) propose a model for human
goal recognition, based on Bayesian inverse planning using
Markov Decision Problems, and again relying on rationality.
While their initial model did not agree with results from
human subjects, two updated models, which took into account
dynamic goal changes and subgoals within the sequence of
actions, did simulate human recognition behavior.

Rational movement also was used as a component in planning
robot motions that would be legible to human users. Dragan et al
(Dragan et al., 2013) distinguish between predictability and
legibility of robot motion and propose a mathematical
formulation for both properties. They define predictability to
be the observer’s expectation and they assume that the human
observer expects the robot to be a rational agent. Therefore, the
more optimal the motion, the more predictable. Legibility, in
their definition, measures how easily the observer infers the goal
from the observations. Therefore, the formula for legibility
essentially integrates the probability that is assigned to the
actual goal during the motion, with more weight given to the
earlier parts of the motion.

Vered et al (Vered et al., 2016) presented an algorithm for
online goal recognition in continuous environments, and tested it
on data from human experiments, in two different recognition
domains. Results show that for some goals, humans’ decisions
were significantly different from the algorithm results. Vered et al
concluded that humans use additional knowledge that is not part
of the rationality-based model, but left further investigation to
future work. This paper attempts to begin this investigation, by
examining another experiment in which RGR algorithms failed to
account for human recognition results.

3 THE BERKOVITZ EXPERIMENTS

In a recent study (Berkovitz, 2018), Berkovitz and Parush
investigated some aspects of human spatial cognition in
human-robot collaboration, in particular focusing on goal
recognition. The study had human subjects observing a robot
arm facing two goals standing on the surface. The robot arm
would begin moving in a fixed speed towards one of the goals,
which are equidistant from the robot. Subjects were asked to
quickly identify the target goal location for the movement, by
pressing one of two keys on a computer keyboard. They were
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motivated to choose correctly, but as quickly as possible. No
second guesses were allowed.

The experiment followed a within-subjects design. Every one
of 30 subjects was exposed to the same set of 14 different
trajectories of the robotic arm towards one of the two goals (7
for each goal). The trajectories differ in their curvature, ranging
from a straight line—the shortest path to each goal—to a very
curved trajectory, which is inefficient. The order of exposure to
the different trajectories was randomized.

Figure 1 shows the experiment setup, viewed from above. This
is referred to as the horizontal configuration, where the arm
motions were on a horizontal plane. Trajectories were numbered
according to their distance from the distractor goal (i.e., the other
goal): For either goal, trajectory 1 is the closest trajectory to the
other (distractor) goal, and trajectory 7 is the most distant from
the other goal. The figure show some trajectories towards one goal
overlap with trajectories to the distractor goal. For example,
trajectory 4 to goal 1 overlaps initially with trajectory 2 to goal
2. The trajectories were not revealed to the subjects ahead of the
experiment.

Analysis of the reaction time revealed that the distance of
trajectories from the distractor was found to be a significant factor
in their decision. Overall, participants tended to respond quicker
to the trajectory that was most distant from the distractor
(trajectories 7, for both goals). Figure 2 shows these
trajectories, whose associated goals were recognized accurately
and quickly. One of these trajectories is indeed optimal. The other
one is the farthest from optimal as possible within the experiment
design.

The results show that the optimality of the observed trajectory
was not the determining factor when humans inferred the correct

goal. People tend to answer quicker on trajectories 7 for both
goals, but for one goal trajectory 7 is indeed the optimal trajectory
while for the other goal it is not; indeed, it is not even close to
rational.

Moreover, trajectories which can be seen to partially
overlap (e.g., trajectory 4 to goal 1 overlaps initially with
trajectory 2 to goal 2) caused the slowest responses from
humans. Given that the trajectories were not revealed to the
subjects ahead of time, how would the overlap (which to them
would be unobserved) cause hesitation in committing to the
recognized goal?

These results are not intuitive, considering the RGR
approaches. The various RGR formulations generally evaluate
the likelihood of a hypothesized goal by comparing the optimal
plan that matches the observations, to the optimal plan for a goal
(that is either unconstrained to match the observations, or even
constrained to not match them). The RGR reasoning is that the
more a plan that matches the observations is optimal (a rational
choice of the observed agent), the greater the likelihood that the
observed agent is attempting to reach the goal associated with
the plan.

