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Digitalisation of manufacturing is a crucial component of the Industry 4.0 transformation.
The digital twin is an important tool for enabling real-time digital access to precise
information about physical systems and for supporting process optimisation via the
translation of the associated big data into actionable insights. Although a variety of
frameworks and conceptual models addressing the requirements and advantages of
digital twins has been suggested in the academic literature, their implementation has
received less attention. The work presented in this paper aims to make a proposition that
considers the novel challenges introduced for data analysis in the presence of
heterogeneous and dynamic cyber-physical systems in Industry 4.0. The proposed
approach defines a digital twin simulation tool that captures the dynamics of a
machining vibration signal from a source model and adapts them to a given target
environment. This constitutes a flexible approach to knowledge extraction from the
existing manufacturing simulation models, as information from both physics-based and
data-driven solutions can be elicited this way. Therefore, an opportunity to reuse the costly
established systems is made available to the manufacturing businesses, and the paper
presents a process optimisation framework for such use case. The proposed approach is
implemented as a domain adaptation algorithm based on the generative adversarial
network model. The novel CycleStyleGAN architecture extends the CycleGAN model
with a style-based signal encoding. The implemented model is validated in an experimental
scenario that aims to replicate a real-world manufacturing knowledge transfer problem.
The experiment shows that the transferred information enables the reduction of the
required target domain data by one order of magnitude.

Keywords: knowledge transfer, transfer learning, domain adaptation, incremental learning, artificial intelligence,
deep learning, generative adversarial network, industry 4.0

1 INTRODUCTION

The digital twin is a precise representation of a physical object or process within the digital realm.
The definition of this concept, initially conceived within the aerospace industry (Shafto et al., 2010),
has evolved to encompass whole ecosystems that are recreated digitally as cyber-physical systems
(CPS) (Bajaj et al., 2016). Modern understanding of the underlying system characteristics is highly
influenced by the introduction of the big data and the industrial internet of things (IIoT) solutions
(Lee et al., 2013). Thus, when approached within the scope of the transition towards Industry 4.0, the
development of the digital twin requires a holistic approach to data acquisition, modelling and
analysis, as multiple interconnected components need to be assembled to fully deliver the value a
digital twin is expected to produce as a decision-making tool (Grieves and Vickers, 2017; Negri et al.,
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2017). Before such a holistic vision can be realised in practice, the
research and industrial communities would have to present
innovation in several fields, including infrastructure, process
monitoring and predictive systems. The unification of the
physical and the digital data from across the various steps of
the object’s life cycle introduces novel difficulties that challenge
the established analysis methods (Tao et al., 2018).

Simulation modelling is one of the key components of the
digital twin. It is widely used in the verification and evaluation of
engineering systems and their performance and functionality. In
manufacturing the virtual recreation of production enables the
acquisition of insights into the behaviour of the product. A
product’s features can be analysed both online and offline and
their characteristics predicted prior to the end of the
manufacturing process (Papananias et al., 2019a).

The increase of the computational efficiency provided by the
improvements to the software and hardware solutions over the
recent years significantly lowered the barriers that previously
limited the practical applicability of simulations (Smith and
Tlusty, 1991). The machining domain steadily increases its
reliance in simulation modelling for analysis of tool stress
(Özel and Altan, 2000), forces (Afazov et al., 2010), surface
finish (Campomanes and Altintas, 2003), machining stability
(Altintas and Weck, 2004) and verification of the physics-
based models (Altintas et al., 2014; Thepsonthi and Özel,
2015; Shetty et al., 2017; Greis et al., 2020).

The diversity of machining error causes, as well as their
dynamic character, substantially distort model predictions,
posing a major problem that continues to be extensively
investigated by manufacturing researchers (Wilhelm et al.,
2001; Monostori, 2003; Elmaraghy et al., 2012; Li et al., 2015;
Tidriri et al., 2016). Material uncertainties (e.g., its differences
from the specification) and machining uncertainties (e.g., the
thermal errors) are among the many of the error causes. These
production-process-related uncertainties are transmitted and
amplified through measurement errors originating from
software faults, instrumental errors, fixturing errors, etc.,
(Forbes, 2013; Papananias et al., 2019a). The result is the
chaotic variability of the behaviour of the modelled processes
under different conditions and in heterogeneous environments.

The use of physics-based modelling approaches, while
oftentimes is theoretically able to produce highly accurate
results, becomes practically limited, considering the diversity
and complexity associated with the scale of Industry 4.0
environments. The reasons for this limitation stem from the
dynamic character of the flow of the environmental properties
(Niggemann et al., 2015) and the fact that the physics-based
models have to be reconfigured for the new environments, often
requiring manual intervention. The automation of the modelling
process attainable with data-driven modelling circumvents this
issue, aligning the states of a physical object and its digital twin.
Thus, while physics-based simulations are successful at
machining abnormalities prediction, data-driven approaches
enable higher adaptability to the dynamic internal and
environmental conditions (Friedrich et al., 2018).

The main limitation of the data-driven modelling is its
requirement for data. A data-driven model would not be able

to reason from first principles unless merged into a hybrid system
with the incorporation of a physics-based model. Such hybrid
approaches are actively investigated by the research community
(Greis et al., 2020), but their implementation is limited by the
access to the underlying models of the physics-based tools used in
industry. The proprietary modelling software rarely provides
flexible integration access to its outputs, even less so to its
internal procedures. Nevertheless, the information contained
within such models is of great value, usually reflected in the
price tag of the proprietary modelling software. The extraction of
this information in a reusable form is one of the applications of
the methods found in the knowledge transfer research domain
and is the main topic of this paper.

Knowledge transfer for data analytics deals with the problem
of heterogeneous or non-stationary environments, where a model
effective in some environment requires adaptation to new or
changed conditions to remain accurate (Bang et al., 2019). In the
context of manufacturing this usually implies that the target
domain data is very limited, thus the need for efficient
knowledge transfer from data-abundant domains. Knowledge
transfer is usually regarded as an approach for information
transfer between machine learning methods (Pan and Yang,
2010). But in the context of simulation modelling a previous
work shows that it is not strictly necessary for the source model to
be a learned model, as knowledge is extractable from physics-
based simulation models using a generative adversarial network
(GAN) (Zotov et al., 2021).

The generative adversarial network is a kind of an artificial
neural network (ANN) that is built on a competitive minimax
game between two ANNs: the generator, which learns to generate
data samples, and the discriminator, which learns to detect the
fake data samples amongst the real ones (Goodfellow et al., 2014).
As a result, the data distribution generated by the generator
network approaches the true distribution of the data which may
be directly used for simulation of the underlying process. Among
the many extensions to the original GAN architecture, one of the
most relevant for the knowledge transfer research is the
CycleGAN proposed by (Zhu et al., 2017). Section 2.2
describes this architecture, as well as the StyleGAN (Karras
et al., 2018) model that form the base of the method proposed
in this paper.

A recent review by Bang et al. (2019) groups the knowledge
transfer methods into two groups: incremental learning and
domain adaptation. The main difference between the
approaches in these groups is the discarding of the source
domain data during incremental learning, as only the source
domain knowledge encoded via a trained model is carried over to
the target domain training phase (Giraud-carrier, 2013). Domain
adaptation, on the contrary, implies that the source domain data
is at least partially available and used to learn a mapping between
the source and the target domains (Ganin et al., 2016; Weiss et al.,
2016).

Several recent domain adaptation methods are inspired by the
adversarial interactions within GANs, as reflected in the
terminology used to describe these techniques: adversarial
domain adaptation. These are usually categorised as either
feature-level (Liu and Tuzel, 2016; Sun et al., 2016) or pixel-
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level adversarial domain adaptation approaches (Bousmalis et al.,
2017; Shrivastava et al., 2017) with some of the recent works
merging the two in hybrid adversarial domain adaptation models,
e.g. Bousmalis et al. (2018).

The widespread digitalisation within the transition towards
Industry 4.0 creates a drive for flexible and efficient data-driven
simulation modelling. The existing simulation solutions
frequently lack the required flexibility and integration access
to be effective in a heterogeneous and dynamic environment
of the interconnected cyber-physical systems. Nevertheless, the
knowledge contained within these costly models is often valued at
a very high price. The efficient use of this knowledge is therefore
an important concern for any business employing such
simulations.

The work presented here proposes a solution for extraction of
the knowledge from the existing manufacturing simulation tools
applicable both to physics-based and to data-driven source
models, thus enabling business cost optimisation. The
proposed approach implements a novel CycleStyleGAN
domain adaptation model by introducing the style-based signal
representation into the CycleGAN framework. This paper
evaluates the effectiveness of the proposed knowledge transfer
method and compares it to an incremental learning approach
validated under identical conditions. A proposed use case of the
developed model for manufacturing process optimisation is also
discussed in section 4.

2 MATERIALS AND METHODS

2.1 Milling Vibration Datasets
Due to the high cost of collection, manufacturing process data is
currently a limited resource. The commercial secrecy of such data
adds to the difficulty of using it in public research. Real
implementations of data-driven digital twins are thus likely to
be trained on existing and established physics-based models and
fine-tuned using a combination of simulated and empirical data.

The simulation that generated the dataset utilised in this study is a
surrogate for a real-world data-generation process. On one hand,
because of the complete control over data creation, this enables a
thorough examination of the digital twin component
performance. On the other hand, the proposed method
approximates the real-world case of transitioning from pure
physics-based modeling to a scenario including both physics
and experimental data.

The GANmodels used in this study are trained using synthetic
datasets generated by a physics-based time-domain simulation
model based on Schmitz and Smith (2019). The simulation
iteratively determines the forces generated by the interaction
of a non-rigid machining tool’s cutting teeth with a rigid
workpiece (Figure 1). These forces are utilised to calculate the
cutting tool’s acceleration, velocity, and displacement, i.e.
vibration. Vibration is chosen as the analysed signal type
because of its low anticipated collection cost and its use in
machining process analysis. To determine which cutting teeth
are in the cut at each time step, the simulation records the
orientation of each cutting tooth and the workpiece contour
generated bymaterial removal (Figure 2). The process considered
in this work is a linear non-slotting milling cut on a metal
workpiece using a straight-teeth cutting tool.

The physics-based model accepts several variables that control
the deterministic simulation, including machining parameters
that can be controlled during the metal cutting process
configuration and parameters that are dependent on the
workpiece material, machining tool, and the manufactured
product characteristics. Three datasets are created for the
experiments presented in this paper. Dataset 1 represents
source domain data. Datasets 2 and 3 correspond to the target
domains that differ from the source domain, respectively, either
slightly or significantly. The similarity between dataset 2 and
dataset 1 portrays a situation of a small difference in the
environment temperature or the machined material properties
between the two domains. Dataset 3 represents a case of
substantially varied properties of the underlying signals, for
example resulting from a change of machining tool.

FIGURE 1 | Geometrical representation of the forces simulated by the
physics-based model. F is the cutting force and β is the force angle. Ft and Fn
denote the tangential and the normal cutting forces and ϕ is the cutting
tooth angle.

FIGURE 2 |Workpiece geometry produced by the simulation model. h(t)
is the instantaneous depth of cut at time t that is the distance between the
current normal direction vibration level at angle ϕ and the cut surface at angle ϕ
produced at time t − T, where T is the time period of cutting tool
revolution between two neighbouring cutting teeth.
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Table 1 details the process simulation variables, followed by
the values used to generate the training data. The hyphens
indicate the values used in datasets 2 and 3 that are unchanged
as compared to dataset 1. Chip width and spindle speed, which
range from 0.004 to 0.005 mm and 3,000 to 4,000 rpm
respectively, are the characteristics that vary among the
samples in a generated dataset. The produced signals reflect
the cutting tool’s displacement in the x-direction during its
third rotation, sampled at a rate proportionate to the
spindle speed.

Each combination of 200 linearly spaced chip width and 200
spindle speed parameter values in the given ranges yields a
signal sample, resulting in a total of 40,000 signal samples in
the dataset. The only pre-processing done to this data is mean
and standard deviation normalisation, which is done
individually for each of the process parameters as well as
for the time-domain signals. The validation dataset, which
includes 40,000 samples, is created using the same method but
with the process parameters moved half a step, i.e. chip width
ranging from 0.004025 to 0.005025 and spindle speed from
3,002.5 to 4,002.5. All the datasets are freely accessible on
GitLab at https://gitlab.com/EZotoff/cyclestylegan-based-
knowledge-transfer-for-a-machining-digital-twin.

2.2 Model Architectures
2.2.1 Conditional StyleGAN
StyleGAN (Karras et al., 2018), an image generating model
based on two-dimensional deep convolutional networks with
the generator enhanced by style-injection inspired by style
transfer research works, influenced the digital twin
component architecture described in this article. StyleGAN
elements are reused for the 1D case of a time-domain signal
(Zotov et al., 2020). Because the variation of outputs of the target
distribution is deterministic with respect to the input process
parameters implies that the training data contains only a single
sample per unique label pair, the noise inputs and the mixing
regularisation (regularisation applied during training that
randomly mixes the disentangled latent with another to
produce a sample from the generator G) proposed in the
StyleGAN paper are excluded from our model. The
architecture is improved via the replacement of the random

input latent vector with continuous labels C, i.e. the machining
process parameters: chip width and spindle speed. As shown in
Figure 3, the process parameters are utilised as inputs to the
generator and as outputs of the discriminator, thus the
discriminator learns to not only recognise fake data samples,
but also to estimate the labels associated with a particular time-
series. A non-linear mapping network M projects process
parameter inputs into a disentangled latent space. The styles
S � M (C) generated by the mapping network from the input
labels C govern the modulation of outputs of the transposed
convolutional layers inside the generator’s synthesis network F
(Figure 4).

The mapping networkM is a multi-layer perceptron that has 8
layers, each with 32 neurons that implement leaky ReLU
activation functions. The input process parameters C are
translated into style vectors S of length 256 by M. A learned
constant vector is the initial input to the synthesis network.
Multiple blocks, each having two transposed convolutional
layers with a convolutional kernel of size 7, consecutively
process this learned constant. The output of each block is also
upscaled and passed to the output layer, skipping the rest of the
convolutional processing. With the exception of the first block,
where the constant vector replaces the output of the first
convolutional layer, the first convolutional layer in each
block upscales the signal length by a factor of two and
reduces the number of filters by a factor of two until the
number of filters reaches 8. Within the adaptive instance
normalisation (AdaIN) operation (Huang and Belongie,
2017) the signals are routed through a leaky ReLU activation
function after each convolutional layer, then normalised and
blended with the appropriate style component vector. This
operation is defined as

AdaIN xf, si( ) � ssi
xf − μ xf( )

σ xf( ) + sbi , (1)

where ssi and sbi are the scaling and bias components of the
style vector at level i, and xf is a filter response that is each
normalised individually. The synthesis network’s final layer
uses a convolution operation with kernel size ch to combine
the summed outputs received from the skip connections of

TABLE 1 | Milling time-domain simulation parameters.