Intuitively, we would have expected the RGR algorithms to
always choose the optimal plans (Figure 1). The human subjects
instead preferred the most distant (Figure 2).

3.1 Goal Recognition Algorithms in
Berkovitz’s Experiments
We attempt to go beyond intuition and qualitative
assessment of the implications of Berkovitz’s experiments.
To do this, we designed a 2D simulation that recreated
Berkovitz’s horizontal configuration experiment (Berkovitz,
2018). It consists of an initial point and two goals. We
designed 14 trajectories (shown in Figure 3), 7 towards
each of the goals, from the initial point to one of the
goals. Here, again, trajectories range from a straight,
optimal trajectory to increasingly curved trajectories. We
number trajectories similarly to Berkovitz’s study, from 1
to 7 indicating the distance from the distractor goal,

FIGURE 1 | Berkovitz’s experiment trajectories 1–7 to goal 1, and
trajectories 1–7 to goal 2. Trajectory 7 to goal 2, trajectory 1 to goal 1 (shown in
bold) are optimal (rational). From (Berkovitz, 2018).

FIGURE 2 | Trajectories denoted 7 (shown in bold) were easiest for the
participants (faster, correct goal recognized). From (Berkovitz, 2018).

FIGURE 3 | The trajectories in the simulation of Berkovitz’s experiments.
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beginning with 1 for closest to the distractor and 7 for the
farthest from the distractor goal.

The simulation is built to allow experiments with various goal
recognition algorithms, RGR or others. We generated
observations for each of the 14 trajectories, in increasing
length in relation to the trajectory’s length, simulating the
motion of the arm along the trajectory in question. Each
observation—increasing in length—is provided to each of the
evaluated algorithms, and its responses are recorded. These
responses are in the form of a probability distribution over the
two goals.

We examined the following RGR algorithms on our
simulation. In all (but one), the objective is to carry out
goal recognition; computing P (G|O), i.e., the probability
distribution of the goals in G where O is the set of
observations. The exception is Dragan’s legibility
algorithm, which ranks the goals based on the legibility of
the trajectory observed.

The RGR algorithms evaluated in the simulation include:

• Ramirez and Geffner (Ramirez and Geffner, 2010). The
algorithm computes

P G|O( )∝ e− C G,O( )−C G, �O( )( )
where C (G, O) and C(G, �O) are optimal costs for the respective
plans for reaching the goals while matching the observations, and
reaching the goals without matching the observations.

• Vered et al (Vered and Kaminka, 2017; Kaminka et al.,
2018). The algorithm computes

P G|O( )∝ C G( )
C G,O( )

whereC(G) is the cost of the optimal plan for a goal G andC (G,O)
is the cost of the optimal plan that goes through the observations,
as above.

• Masters and Sardina (Masters and Sardina, 2019). The
algorithm computes

P G|N, S( ) � e− C G,N( )−C G,S( )( )

1 + e− C G,N( )−C G,S( )( )

whereN represents the last observation in the observations set. (C
(G, N) − C (G, S)) denotes the difference in costs between optimal
plan from the last observation to a goal and the optimal plan from
initial point to the goal. Their formula takes in account only the
last observation.

• Dragan et al (Dragan et al., 2013) (legibility). The algorithm
computes

legibility ξ( ) � ∫P Gp|ξS→ξ t( )( )f t( )dt
∫f t( )dt

integrating the probability of the actual goal along the trajectory
with higher weight given to the earlier parts of the trajectory using

a function like: f(t) � T − twith T the total length of the trajectory.
To do this, it computes

P G|O( )∝ e−C O( )−C ξpQ→G( )
e−C ξpS→G( )

where C(O) is the cost of the trajectory going through the
observations. C (ξpQ→G) and C (ξpS→G) are the costs of
optimal trajectories from the last observation to the goal and
from the initial point to the goal, respectively. This evaluates how
efficient is going to a goal through the observed part of the
trajectory in relation to the optimal trajectory. The idea is that
more legible trajectories are easier to recognize, as they maximize
the probability of the intended goal, in the mind of the observer.