Parameter type Parameter Dataset 1 Dataset 2 Dataset 3

Machining parameters Chip width b 0.004 to 0.005 — —

Spindle speed ω 3,000 to 4,000 — —

Feed rate f 10.2 — —

Process-dependent Number of cutting teeth Nt 3 — —

parameters Start angle of cut ϕs 126.9 — —

Exit angle of cut ϕe 180 — —

Process dependent coefficient Ks 2250e6 1950e6 1950e6
Force angle β 75 — —

x direction dynamics parameter kx 9e6 — 7e6
x direction dynamics parameter ζx 0.02 — —

y direction dynamics parameter ky 1e7 — 1.3e7
y direction dynamics parameter ζy 0.01 — —

Simulation parameters Steps per revolution 256 — —

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 7674514

Zotov and Kadirkamanathan CycleStyleGAN-Based Knowledge Transfer

https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin
https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


the convolutional blocks into a signal with ch channels, with
ch � 1 in our case of displacement along one axis. The
discriminator is built as a convolutional neural network
composed of several residual blocks. Each block contains
two convolutional layers, followed by a downsampling layer.
For the parametrisation of the described networks please
refer to section 2.3.

The GAN loss function is based on Wasserstein GAN with
gradient penalty (WGAN-GP) (Gulrajani et al., 2017). WGAN-
GP losses for the generator and the discriminator are

Lwgan−gp
G � − E

~x∼Pg

D ~x( )[ ],
Lwgan−gp
D � E

~x∼Pg

D ~x( )[ ] − E
x∼Pr

D x( )[ ] + λgpL
gp (2)

respectively, where

Lgp � E
~x∼P ~x

‖∇~xD ~x( )‖2 − 1( )2[ ] (3)

is the gradient penalty, λgp is its scaling hyperparameter, D is the
discriminator network, x and ~x denote the real and fake signals
respectively, Pr and Pg are the real and the generator signal
distributions. P~x is a distribution sampled uniformly from
straight lines between pairs of points from Pr and Pg

(Gulrajani et al., 2017).
The loss functions are adjusted to accommodate the inclusion

of machining process parameters in the networks architecture by
addition of terms that penalise inaccurate label predictions. This
is similar to the approach followed by the authors of InfoGAN
(Chen et al., 2016), with the following difference. The accuracy of
label predictions for training data LinfoD impacts only the
discriminator, while the accuracy of the predictions for fake

FIGURE 3 | Conditional GAN architecture. G denotes the generator network, D—the discriminator.

FIGURE 4 | Architecture of the StyleGAN generator network. “A″ denotes learned affine transformations of style components si; “AdaIN”—adaptive instance
normalisation (Huang and Belongie, 2017), outputs of which are modulated by the transformed style components.
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data samples LinfoG is taken into account only by the generator.
The loss terms are

Linfo
G � 1

n
∑
n

k�1
|ck − ~ck,fake|,

Linfo
D � 1

n
∑
n

k�1
|ck − ~ck,real|,

(4)

where ~ck,fake � D(~x) is a value of parameter k predicted by the
discriminator based on a fake signal, ~ck,real � D(x) is a value
predicted from a real signal, and ck are the true parameter
values.

On one hand, the generator is constrained to encode the label
information that is identifiable within the synthesised signals. The
discriminator, on the other hand, learns the link between labels
and samples solely on real data, retaining the non-cooperative
aspect of the generator-discriminator minimax game. The total
loss functions for the generator LG and the discriminator LD are as
follows, with λinfo representing the scaling factor for the label
prediction accuracy error loss:

LG � Lwgan−gp
G + λinfoL

info
G ,

LD � Lwgan−gp
D + λinfoL

info
D .

(5)

2.2.2 CycleStyleGAN
For the time-series domain adaptation experiment discussed in
this paper, the neural network described in section 2.2.1 is
extended with elements of CycleGAN (Zhu et al., 2017), an
image-to-image translation network that utilises mirrored
duplex-GAN architecture for image style transfer between two
domains. The underlying intent is the training of two generators:
one, Gab, that translates data samples from domain a to domain b
and the other, Gba, that executes the inverse transformation.

The key invention of Zhu et al. (2017), which necessitates the
addition of the second GAN structure, is the cycle consistency
loss that enforces the equivalence between the true signals from
one of the domains ~x and the reconstructed signals ~̃x that are
obtained after passing the true signals through both generators,
i.e. xa

≈ � Gba(x̃b) � Gba(Gab(xa)) and
xb
≈ � Gab(x̃a) � Gab(Gba(xb)). This loss is calculated for both
domains a and b and is defined as:

Lcycle � |xa − xa
≈ | + |xb − xb

≈ |. (6)

Following the style-based modelling approach used for
vibration signal synthesis, the proposed CycleStyleGAN
generators also operate on the style encodings of the signals.
The generators Gab and Gba are thus built as ensembles of three
subnetworks: the encoder, the translator and the decoder, and
implement the signal translation functions Gab: xa → xb, Gba:
xb → xa. The encoder network compresses the input signals into
their style representations (Encoderab: xa → Sa and Encoderba:
xb → Sb), which are then passed onto the translator module. This
module transforms the received style vector into the target
domain style (Translatorab: Sa → Sb, Translatorba: Sb → Sa).
Finally, the decoder subnetwork synthesises the target

domain signal from the translated (Decoderab: Sb → xb,
Decoderba: Sa → xa). The schematic depiction of the
CycleStyleGAN architecture is displayed on Figure 5.

The current work implements the encoder and the translator
networks as deep convolutional networks with residual blocks
that each contain two convolutional layers. The decoder
subnetwork is equivalent to the synthesis network described in
section 2.2.1 and is a deep transposed convolutional network
with skip connections (see the synthesis network F block on
Figure 4).

The two discriminators in the CycleStyleGAN model play
roles similar to the ones seen in the Conditional StyleGAN
model with a key difference in their classification task: the
networks now aim to identify whether the signals passed to
them belong to their respective domains. The adversarial losses
are then formulated as:

Lwgan−gp
Gab

� − E
~xb ∼ Pb

Db ~xb( )[ ],
Lwgan−gp
Gba

� − E
~xa ∼ Pa

Da ~xa( )[ ],
Lwgan−gp
Db

� E
~xb ∼ Pb

D ~xb( )[ ] − E
xa ∼ Pa

D xa( )[ ] + λgpL
gp
b ,

Lwgan−gp
Da

� E
~xa ∼ Pa

D ~xa( )[ ] − E
xb ∼ Pb

D xb( )[ ] + λgpL
gp
a ,

(7)

where

Lgp
a � E

~xa ∼ P
~xa

‖∇~xa
D ~xa( )‖2 − 1( )2[ ] and

Lgp
b � E

~xb ∼ P
~xb

‖∇~xb
D ~xb( )‖2 − 1( )2[ ]

(8)

are the gradient penalty terms, λgp is the gradient penalty scaling
hyperparameter, Da and Db are the discriminator networks
operating on domain a and b signals respectively, xa (xb) and
~xa (~xb) denote the real domain a (b) signals and the signals
translated to the domain a (b) respectively and Pa (Pb) is the
domain a (b) signal distributions.

As in the case of the information loss formulated for the
Conditional StyleGAN, the generators are incentivised to
preserve the label information in the synthesised signals, while
the discriminators are penalised for misreading the labels
encoded within the training data samples. These targets are
implemented as the following loss function for the
CycleStyleGAN networks:

Linfo
Gab

� 1
n
∑
n

k�1
|ck − ~ck,b,fake|, Linfo

Db
� 1
n
∑
n

k�1
|ck − ~ck,b,real|,

Linfo
Gba

� 1
n
∑
n

k�1
|ck − ~ck,a,fake|, Linfo

Da
� 1
n
∑
n

k�1
|ck − ~ck,a,real|,

(9)

where ~ck,a,fake � Da(~xa) and ~ck,b,fake � Db(~xb) are the values of
parameter k predicted by the respective discriminators based on
signals translated to domain a or b. ~ck,a,real � Da(xa) and
~ck,b,real � Db(xb) are the values predicted from a domain a or
a domain b real signal, and ck are the true parameter values.

The total losses the generator and the discriminator networks
are as follows:
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LGab
� Lwgan−gp

Gab
+ λinfoL

info
Gab

+ λcycleL
cycle,

LGba
� Lwgan−gp

Gba
+ λinfoL

info
Gba

+ λcycleL
cycle,

LDb
� Lwgan−gp

Db
+ λinfoL

info
Db

,

LDa � Lwgan−gp
Da

+ λinfoL
info
Da

,

(10)

Where λinfo represents the scaling factor for the label
prediction error loss, λcycle is the cycle consistency loss
multiplier. λinfo � 10, λgp � 10 and λcycle � 10 are used to
parameterise the network losses during training.

2.3 Hyperparameter Optimisation
The neural networks trained during the experiment described in this
paper have several hyperparameters that configure their internal
structure. The description of what these hyperparameters are and
how they are optimised to improve the performance of the models is
given below. Where possible, reasonable constraints are enforced to
maintain the tractability of the hyperparameter search given the
available computational resources.

The number of convolutional blocks, the structure of which
is described in section 2.2.1, and number of convolutional filters

used in each block are the main hyperparameters that determine
the size and complexity of the neural subnetworks. The
generative subnetworks, i.e. the synthesis network of the
StyleGAN and the decoder of the CycleStyleGAN, receive the
number of filters equal to the respective hyperparameter value at
the initial convolutional block, that is then downscaled after
each block by the filter scaling factor. The minimal number of
filters that a block can have is defined via a hyperparameter. The
length of the signal is upscaled at the end of each convolutional
block, in a way such that the final output signal is of the target
length 256. The subnetworks that process the signal in the
opposite direction, the discriminators and the CycleStyleGAN
encoder, are built in a reverse manner. The number of filters at
the last block is determined by the hyperparameter, and this
number decreases towards the beginning of the network, while
the length of the signal is downscaled after each block from the
input’s 256. The full list of the hyperparameters is presented in
Table 2.

The size of StyleGAN mapping network, which is a
feedforward network with fully connected layers, is configured
via its depth (the number of layers) and breadth (number of

FIGURE 5 | Conditional CycleStyleGAN architecture.Gab and Gba denote the generator networks that translate signals from domain a to domain b and vice versa.
Da andDb are the discriminators that process domain a and b signals, both real and the ones translated into their respective domain. The callout on the bottom shows the
subnetworks of G, using Gba as the example. Other notation: c, ~c—real and estimated process parameter values; xa (xb)—true domain a (b) signals; ~xa (~xb) - signals
synthesised via translation to domain a (b); xa

≈
(xb
≈
)—signals synthesised via reconstruction back to domain a (b); Sa (Sb)—style encoding of a domain a (b) signal.

The different colour coding indicates the data structures and the neural networks associated with each domain.
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neurons per layer). These are fixed at 8 and 32 respectively,
following the StyleGAN work (Karras et al., 2017). The
hyperparameters in GAN subnetworks with similar functions
are jointly optimised, i.e. the same value is kept between the
instances of such hyperparameters in the different networks.
Following this approach, the sizes of the style vector output by
the mapping network of the StyleGAN model and by the encoder
of the CycleStyleGAN are linked. The equivalence of the
StyleGAN synthesis and the CycleStyleGAN decoder network
architectures is also maintained this way, as well the
configurations of both discriminators and the CycleStyleGAN
encoder. Another hyperparameter search space constraint
adopted from previous experiments sets the discriminator
optimiser learning rate to the value of one 10th of the learning
rate of the generator.

For further optimisation of the hyperparameter search space we
start with only the 12 StyleGAN and optimiser hyperparameters,

using a single hyperparameter that defines both learning rates as
described above. The StyleGAN model is optimised based on
dataset 1 using the Hyperband algorithm (Li et al., 2017). This
approach implies training many differently parametrised neural
network for a few epochs, selection of the subset of best performing
ones with their subsequent further training. After multiple
iterations of such selection and training, the hyperparameter
values of the best-performing network are considered optimal.
After StyleGAN hyperparameter optimisation, the remaining non-
linked CycleStyleGAN hyperparameters, which are only the two
translator subnetwork hyperparameters, are optimised using the
same approach. The hyperparameter optimisation at this stage
showed the same results both on dataset 2 and dataset 3.

2.4 Training Schedules
The GANs presented in this study are trained until convergence,
or until 68,000 000 sample instances are shown to the networks,

TABLE 2 | Model hyperparameters.

Parameter type Allowed values Used value

Optimiser
Generator optimiser type SGD, Adam Adam
Discriminator optimiser type SGD, Adam Adam
Generator learning rate 0.01, 0.001, 0.0001 0.001
Discriminator learning rate 0.001, 0.0001, 0.00001 0.0001

Conditional StyleGAN generator
Mapping network M
Number of layers 8 8
Neurons per layer 32 32
Style vector size 32, 128, 256, 1,024 512

Synthesis network F
Number of convolutional blocks 7, 5, 2 2
Starting number of convolutional filters 64, 256, 1,024 256
Filter number scaling factor 2, 4 2
Minimal filters number 8, 64, 128 8

Conditional StyleGAN Discriminator
Number of convolutional blocks 7, 5, 2 5
Final number of convolutional filters 64, 256, 1,024 64
Filter number scaling factor 2, 4 2
Maximal filters number 128, 512, 1,024 512

CycleStyleGAN generator
Encoder
Number of convolutional blocks 7, 5, 2 5
Final number of convolutional filters 64, 256, 1,024 64
Filter number scaling factor 2, 4 2
Maximal filters number 128, 512, 1,024 512
Style vector size 32, 128, 256, 1,024 512

Translator
Number of convolutional blocks 5, 11 5
Number of filters 2, 32, 128 2

Decoder
Number of convolutional blocks 7, 5, 2 2
Starting number of convolutional filters 64, 256, 1,024 256
Filter number scaling factor 2, 4 2
Minimal filters number 8, 64, 128 8

CycleStyleGAN Discriminator
Number of convolutional blocks 7, 5, 2 5
Final number of convolutional filters 64, 256, 1,024 64
Filter number scaling factor 2, 4 2
Maximal filters number 128, 512, 1,024 512
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each instance representing a single time-series picked from the
training dataset. The training data instances are fed to the
network during training in batches of 1,000 at a time, cycling
through all the non-repeating batches. The rate of improvement
of the root mean square error (RMSE) metric is measured and
averaged over the testing dataset to determine training
convergence. Convergence is considered reached if no error
reduction is observed over the last 6,800 000 sample instances,
i.e. over the last 10% of the maximal total exposure to the
training data.

The Conditional StyleGAN model architecture presented in
section 2.2.1 is used in two training approaches, for brevity
henceforth called retraining and incremental training. Retraining
approach implies training of a freshly initialised StyleGAN neural
network on a limited set of data from dataset 2 or 3. Incremental
training is implemented as a two-stage training schedule. First, a
base neural network is trained using all samples available in
dataset 1. Second, a neural network initialised with the weights
obtained from stage one training (in other words, a copy of the
StyleGAN trained on dataset 1) is trained on a given set of
samples from datasets 2 or 3. The sets of samples used for training
the networks under both approaches are obtained by randomly
selecting a fraction of samples from the respective dataset. The
percentages of the used samples are 20, 15, 10, 5, 2, 0.8%.

The domain adaptation training of the CycleStyleGANs (see
section 2.2.2 for the model architecture) is performed using the
full source domain data (i.e., dataset 1) and a subset of the target
domain data. The percentages of the used samples are 20, 15, 10,
5, 2, 0.8, 0.2%. The sample sets of datasets 2 and 3 used under this
approach are the same as the sets used for incremental training of
the StyleGAN described above.

3 RESULTS

The analysis presented in this section seeks the validation of the
proposed CycleStyleGAN architecture as a knowledge transfer
technique under the target domain data scarcity constraint. To
this extent, the accuracies of the CycleStyleGAN model instances
are compared with the accuracies of the StyleGAN networks, thus
presenting the performance of the proposed domain adaptation
method against the incremental learning approach. For
comparison fairness, the underlying subnetworks of the
models are parametrised identically wherever possible, and the
models are treated with the same sets of samples during training
and are evaluated on the same validation data.