Figure 4 shows the results of the algorithms, when observing
simulated motion along trajectory 2 of goal 1. The horizontal axis
denotes the length of the observed trajectory. The vertical axis
denotes the likelihood of the associated goal, as estimated by the
different RGR algorithms. The figure shows that while the
algorithms differ in how quickly they recognize the goal
(likelihood greater than 0.5), they all converge to the correct
goal almost from the beginning of observing the motion. Similar
results for all 14 trajectories are found in Supplementary
Appendix A.

3.2 Comparing RGR and Human
Recognition
A thorough consideration of RGR algorithms as a model of human
recognition requires us to evaluate the fidelity of RGR algorithms to
the human subject results. To do this, we examined the decision
time of the simulated algorithms, which is conceptually equivalent
to the measured human recognition response time (which
measures the time of correct decisions by humans).

The decision-convergence (henceforth, convergence) time is
the observed trajectory point for which both of the following
conditions hold: 1) it is the first observed point in which the
probability of the correct goal was greater than 0.5; and 2) no later
observation had the value fall to 0.5 or below. In other words, it is
the earliest point in the incrementally observed trajectory in
which the algorithm recognized and committed to the correct
goal. It is directly comparable to the mean normalized response
time for correct decisions by the participants in Berkovitz’s study,
which we include in Supplementary Appendix C.

We examined the predictive power of the various algorithms
by plotting the converge point of the algorithms against the mean
response time of human participants in Figures 5, 6. In both
figures, the horizontal axis measures the human response times in
seconds, normalized to the maximum duration of motion. The
vertical axis measures the observation point in which the
algorithm converged (decided) on the correct goal.

Figure 5 shows the results generated by Dragan’s legibility
algorithm (Dragan et al., 2013). A recognition algorithm that can
perform well as a model for human responses would show as a
plot where there exists a clear linear dependency between the two
sets of responses. Clearly, Figure 5 shows no such visible
tendency. The R2 measure for this data is 0.0488, and the null
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hypothesis (no dependency exists), cannot be ruled out
(p � 0.534, tested using the standard F-test for R2). We note
that the legibility score was intended to identify trajectories that
are intended to be understood by the observer, while the motions

which were observed by the human participants did not have this
goal in mind. While some may be legible by themselves, legibility
was not, overall, a good predictor of human response times in this
experiment.

Figure 6 shows the results of the algorithms of Ramirez and
Geffner (Ramirez and Geffner, 2010), Vered et al (Vered and
Kaminka, 2017; Kaminka et al., 2018), and Masters and Sardina
(Masters and Sardina, 2019). All three algorithms had identical
convergence results, and are therefore plotted here together in the
same figure (i.e., each of the 14 points was identical for all three
algorithms). The three RGR algorithms are somewhat better as
models of human recognition. The R2 measure is 0.3923, and may
be considered significant at α � 0.05 (p � 0.016547283).

Visibly, however, Figure 6 appears to have two clusters of
points, only one of which might indicate a linear dependency.
Indeed, upon further analysis (shown in Figure 7), it is clear that
any dependency that may exist, is only towards Goal 2. For Goal
1, the algorithm convergence times are always low (quick
decisions), while human responses vary (R2 � 0.0902). In
other words, the convergence points are unrelated to the
trajectory, and instead depend on the goal.

For completeness, we also conducted the same analysis for the
legibility algorithm (Figure 8). Here again, the results of the
algorithm for trajectories to goal 1 seem consistently low (quicker

FIGURE 4 | Trajectory 2 to goal 1. The horizontal axis measures the length of the observed trajectory. The vertical axis measures the probability of goal 1. The entire
set of figures of the 14 trajectories can be found in Supplementary Appendix A.

FIGURE 5 | A scatter plot of human subject response times plotted
against the convergence results of Dragan algorithm. The horizontal axis
measures the human decision point as a fraction of the maximal trajectory
motion duration. The vertical axis measures the algorithm decision point
in terms of the observed trajectory length. The results are insignificant at α �
0.05, p � 0.533736143.

FIGURE 6 | A scatter plot of human subject response times plotted
against the convergence results of three RGR algorithm (the convergence
results were identical for all three). The horizontal axis measures the human
decision point as a fraction of the maximal trajectory motion duration.
The vertical axis measures the algorithm decision point in terms of the
observed trajectory length. The results are significant at α � 0.05, p �
0.016547283.

FIGURE 7 | A scatter plot of human subject response times plotted
against the convergence results of three RGR algorithm (the convergence
results were identical for all three), clustered by goals. The horizontal axis
measures the human decision point as a fraction of the maximal
trajectory motion duration. The vertical axis measures the algorithm decision
point in terms of the observed trajectory length.
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convergence), with no correlation to human response time. For
goal 2 the algorithm did not converge in 4 of the trajectories. In
the other 3 trajectories it behaves remarkably different than in
goal 1.

4 RECOGNIZING GOALS BY RECOGNIZING
PLANS

The results from the human subjects are not explained by RGR
algorithms. The human subjects hesitate more, and make more
mistakes, when observing trajectories that overlap with others.
Given that the subjects only observe one motion trajectory at a
time, why would they be confused by trajectories that are not
observed?

Clearly, the subjects were affected by the virtual presence of
overlapping trajectories (i.e., a plan library). But how would
such a library form? Certainly, viewing a robot arm reaching for
either of two goals was not part of the subject’s prior
experience.

We conjecture that the within-subjects experiment design
primed the subjects to expect the type of inefficient trajectories
they may observe. In other words, we believe the subjects formed
a plan library in the early parts of the experiment, which they
utilized in latter stages. All subjects were exposed to all
14 incrementally-observed trajectories in random order. Only
two of the trials would present optimal trajectories. The
randomized order would result in the exposure of inefficient
(curving) trajectories to all subjects within the first three trials,
and likely, within the first one or two.

On the other hand, if we assume that the subjects only utilized
their incrementally-formed plan library to carry out the
recognition, then surely they would be more and more
hesitant as more trajectories are observed, regardless of the
order of presentation. The randomized presentation order, a
standard practice in within-subjects experiment design, seeks
to eliminate such ordering effects, and its use in this case
indeed reveals that the hesitation is tied to the overlap

between trajectories, not to the order of their presentation.
Clearly, as evident in previous work discussed earlier (Section
2), humans are able to recognize goals even when the plans for
them are novel to the observer.

We hypothesize that in stark contrast to both RGR and
classic library-based plan recognition methods, humans mix
both rationality-based and library-based recognition. We
believe they match observations to the closest known plans
(if such exist), and use the (sometimes ambiguous) set of
recognized plans to conclude as to the likely goals. Failing to
find a close plan, we believe they fall back to assuming the
observed agent is rational, and follow an RGR-like procedure for
recognition. In other words, we believe that while RGR
algorithms test each goal, by checking the rationality of the
dynamically-generated plan indicated by observations, humans
test each plan for matching the observations, and only then
check which goal(s) they lead to.

Specifically, we believe that when participants needed to
perform goal recognition, observing a single trajectory, they
utilized their primed, recent memories of similar trajectories.
Rather than asking themselves which goal best matches an
optimal plan, they focused on asking themselves what known
plan was most similar or closest to what they are observing.
Therefore trajectories that have more intersections with other
trajectories to other goals will be more confusing, and so people
tend to answer faster to trajectories that have fewer intersections
with other trajectories toward another goal.

This section presents a recognition mechanism which
embodies this hypothesis, and evaluates it on the original
data and in comparison with RGR. The results show that the
correlation with human subject response times is highly
significant. As the mechanism relies on both rationality
and plan library assumptions, the next section (Section 5)
will also contrast its performance with both RGR and
idealized library-based methods when the plan library is
incomplete.

4.1 Library-Based Rational Goal
Recognition Algorithm
LRGR (Algorithm 1) embodies a recognition method combining
both rationality and plan library assumptions, in a preliminary
form. It receives as input a set of goals G, a plan library TG, and an
observation o. The plan library TG is a set, partitioned into
multiple sets Tg, such that each subset Tg ⊂ TG is associated
with a goal g ∈ G. It then computes P (G|O) as follows.