Each trained StyleGAN and CycleStyleGAN model is
evaluated by a generative error metric defined as the average
of the mean absolute error (MAE) between the target signals from
the validation data (xcval) and the synthesised signals, i.e. the
signals created by StyleGAN from parameters ~x � G(cval) or
translated by the a → b CycleStyleGAN from the domain a
signals ~x � Gab(x(cval)):

�E � 1
m

∑
m

j�1
E cvalj( ),where E c( ) � 1

n
∑
n

i�1
xi c( ) − ~xi c( )| |, (11)

where m is number of samples in the validation dataset and n is
the signal length. All models are consecutively trained as
described in section 2.4, starting with the highest fraction of
the target dataset, 20%. The experiment for a particular training
approach and dataset is interrupted if the obtained error
distribution includes any points above the model deficiency
threshold. This threshold is inferred from the generative error
evaluated on the target domain validation using the StyleGAN
model obtained during stage one of the incremental training, i.e.
the model trained only on the source domain dataset:

�Ethld � 1
m

∑
m

j�1
Ethld cvalj( ),where

Ethld c( ) � 1
n
∑
n

i�1
xtarget
i c( ) − ~xsource

i c( )∣∣∣∣ ∣∣∣∣, (12)

For the sake of limiting the computations required to execute
the experiment, and considering that the focus of this work is on
the transfer learning with minimal amount of available data, we
do not evaluate the models using more than 20% of the target
domain data. The error levels of all models differ insignificantly
for training runs utilising 15% or more data. The errors are
averaged across multiple training runs for each combination of
samples.

The training performance distributions of the models at the
different levels of target domain data limitations are presented on
Figure 6. Dataset 2 represents a scenario of small difference
between the source and the target domains, e.g. as a result of
minor variations in material characteristics or environment
conditions. Dataset 3 expresses a case of significantly different
characteristics underlying the target domain signals, for example
arising from a machining tool with a different geometry. A model
trained without any source domain knowledge performs well on
both datasets when trained using 6,000 (out of the total 40,000) or
more target domain training data samples, with smaller training
dataset size leading to a sharp drop in the models’ performance.
The incremental learning approach shows a similar pattern of
severe generative accuracy degradation, but below a more strict
data limitation constraint: 2,000 samples. The domain adaptation
implementation using the CycleStyleGAN architecture proposed
in this paper displays different behaviour to the aforementioned
approaches. The quality of the generated signals significantly
degrades only when trained on less than 800 target domain data
samples, and the degradation below this point is smoothly
approaching the �Ethld error level.

These results imply that the CycleStyleGAN error has an
upper bound at �Ethld, the target domain accuracy level of the
model trained only on the source domain data. Therefore, the
reliability of this model can be estimated from the expected
difference between the source and the target domains. The use
of the source domain data during CycleStyleGAN training
ensures that the model does not suffer from catastrophic
forgetting and does not overfit to the small subset of the
observed data samples, contrary to what happens to the neural
networks trained from scratch or trained incrementally. The
CycleStyleGAN domain adaptation is thus potentially usable
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with any amount of data available at hand at a given moment and
can be expected to reach peak performance with the amount of
target domain data one order of magnitude lower than a model
trained from scratch. For an industrial implementation this
means that, on one hand, the value of the knowledge extracted
from the source model is not diluted during the knowledge
transfer process, and, on the other hand, that the adaptation
of the transferred information to a new process can be initiated
along with the launch of this process. For a process that requires
generative accuracy above the threshold bound, the proposed
method enables a reduction of the pre-launch data acquisition
effort almost tenfold.

The available computational power limitations implied that
the number of training repetitions in the described experiment
had to be limited to three for each set of training conditions.
While this simplification blurs the precision of the estimated
model error distributions, the variation in the model’s
effectiveness provides sufficient evidence to support the claims
presented in the current work.

4 DISCUSSION

While GAN-based approaches are widely popular in the image
processing domain adaptation domain (Liu and Tuzel, 2016;
Bejiga and Melgani, 2018; Hoffman et al., 2018; Feng et al.,
2020; Shahbazi et al., 2021; Tan et al., 2021), their
implementation for time-series generation problems is
relatively limited. Several use cases are described in the energy
output prediction (Chen et al., 2018), in music (Mogren, 2016),
and in medical (Esteban et al., 2017; Tseng et al., 2017) and
manufacturing (Wang Z. et al., 2018) time-series generation.

The research focus on GANs in manufacturing is presently
dominated by data augmentation aimed at supporting a main
classification model (Han et al., 2019; Wang et al., 2019b,a). This
is also confirmed by the reviews on manufacturing applications of
artificial neural networks, where data augmentation is identified
as the sole use case for GANmodels (Wang J. et al., 2018; Kusiak,
2019; Qi et al., 2019; Jiao et al., 2020). An increasing plethora of
works is being published in the recent years that propose

FIGURE 6 | Model error (Y-axis) plotted against the amount of data (X-axis, log scale) used for training the networks under the three approaches, separated by
target domain dataset. The vertical error bars indicate the standard deviation of the model error across several runs under the same conditions. The dashed horizontal
lines on both subcharts represent the errors �Ethld of the models trained on dataset 1 when evaluated against dataset 2 and 3 validation data respectively.
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solutions that enhance the classification accuracy of machinery
fault detection, as evidenced in the review papers covering just the
deep learning research on this topic (Li et al., 2020). Research on
domain adaptation approaches in manufacturing follows the
same pattern (Zheng et al., 2019). Manufacturing applications
of GANs as a primary generative instrument can be found in
fields of sampling resolution enhancement (Alawieh et al., 2019)
and generative design of material structures (Tan et al., 2019).

To the best of authors knowledge, the research on the
generative function of GANs for manufacturing process
simulation is largely unexplored. Even less studied area is the
application of digital twin simulations in the context of
knowledge extraction for Industry 4.0.

These research gaps are addressed within the work described
in this paper. The style-based representation of the simulated
vibration signals has been shown in a previous publication to be
useful both for performance improvement and for analysis of the
underlying model (Zotov et al., 2021). Building on the GAN
extensions for the transfer learning tasks, namely the CycleGAN
architecture, this paper introduces the style features into the
domain adaptation model via the novel CycleStyleGAN
architecture and proposes the following Industry 4.0 use case
for the resulting knowledge transfer tool.

A physics-based model for a fleet of machines would be the
same in a real-world situation, but each unit would be handled
under various circumstances and have somewhat varied
characteristics. Configuration of the physics-based models for
a specific instance depends on the particular process conditions
and is generally a labour-intensive process, which thus becomes
exponentially costly when employed on a broad scale. While a
physics-based model could serve as a component of a digital twin
simulation, it would inevitably simplify and idealise the process,
discarding individual diversity of environmental and dynamic
factors influencing the manufacturing process due to their
modelling complexity or computational cost. These complex
phenomena are mirrored in real-world process data and may
therefore be captured via data-driven model training.

Control over the input machining process parameters guides
the process signal synthesis in the proposed CycleStyleGAN
model. Therefore, the model may serve as a vibration
simulation tool that translates the process parameter inputs
into vibration signal outputs when combined with a source
domain simulation model that produces source signals from

process parameters. Such a simulation may be used for CNC
machining process optimisation and planning. Researchers have
shown how signal data could be utilised for product quality
prediction (He and Wang, 2018; Papananias et al., 2019b;
Leco and Kadirkamanathan, 2021), enabling the prediction of
manufacturing defects prior to manufacturing. Furthermore,
machining process stability estimates may be improved by
substituting generative models for parts of the physical data,
which is another future study path suggested by machining
stability specialists (Greis et al., 2020). The proposed
CycleStyleGAN model is thus usable as a process optimisation
tool: by probing the model to acquire parameter-signal pairs and
evaluating the resultant process quality based on the received
signals, an optimisation process loop would seek the optimum
within the parameter space. Schematic representation of this
process flow is depicted on Figure 7. This paper shows how
an established physics-based or data-driven model can be
sourced, thus extracting the value of the information
contained within the said model for further reuse. We believe
the cost-efficiency of the proposed model to be an important
driver towards the widespread use of digital twin solutions along
the transition to Industry 4.0.