First, LRGR iterates over all goals g ∈ G. For each one it
examines every one of its associated trajectories t ∈ Tg. Let us use
cost (p1, p2) to denote the cost of the optimal path between two
points p1, p2, and slightly abuse the notation, to also use cost(t) to
refer to the cost of a trajectory t (even if it is not optimal). We use
last(t) as the notation for the last point on some trajectory t, and
closest (p, t) to denote the point on trajectory t, which is closest to
the point p.

LRGR computes a hypothetical matching score M(t) for each
trajectory t leading to each goal g (Lines 1–7). It considers the
following conditions for such t.

FIGURE 8 | A scatter plot of human subject response times plotted
against the convergence results of Dragan algorithm, clustered by goals. The
horizontal axis measures the human decision point as a fraction of the maximal
trajectory motion duration. The vertical axis measures the algorithm
decision point in terms of the observed trajectory length.
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• If the observed trajectory o directly matches the specific
plan t, LRGR sets M(t) to 1 (Line 4).

• Otherwise, it computes an ad-hoc trajectory which
matches the observations, but then goes to the closest
point in the known trajectory t from the plan library, and
continues optimally from there. This is compared to the
cost of the optimal plan from the initial point to the goal.

M(t) in this case is set to the ratio between cost(t̂g) (the cost of
the optimal plan to the goal), and the cost C of the ad-hoc
trajectory described above. In particular, C is the sum of:

• The cost of the observed trajectory (cost(o)).
• The cost of the path from the last point of the trajectory o
to the closest point on the trajectory t (cost (last(o),
closest (last(o), t))). If no close trajectory exists closest
(last(o), t) is simply last(o) (the closest plan is the one
observed), and thus the cost is 0 (cost (last(o), last(o)) �
0). This can happen if Tg is empty, or if closest () enforces
a maximum distance cutoff.

• The cost of the optimal plan from that closest point on t,
to the goal g (cost (closest (last(o), t), g)) (Lines 6–7, C is
used here).

In line 8, LRGR chooses the maximum matching score M
among the trajectories for each goal, because we are interested
in a goal’s score and not in a trajectory’s score. Finally, we turn
the matching scores to goal likelihoods by using the
normalizing factor η � 1/(∑g∈Gscore(g))

Algorithm 1. Library-based Rational Goal Recognition
Algorithm (LRGR) (G, TG, o)

If an observation is a part of different trajectories to different
goals, or is equally close to trajectories reaching different goals,
then all such goals will get higher scores and thus the normalized
probability scores for both goals will be lower, representing a
more confusing observation. Similarly, if an observation is a part
of only one trajectory to one goal, only this goal will get higher
score and thus the probability normalized score will be higher
score only for this goal.

The reader should note that the optimal plans for reaching the
goals t̂g∈G are not necessarily in the plan library. This does not
preclude rationality-based recognition. In general, RGR
algorithms evaluate rationality by comparing the observations
against an optimal plan, to evaluate P (G|O). LRGR does the same:
if the observations do not perfectly match a known plan (line 5), it
constructs a hypothesized plan out of the observations (line 6),
and compares its cost C to the optimal plan t̂g. The comparison
evaluates the rationality of the hypothesized plan.

Indeed, LRGR is closely related to mirroring, the RGR
algorithm described in Vered et al. (Kaminka et al., 2018)

(also tested in Section 3 above). In the special case where no
closest plan can be found for a goal g the LRGR computation is
identical to that of mirroring. Where mirroring has

P g ∈ G|o( )∝
cost t̂g( )

cost o( ) + cost o, g( )

LRGR has

P g ∈ G|o( )∝
cost t̂g( )

cost o( ) + 0 + cost o, g( )
� cost t̂g( )
cost o( ) + cost o, g( )

because when no close plan is found, the closest plan is the
observed plan itself. However, because LRGR considers
trajectories in the plan library for other goals, it may produce
slightly different results when normalizing over G.

Computationally, LRGRmay take significant resources, depending
on the plan library representation and the planning processes used. It
calls a planner to generate an optimal plan t̂g for each goal, and also to
generate a path from the last observation point to the closest point on a
known trajectory. It makes a third call to the planner, to generate an
optimal plan from that point to the goal.

4.2 Evaluation of LRGR on the Experiment
Data
We followed the same experiment method described above, to
evaluate LRGR on the same data as RGR. Figure 9 shows the
results of the LRGR algorithm, when observing trajectory 2 of
goal 1, analogously to the results of using the RGR algorithms on
the same trajectory, as shown in Figure 4 in the previous section.
Here again, the horizontal axis denotes the length of the observed
trajectory and the vertical axis denotes the likelihood of the
associated goal. Figures showing LRGR results for all
trajectories are provided in Supplementary Appendix B.

The figure shows that the LRGR algorithm continues to
change its estimate of the likelihood of the correct goal, from
0.5 and up and then back to 0.5 and so forth. The likelihood
changes as observations match more than a single trajectory in
the plan library. It therefore converges relatively later than the
RGR algorithms (compare to Figure 4).

Qualitatively, this is novel behavior compared to the RGR
algorithms, which differed in their likelihood estimation, but all
converged identically quickly (in the case of this particular
trajectory). Encouraged by this novelty, we next evaluate
LRGR’s success in predicting human recognition response
times. We follow the same setup as in Figures 5, 6.

Figure 10 compares LRGR’s results to human reaction time.
The axis are labeled identically to those of Figures 5, 6. The results
visibly indicate a higher correlation (R2 � 0.69), in comparison to
the RGR results (R2 � 0.39, maximally). Moreover, they are
significant, even at a level of α � 0.001 (p � 0.00025244).

Figure 11 shows the convergence results of LRGR, clustered
by goals. Here, in contrast to RGR (see Figures 7, 8), the points of
both goals are clearly correlated with human responses. The
distribution of the data points is not influenced by the goals,
but by the trajectories.
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This is also a good opportunity to once again show that LRGR
approximates RGRmethods as the size of the plan library shrinks
to zero. Figure 12 shows the results when LRGR relies on optimal
plans alone. The results (and the R2 value) are very close to those
reported for RGR in the previous section (Figure 6).

5 RECOGNIZING PLANS WITH
INCOMPLETE PLAN LIBRARY

The experiments carried out with LRGR in the previous section
focus on LRGR versus RGR algorithms as models of human
recognition processes, in the presence of a plan library. We
provided the evaluated algorithms with the full library of plans
which is going to be observed. The experiments therefore can
only serve as evidence that human recognition relies (also) on a
plan library, rather than rationality alone.

However, in such experiments, any library-based plan
recognition algorithm would likely do equally well. Library-
based plan recognition methods assume the plan library is
complete3, and this assumption was satisfied in the
experiments carried out in the previous section. RGR methods
are intended to shine when the plan library is wholly missing; and
this case was not evaluated in the previous section.

In this section we therefore explore the other assumption
underlying LRGR’s operation: its reliance on a plan library.
LRGR marries approaches assuming rationality or plan-library

FIGURE 9 | LRGR results on trajectory 2 to goal 1. The horizontal axis measures the length of the observed trajectory. The vertical axis measures the probability of
goal 1. The entire set of figures of the 14 trajectories can be found in Supplementary Appendix B.

FIGURE 10 | A scatter plot of human subject response times plotted
against the convergence results of LRGR algorithm. The horizontal axis
measures the human decision point as a fraction of the maximal trajectory
motion duration. The vertical axis measures the algorithm decision point
in terms of the observed trajectory length. The results are significant at
α � 0.001, p � 0.00025244.

FIGURE 11 | A scatter plot of human subject response times plotted
against the convergence results of LRGR algorithm, clustered by goals. The
horizontal axis measures the human decision point as a fraction of the maximal
trajectory motion duration. The vertical axis measures the algorithm
decision point in terms of the observed trajectory length.

FIGURE 12 | A scatter plot of human subject response times plotted
against the convergence results of LRGRwhen utilizing optimal plans alone. The
points are clustered by goals. The horizontal axis measures the human decision
point as a fraction of the maximal trajectory motion duration. The vertical
axis measures the algorithm decision point in terms of the observed trajectory
length. The results are significant at α = 0.05, p = 0.035296632.

3Observations are assumed to perfectly match at least one plan in the plan library
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completeness, switching assumptions as needed. It uses the
plan library as part of the dynamically-generated hypothesized
plan, and then uses rationality to rank it. It therefore benefits
where a plan library exists, but is does not assume it is
complete.