A drawback of the CycleStyleGAN model architecture, as
compared to the StyleGAN, is its higher computational
resource requirements. The mirrored GAN structure uses
approximately double the memory and double the
computations during training. While these differences are
negligible for a trained model due to the efficiency of the
neural networks at inference time, the training process
computations are twice as costly. Although the costs of
computational hardware are incomparable to the
manufacturing process expenses in most cases, certain high-
volume low-value production industries might find the
computational overhead exceeding the expected value of such
simulation model adaptation. Such businesses, having relatively
lower data acquisition costs, can be expected to be able to
effectively employ machine learning models without the need
for transfer learning.

Possible extensions of the proposed domain adaptation
approach may consider inter-task transfer learning. For
example, the prediction of the machining cutting forces from
the vibration signals may useful for downstream process analysis.
Another research gap the exploration of which might lead to

FIGURE 7 | Proposed generator model as a part of a process optimisation flow.
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improved generative performance of the underlying model is the
specialised subnetwork architecture. The current literature
presents multiple options for structuring of these neural
networks, but a comparative analysis of the performance of
these architecture choices is yet to reach the science
community. Linked to this is the application of sophisticated
neural network architecture search approaches. An extension of
an advanced method like the ES-HyperNEAT (Risi and Stanley,
2012) might aid not only the hyperparameter optimisation of a
pre-defined network structure, but also in discovery of a novel
composition of the neural network.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://gitlab.com/
EZotoff/cyclestylegan-based-knowledge-transfer-for-a-
machining-digital-twin.

AUTHOR CONTRIBUTIONS

EZ andVKdesigned themodels and the experiments described in the
paper. EZ implemented the models, ran the experiments, analysed
their results and wrote the initial paper draft. VK supervised the
modelling and analysis work and reviewed the paper draft.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding for this research
from the UK Engineering and Physical Sciences Research Council
(EPSRC) under Grant Reference: EP/P006930/1.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frai.2021.767451/
full#supplementary-material

REFERENCES

Afazov, S. M., Ratchev, S. M., and Segal, J. (2010). Modelling and Simulation of
Micro-milling Cutting Forces. J. Mater. Process. Tech. 210, 2154–2162.
doi:10.1016/j.jmatprotec.2010.07.033

Alawieh, M. B., Lin, Y., Zhang, Z., Li, M., Huang, Q., and Pan, D. Z. (2019). GAN-
SRAF: Sub-resolution Assist Feature Generation Using Conditional Generative
Adversarial Networks. Proc. - Des. Automation Conf., 1–6.

Altintas, Y., Kersting, P., Biermann, D., Budak, E., Denkena, B., and Lazoglu, I.
(2014). Virtual Process Systems for Part Machining Operations. CIRP Ann. 63,
585–605. doi:10.1016/j.cirp.2014.05.007

Altintas, Y., andWeck, M. (2004). Chatter Stability of Metal Cutting and Grinding.
CIRP Ann. 53, 619–642. doi:10.1016/S0007-8506(07)60032-8

Bajaj, M., Cole, B., and Zwemer, D. (20162016). Architecture to Geometry -
Integrating System Models with Mechanical Design. AIAA Space and
Astronautics Forum and Exposition, SPACE 1–19. doi:10.2514/6.2016-5470

Bang, S. H., Ak, R., Narayanan, A., Lee, Y. T., and Cho, H. (2019). A Survey on
Knowledge Transfer for Manufacturing Data Analytics. Comput. Industry 104,
116–130. doi:10.1016/j.compind.2018.07.001

Bejiga, M. B., and Melgani, F. (2018).Gan-based Domain Adaptation for Object
Classification. In IGARSS 2018 - 2018 IEEE International Geoscience and
Remote Sensing Symposium. IEEE, 1264–1267. doi:10.1109/
IGARSS.2018.8518649

Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., et al.
(2018). Using Simulation and Domain Adaptation to Improve Efficiency of
Deep Robotic Grasping. In IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 4243–4250. doi:10.1109/ICRA.2018.8460875

Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., and Krishnan, D. (2017).
Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial
Networks. Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017 2017-January, 95–104. doi:10.1109/
CVPR.2017.18

Campomanes, M. L., and Altintas, Y. (2003). An Improved Time Domain
Simulation for Dynamic Milling at Small Radial Immersions.
J. Manufacturing Sci. Eng. Trans. ASME 125, 416–422. doi:10.1115/1.1580852

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P.
(2016). “InfoGAN: Interpretable Representation Learning by Information
Maximizing Generative Adversarial Nets,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems. Editors
D. Cremers, I. Reid, H. Saito, and M.-H. Yang (Cham: Springer International
Publishing), 2180–2188. doi:10.1007/978-3-319-16817-3

Chen, Y., Wang, Y., Kirschen, D., and Zhang, B. (2018). Model-Free Renewable
Scenario Generation Using Generative Adversarial Networks. IEEE Trans.
Power Syst. 33, 3265–3275. doi:10.1109/tpwrs.2018.2794541

Elmaraghy, W., Elmaraghy, H., Tomiyama, T., and Monostori, L. (2012).
Complexity in Engineering Design and Manufacturing. CIRP Ann. 61,
793–814. doi:10.1016/j.cirp.2012.05.001

Esteban, C., Hyland, S. L., and Rätsch, G. (2017). Real-valued (Medical) Time Series
Generation with Recurrent Conditional GANs.

Feng, C., He, Z., Wang, J., Lin, Q., Zhu, Z., Lu, J., et al. (2020). Domain Adaptation
with SBADA-GAN and Mean Teacher. Neurocomputing 396, 577–586.
doi:10.1016/j.neucom.2018.12.089

Forbes, A. B. (2013). Uncertainty Associated with Form Assessment in Coordinate
Metrology. Int. J. Metrol. Qual. Eng. 4, 17–22. doi:10.1051/ijmqe/2012032

Friedrich, J., Torzewski, J., and Verl, A. (2018). Online Learning of Stability Lobe
Diagrams in Milling. Proced. CIRP 67, 278–283. doi:10.1016/j.procir.2017.12.213

Ganin, Y., Larochelle, H., andMarchand, M. (2016). Domain-Adversarial Training
of Neural Networks. J. Machine Learn. Res. 17, 1–35.

Giraud-carrier, C. (2013). A Note on the Utility of Incremental Learning. AI
Commun.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
et al. (2014). Generative Adversarial Networks

Greis, N. P., Nogueira, M. L., Bhattacharya, S., and Schmitz, T. (2020). Physics-
Guided Machine Learning for Self-Aware Machining. In 2020 AAAI Spring
Symposium on AI and Manufacturing.

Grieves, M., and Vickers, J. (2017).Digital Twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary
Perspectives on Complex Systems: New Findings and Approaches. Springer
International Publishing, 85–113. doi:10.1007/978-3-319-38756-7_4

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A.
(2017).Improved Training of Wasserstein gans. In Proceedings of the 31st
International Conference on Neural Information Processing Systems. NY, USA:
Red HookCurran Associates Inc., 5769–5779.