A different set of experiments is needed to evaluate LRGR with
respect to plan library incompleteness. We want to demonstrate
that LRGR is able to handle observations of a trajectory, not in its
plan library. Its performance should be contrasted with RGR
methods (which are immune to changes in the plan library, for
the simple reason they ignore it), and also to library-based
methods which make the completeness assumption.

We compare LRGR to an idealized plan recognition algorithm,
termed Ideal for the purposes of the discussion. The ideal plan
recognition algorithm returns likelihood 1 if the observations
match a known trajectory leading to a single goal, returns 0.5 if
the observations match trajectories leading to 2 goals, and returns
0 if the observations match no known trajectory. As observations
in this experiment come from trajectories which have overlaps,
the results are not always 0.

The three sets of algorithms (RGR, LRGR, Ideal) are evaluated
on goal recognition problems generated from the full set of 14
trajectories. We vary the size of the plan library given to the
algorithms. The observed plan is never included in the plan
library, yet the Ideal algorithm may still return a non-zero
likelihood for a goal, as observations (from the unknown
trajectory) may overlap with a trajectory that is included in
the plan library.

We begin with the simplest set of generate goal recognition
problems. In each such problem, the plan library includes only 13
trajectories from the set of 14 trajectories, and observations are
generated from the 14th trajectory not included in the plan
library. This is a “leave one out” design: as there are 14
trajectories in the full library, there are 14 problems generated
by always leaving one trajectory out of the library and using it to
generate observations.

While the “leave one out” design is simple, it has the benefit of
being realistic, in the sense that it has certainly taken place in the
experiments reported in (Berkovitz, 2018). As all 30 subjects were
exposed to all 14 trajectories, they all encountered a recognition
problem where 13 of the trajectories were already exposed to
them, and they had to reach a decision upon observing a new one
(which they have not previously observed).

Figure 13 shows the convergence time of each of the
algorithms in each of the problems. The horizontal axis marks
the trajectory left out. The vertical measures convergence, as
before (quicker commitment, lower convergence point).

The figure shows that LRGR algorithms converge faster than
other algorithms. These algorithms behave in the same way for
observations that are part of the plan library and for new
observations that are not included in the library, because they
do not rely on any plan library. We remind the reader that our
goal here is not to determine which algorithm is more accurate, or
faster-to-commit, but instead to explore algorithms that model
human goal recognition. As we have seen previously, the RGR
algorithms do not necessarily provide a good model of human
responses (e.g., for goal 1 trajectories).

Between the two algorithms utilizing a library (LRGR and
Ideal), LRGR Algorithm converged faster than the ideal plan
recognition algorithm. It is able to handle observations that do

FIGURE 13 | A comparison of the convergence results of different goal recognition algorithms. The horizontal axis marks the trajectory number left out. The vertical
axis marks the convergence. Lower results indicate faster commitment to the correct goal.

FIGURE 14 | A scatter plot of human subject response times plotted
against the convergence results of LRGR algorithm. The horizontal axis
measures the human decision point as a fraction of the maximal trajectory
motion duration (Supplementary Appendix C). The vertical axis
measures the algorithm decision point in terms of the observed trajectory
length. The results are significant at α � 0.0001, p � 0.00001789.
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not match a plan, unlike the idealized plan recognition algorithm
based on a plan library. It was therefore able to infer the correct
goal based on similarity of the observations to a known plan.

We carried out another comparison (using the leave-one-out
design), where we contrasted LRGR with the human data (which
averages over every one of the participants, each one having been
exposed to a leave-one-out recognition problem at the end of
their experiment participation, as discussed above).

Figure 14 shows the results. The LRGR (Algorithm 1)
convergence results are highly correlated with human
recognition response times (R2 � 0.796), much better than
RGR algorithms. In fact, the results are significant at even
higher level of significance (α � 0.0001, p � 0.00001789).

Encouraged by these results, we continued to generate
recognition problems, where the size of the plan library was
reduced. Each of the 14 trajectories was left out as an observation.
Then, for each such trajectory, we generated a plan library by
randomly choosing the needed number of trajectories (e.g., 3
trajectories for plan library of size 3) from among the 13
remaining in the original set (while guaranteeing that both
goals were represented). We then evaluated LRGR’s
convergence using the plan library. Put differently, given a
controlled plan library size, we randomly generated 14
recognition problem. This was repeated 20 times for each plan
library size (i.e., a total of 280 problems for each plan library size).

Figure 15 shows the same type of scatter-plot graphs (and
report on R2 values) when the plan library size is restricted to 10
trajectories (top figure), 6 trajectories (middle figure), and 3
trajectories (bottom figure). Each such graph reports the mean
of 20 recognition problems, for each of the 14 trajectories used as
observations, i.e., a total of 280 goal recognition problems with a
plan library of the given size. All R2 values are significant at the α
� 0.0001 level.

We believe that this last set of results provides strong evidence
for the hypothesis that LRGR is able to function well with a (very)
incomplete plan library, while able to also account for cases where
the plan library has an important role in the recognition process.

6 CONCLUSION

We propose a novel approach to modeling human goal
recognition mechanisms. Intrigued by Berkovitz and Parush’s
study of human goal recognition, as reported in (Berkovitz, 2018),
we hypothesized that humans recognize plans first (preferring
known plans), and only on the basis of such recognition, infer
(recognize) goals. This is in contrast with modern rationality-
based goal recognition methods, where the likelihood of each goal
is evaluated based on the rationality of a dynamically-generated
plan matching the observations.

To test our hypothesis, we constructed a simulated version
of the human subject experiment, and used it to evaluate
known rationality-based goal recognition (RGR) algorithms.
We found that RGR algorithms fail to account for human
response times and recognition decisions.

We then develop a preliminary plan-library based goal
recognition algorithm, called LRGR. The new algorithm uses
plans in its library when they perfectly match observations. When
they do not, it dynamically generates new plans accounting for
the observations, and continuing through close known plans
(i.e., close plans that are in the library). It therefore marries
RGR and library-based plan recognition methods, taking the best
of both approaches.

The comparison of mean reaction time of human subjects to
the LRGR reveals that it is much better at predicting human
recognition times (R2 � 0.69 instead of R2 � 0.39). In addition, we
simulated scenarios in which the plan library is incomplete,
allowing us to investigate LRGR versus idealized plan
recognition algorithms that rely on a plan library, with no
dynamic generation of plans matching the observations. We

FIGURE 15 | LRGR convergence versus human response times
provided in Supplementary Appendix C, under conditions of different plan
library sizes. Top to bottom: Plan libraries of size 10, size 6, and size 3
(compare to Figure 14, where the plan library size is 13). Each graph
shows the results from 280 randomly-generated goal recognition problems.
Each point is the mean of 20 trials.
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found that regarding accuracy of predictions, RGR algorithms
work better than plan recognition algorithms. We also found that
the new LRGR algorithm has better performance than an ideal
plan recognition. However, RGR algorithms fail to model
human recognition results. Lastly, we therefore compared the
algorithms’ performance on new observations with human
reaction time. Here, LRGR matches human behaviour even
more clearly than earlier experiments (R2 � 0.796). Further
testing on approximately 800 randomly-generated
recognition problems with different plan library sizes
shows LRGR is remarkably robust to plan library
incompleteness.

We consider this work to be only a first milestone towards a
new approach for modeling human goal and plan recognition
processes. While we are excited about this promising direction,
we caution that the success reported in this paper is limited to a
single experiment domain. While this domain has been
specifically constructed to shed light on human recognition
processes (Berkovitz, 2018), LRGR has not been yet tested
against human response data in a different task. Also, as a
model of human recognition process, it suffers from the same
limitations as many RGR methods (from which it drew
inspiration): For example, it is unable to recognize hierarchical
goals and goal schema (Lesh and Etzioni, 1995; Blaylock and
Allen, 2006; Blaylock and Allen, 2014).

We believe LRGR raises many opportunities for the readers
interested in plan recognition in synthetic agents. We plan to
continue development of LRGR and evaluate its modeling
efficacy in different human tasks. We also plan to examine the
computational implications of LRGR, in comparison to both RGR
methods and library-based methods.
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