Han, T., Liu, C., Yang, W., and Jiang, D. (2019). A Novel Adversarial Learning
Framework in Deep Convolutional Neural Network for Intelligent Diagnosis of
Mechanical Faults. Knowledge-Based Syst. 165, 474–487. doi:10.1016/
j.knosys.2018.12.019

He, Q. P., and Wang, J. (2018). Statistical Process Monitoring as a Big Data
Analytics Tool for Smart Manufacturing. J. Process Control. 67, 35–43.
doi:10.1016/j.jprocont.2017.06.012

Hoffman, J., Tzeng, E., Park, T., Zhu, J. Y., Isola, P., Saenko, K., et al. (2018).
CyCADA: Cycle-Consistent Adversarial Domain Adaptation. 35th Int. Conf.
Machine Learn. ICML 5, 3162–3174.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 76745112

Zotov and Kadirkamanathan CycleStyleGAN-Based Knowledge Transfer

https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin
https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin
https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin
https://www.frontiersin.org/articles/10.3389/frai.2021.767451/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2021.767451/full#supplementary-material
https://doi.org/10.1016/j.jmatprotec.2010.07.033
https://doi.org/10.1016/j.cirp.2014.05.007
https://doi.org/10.1016/S0007-8506(07)60032-8
https://doi.org/10.2514/6.2016-5470
https://doi.org/10.1016/j.compind.2018.07.001
https://doi.org/10.1109/IGARSS.2018.8518649
https://doi.org/10.1109/IGARSS.2018.8518649
https://doi.org/10.1109/ICRA.2018.8460875
https://doi.org/10.1109/CVPR.2017.18
https://doi.org/10.1109/CVPR.2017.18
https://doi.org/10.1115/1.1580852
https://doi.org/10.1007/978-3-319-16817-3
https://doi.org/10.1109/tpwrs.2018.2794541
https://doi.org/10.1016/j.cirp.2012.05.001
https://doi.org/10.1016/j.neucom.2018.12.089
https://doi.org/10.1051/ijmqe/2012032
https://doi.org/10.1016/j.procir.2017.12.213
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1016/j.knosys.2018.12.019
https://doi.org/10.1016/j.knosys.2018.12.019
https://doi.org/10.1016/j.jprocont.2017.06.012
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Huang, X., and Belongie, S. (2017). Arbitrary Style Transfer in Real-Time with
Adaptive Instance Normalization. In IEEE International Conference on
Computer Vision (ICCV), 1510–1519. doi:10.1109/ICCV.2017.167

Jiao, J., Zhao, M., Lin, J., and Liang, K. (2020). A Comprehensive Review on
Convolutional Neural Network in Machine Fault Diagnosis. Neurocomputing
417, 36–63. doi:10.1016/j.neucom.2020.07.088

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Progressive Growing of GANs
for Improved Quality, Stability, and Variation

Karras, T., Laine, S., and Aila, T. (2018). A Style-Based Generator Architecture for
Generative Adversarial Networks. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 4396–4405.

Kusiak, A. (2019). Convolutional and Generative Adversarial Neural Networks
in Manufacturing. Int. J. Prod. Res. 0, 1–11. doi:10.1080/
00207543.2019.1662133

Leco, M., and Kadirkamanathan, V. (2021). A Perturbation Signal Based
Data-Driven Gaussian Process Regression Model for In-Process Part
Quality Prediction in Robotic Countersinking Operations. Robotics
and Computer-Integrated Manufacturing 71, 102105. doi:10.1016/
j.rcim.2020.102105

Lee, J., Lapira, E., Bagheri, B., and Kao, H.-a. (2013). Recent Advances and Trends
in Predictive Manufacturing Systems in Big Data Environment.Manufacturing
Lett. 1, 38–41. doi:10.1016/j.mfglet.2013.09.005

Li, C., Zhang, S., Qin, Y., and Estupinan, E. (2020). A Systematic Review of Deep
Transfer Learning for Machinery Fault Diagnosis. Neurocomputing 407,
121–135. doi:10.1016/j.neucom.2020.04.045

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017).
Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. J. Machine Learn. Res. 18, 6765–6816.

Li, Y., Liu, C., Gao, J. X., and Shen, W. (2015). An Integrated Feature-Based
Dynamic Control System for On-Line Machining, Inspection and Monitoring.
Ica 22, 187–200. doi:10.3233/ICA-150483

Liu, M.-y., and Tuzel, O. (2016). Coupled Generative Adversarial Networks. In
Proceedings of the 30th International Conference on Neural Information
Processing Systems. 469–477.

Mogren, O. (2016). C-RNN-GAN: Continuous Recurrent Neural Networks with
Adversarial Training.

Monostori, L. (2003). AI and Machine Learning Techniques for Managing
Complexity, Changes and Uncertainties in Manufacturing. Eng. Appl. Artif.
Intelligence 16, 277–291. doi:10.1016/S0952-1976(03)00078-2

Negri, E., Fumagalli, L., and Macchi, M. (2017). A Review of the Roles of Digital
Twin in CPS-Based Production Systems. Proced. Manufacturing 11, 939–948.
doi:10.1016/j.promfg.2017.07.198

Niggemann, O., Biswas, G., Kinnebrew, J. S., Khorasgani, H., Volgmann, S., and
Bunte, A. (2015). Data-driven Monitoring of Cyber-Physical Systems
Leveraging on Big Data and the Internet-Of-Things for Diagnosis and
Control. CEUR Workshop Proc. 1507, 185–192.

Özel, T., and Altan, T. (2000). Process Simulation Using Finite Element Method -
Prediction of Cutting Forces, Tool Stresses and Temperatures in High-Speed
Flat End Milling. Int. J. Machine Tools Manufacture 40, 713–738. doi:10.1016/
s0890-6955(99)00080-2

Pan, S. J., and Yang, Q. (2010). A Survey on Transfer Learning. IEEE Trans. Knowl.
Data Eng. 22, 1345–1359. doi:10.1109/TKDE.2009.191

Papananias, M., McLeay, T. E., Mahfouf, M., and Kadirkamanathan, V. (2019a). A
Bayesian Framework to Estimate Part Quality and Associated Uncertainties in
Multistage Manufacturing. Comput. Industry 105, 35–47. doi:10.1016/
j.compind.2018.10.008

Papananias, M., McLeay, T. E., Mahfouf, M., and Kadirkamanathan, V. (2019b).
An Intelligent Metrology Informatics System Based on Neural Networks for
Multistage Manufacturing Processes. Proced. CIRP 82, 444–449. doi:10.1016/
j.procir.2019.04.148

Qi, X., Chen, G., Li, Y., Cheng, X., and Li, C. (2019). Applying Neural-Network-Based
Machine Learning to Additive Manufacturing: Current Applications, Challenges,
and Future Perspectives. Engineering 5, 721–729. doi:10.1016/j.eng.2019.04.012

Risi, S., and Stanley, K. O. (2012). An Enhanced Hypercube-Based Encoding for
Evolving the Placement, Density, and Connectivity of Neurons. Artif. Life 18,
331–363. doi:10.1162/artl_a_00071

Schmitz, T. L., and Smith, K. S. (2019). Machining Dynamics. Cham: Springer
International Publishing.

Shafto, M., Conroy, M., Doyle, R., Glaessgen, E., Kemp, C., LeMoigne, J., et al.
(2010). DRAFT Modeling, Simulation, Information Technology & Processing
Roadmap - Technology Area 11. Washington, DC: National Aeronautics and
Space Administration, 27.

Shahbazi, M., Huang, Z., Paudel, D. P., Chhatkuli, A., and Van Gool, L. (2021).
Efficient Conditional GAN Transfer with Knowledge Propagation across
Classes.

Shetty, N., Shahabaz, S. M., Sharma, S. S., and Divakara Shetty, S. (2017). A Review
on Finite Element Method for Machining of Composite Materials. Compos.
Structures 176, 790–802. doi:10.1016/j.compstruct.2017.06.012

Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., and Webb, R.
(2017). Learning from Simulated and Unsupervised Images through
Adversarial Training. In Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017. 2242–2251.
doi:10.1109/CVPR.2017.241

Smith, S., and Tlusty, J. (1991). An Overview of Modeling and Simulation of the
Milling Process. J. Eng. industry 113, 169–175. doi:10.1115/1.2899674

Sun, B., Feng, J., and Saenko, K. (2016).Return of Frustratingly Easy
Domain Adaptation. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. Palo Alto, California: AAAI
Press, 2058–2065.

Tan, H., Liu, X., Liu, M., Yin, B., and Li, X. (2021). KT-GAN: Knowledge-Transfer
Generative Adversarial Network for Text-To-Image Synthesis. IEEE Trans.
Image Process. 30, 1275–1290. doi:10.1109/TIP.2020.3026728

Tan, R. K., Zhang, N. L., and Ye, W. (2019). A Deep Learning–Based Method for
the Design of Microstructural Materials. Struct. Multidisciplinary
Optimization 1–22.

Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., and Sui, F. (2018). Digital Twin-
Driven Product Design, Manufacturing and Service with Big Data. Int. J. Adv.
Manuf Technol. 94, 3563–3576. doi:10.1007/s00170-017-0233-1

Thepsonthi, T., and Özel, T. (2015). 3-D Finite Element Process Simulation of
Micro-end Milling Ti-6Al-4V Titanium alloy: Experimental Validations on
Chip Flow and Tool Wear. J. Mater. Process. Tech. 221, 128–145. doi:10.1016/
j.jmatprotec.2015.02.019

Tidriri, K., Chatti, N., Verron, S., and Tiplica, T. (2016). Bridging Data-Driven and
Model-Based Approaches for Process Fault Diagnosis and Health Monitoring:
A Review of Researches and Future Challenges. Annu. Rev. Control. 42, 63–81.
doi:10.1016/j.arcontrol.2016.09.008

Tseng, H.-H., Luo, Y., Cui, S., Chien, J.-T., Ten Haken, R. K., and Naqa, I. E. (2017).
Deep Reinforcement Learning for Automated Radiation Adaptation in Lung
Cancer. Med. Phys. 44, 6690–6705. doi:10.1002/mp.12625

Wang, J., Ma, Y., Zhang, L., Gao, R. X., and Wu, D. (2018a). Deep Learning for
Smart Manufacturing: Methods and Applications. J. Manufacturing Syst. 48,
144–156. doi:10.1016/j.jmsy.2018.01.003

Wang, J., Yang, Z., Zhang, J., Zhang, Q., and Chien, W.-T. K. (2019a). AdaBalGAN:
An Improved Generative Adversarial Network with Imbalanced Learning for
Wafer Defective Pattern Recognition. IEEE Trans. Semicond. Manufact. 32,
310–319. doi:10.1109/tsm.2019.2925361

Wang, Y., Li, K., Gan, S., Cameron, C., and Zheng, M. (2019b). Data Augmentation
for Intelligent Manufacturing with Generative Adversarial Framework. In 1st
International Conference on Industrial Artificial Intelligence, 1–6. doi:10.1109/
iciai.2019.8850773

Wang, Z., Wang, J., and Wang, Y. (2018b). An Intelligent Diagnosis Scheme Based
on Generative Adversarial Learning Deep Neural Networks and its Application
to Planetary Gearbox Fault Pattern Recognition. Neurocomputing 310,
213–222. doi:10.1016/j.neucom.2018.05.024

Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A Survey of Transfer
Learning. Springer International Publishing. doi:10.1186/s40537-016-0043-6

Wilhelm, R. G., Hocken, R., and Schwenke, H. (2001). Task Specific Uncertainty in
Coordinate Measurement. CIRP Ann. 50, 553–563. doi:10.1016/S0007-
8506(07)62995-3

Zheng, H., Wang, R., Yang, Y., Yin, J., Li, Y., Li, Y., et al. (2019). Cross-Domain
Fault Diagnosis Using Knowledge Transfer Strategy: A Review. IEEE Access 7,
129260–129290. doi:10.1109/ACCESS.2019.2939876

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (20172017).Unpaired Image-To-
Image Translation Using Cycle-Consistent Adversarial Networks. In IEEE
International Conference on Computer Vision (ICCV). IEEE, 2242–2251.
doi:10.1109/ICCV.2017.244

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 76745113

Zotov and Kadirkamanathan CycleStyleGAN-Based Knowledge Transfer

https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1016/j.neucom.2020.07.088
https://doi.org/10.1080/00207543.2019.1662133
https://doi.org/10.1080/00207543.2019.1662133
https://doi.org/10.1016/j.rcim.2020.102105
https://doi.org/10.1016/j.rcim.2020.102105
https://doi.org/10.1016/j.mfglet.2013.09.005
https://doi.org/10.1016/j.neucom.2020.04.045
https://doi.org/10.3233/ICA-150483
https://doi.org/10.1016/S0952-1976(03)00078-2
https://doi.org/10.1016/j.promfg.2017.07.198
https://doi.org/10.1016/s0890-6955(99)00080-2
https://doi.org/10.1016/s0890-6955(99)00080-2
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1016/j.compind.2018.10.008
https://doi.org/10.1016/j.compind.2018.10.008
https://doi.org/10.1016/j.procir.2019.04.148
https://doi.org/10.1016/j.procir.2019.04.148
https://doi.org/10.1016/j.eng.2019.04.012
https://doi.org/10.1162/artl_a_00071
https://doi.org/10.1016/j.compstruct.2017.06.012
https://doi.org/10.1109/CVPR.2017.241
https://doi.org/10.1115/1.2899674
https://doi.org/10.1109/TIP.2020.3026728
https://doi.org/10.1007/s00170-017-0233-1
https://doi.org/10.1016/j.jmatprotec.2015.02.019
https://doi.org/10.1016/j.jmatprotec.2015.02.019
https://doi.org/10.1016/j.arcontrol.2016.09.008
https://doi.org/10.1002/mp.12625
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1109/tsm.2019.2925361
https://doi.org/10.1109/iciai.2019.8850773
https://doi.org/10.1109/iciai.2019.8850773
https://doi.org/10.1016/j.neucom.2018.05.024
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1016/S0007-8506(07)62995-3
https://doi.org/10.1016/S0007-8506(07)62995-3
https://doi.org/10.1109/ACCESS.2019.2939876
https://doi.org/10.1109/ICCV.2017.244
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Zotov, E., Tiwari, A., and Kadirkamanathan, V. (2021). Conditional StyleGAN
Modelling and Analysis for a Machining Digital Twin. Ica 28, 399–415.
doi:10.3233/ICA-210662

Zotov, E., Tiwari, A., and Kadirkamanathan, V. (2020). “Towards a Digital Twin
with Generative Adversarial Network Modelling of Machining Vibration,” in
Proceedings of the 21st EANN (Engineering Applications of Neural Networks)
2020 Conference. Editors L. Iliadis, P. P. Angelov, C. Jayne, and E. Pimenidis
(Cham: Springer International Publishing), 190–201. doi:10.1007/978-3-030-
48791-1_14

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zotov and Kadirkamanathan. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 76745114

Zotov and Kadirkamanathan CycleStyleGAN-Based Knowledge Transfer

https://doi.org/10.3233/ICA-210662
https://doi.org/10.1007/978-3-030-48791-1_14
https://doi.org/10.1007/978-3-030-48791-1_14
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	CycleStyleGAN-Based Knowledge Transfer for a Machining Digital Twin
	1 Introduction
	2 Materials and Methods
	2.1 Milling Vibration Datasets
	2.2 Model Architectures
	2.2.1 Conditional StyleGAN
	2.2.2 CycleStyleGAN

	2.3 Hyperparameter Optimisation
	2.4 Training Schedules

	3 Results
	4 Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


