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Symmetries, invariances and conservation equations have always been an invaluable
guide in Science to model natural phenomena through simple yet effective relations. For
instance, in computer vision, translation equivariance is typically a built-in property of neural
architectures that are used to solve visual tasks; networks with computational layers
implementing such a property are known as Convolutional Neural Networks (CNNs). This
kind of mathematical symmetry, as well as many others that have been recently studied,
are typically generated by some underlying group of transformations (translations in the
case of CNNs, rotations, etc.) and are particularly suitable to process highly structured data
such as molecules or chemical compounds which are known to possess those specific
symmetries. When dealing with video streams, common built-in equivariances are able to
handle only a small fraction of the broad spectrum of transformations encoded in the visual
stimulus and, therefore, the corresponding neural architectures have to resort to a huge
amount of supervision in order to achieve good generalization capabilities. In the paper we
formulate a theory on the development of visual features that is based on the idea that
movement itself provides trajectories on which to impose consistency. We introduce the
principle of Material Point Invariance which states that each visual feature is invariant with
respect to the associated optical flow, so that features and corresponding velocities are an
indissoluble pair. Then, we discuss the interaction of features and velocities and show that
certain motion invariance traits could be regarded as a generalization of the classical
concept of affordance. These analyses of feature-velocity interactions and their invariance
properties leads to a visual field theory which expresses the dynamical constraints of
motion coherence and might lead to discover the joint evolution of the visual features along
with the associated optical flows.

Keywords: affordance, convolutional neural networks, feature flow, motion invariance, optical flow, transport
equation

1 INTRODUCTION

Deep learning has revolutionized computer vision and visual perception. Amongst others, the great
representational power of convolutional neural networks and the elegance and efficiency of
Backpropagation have played a crucial role (Krizhevsky et al., 2012). By and large, there is a
strong scientific recognition of their capabilities, which is very well deserved. However, an important
but often overlooked aspect is that natural images are swamped by nuisance factors such as lighting,
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viewpoint, part deformation and background. This makes the
overall recognition problem much more difficult (Lee and Soatto,
2011; Anselmi et al., 2016). Typical CNNs architectures, not
structurally modelling these possible variations, require a large
amount of data with high variability to gain satisfying
generalization skills. Some recent works have addressed this
aspect focusing on the construction of invariant (Gens and
Domingos, 2014; Anselmi et al., 2016) or equivariant (Cohen
and Welling, 2016) features with respect to a priori specified
symmetry groups of transformations. We argue that, when
relying on massively supervised learning, we have been
working on a problem that is—from a computational point of
view—remarkably different and likely more difficult with respect
to the one offered by Nature, where motion is in fact in charge for
generating visual information. Motion is what offers us an object
in all its poses. Classic translation, scale, and rotation invariances
can clearly be obtained by appropriate movements of a given
object (Betti et al., 2020). However, the experimentation of visual
interaction due to motion goes well beyond the need for these
invariances and it includes the object deformation, as well as its
obstruction. Could not be the case that motion is in fact nearly all
we need for learning to see? Current deep learning approaches
based on supervised images mostly neglect the crucial role of
temporal coherence, ending up into problems where the
extraction of visual concepts can only be based on spatial
regularities. Temporal coherence plays a fundamental role in
extracting meaningful visual features (Mobahi et al., 2009; Zou
et al., 2011; Wang and Gupta, 2015; Pan et al., 2016; Redondo-
Cabrera and Lopez-Sastre, 2019) and, more specifically, when
dealing with video-based tasks, such as video compression
(Bhaskaran and Konstantinides, 1997). Some of these video-
oriented works are specifically focused on disentangling
content features (constant within the selected video clip) from
pose and motion features (that codify information varying over
time) (Denton and Birodkar, 2017; Villegas et al., 2017; Hsieh
et al., 2018; Tulyakov et al., 2018; Wang et al., 2020). The problem
of learning high-level features consistent with the way objects
move was also faced in Pathak et al. (2017) in the context of
unsupervised object foreground versus background
segmentation.

In this vein, we claim that feature learning arises mostly from
motion invariance principles that turn out to be fundamental for
detecting the object identity as well as characterizing interactions
between features themselves. To understand that, let us start
considering a moving object in a given visual scene. The object
can be thought of as made up of different material points, each
one with its own identity that does not change during the object
motion. Consequently, the identity of the corresponding pixels
has also to remain constant along their apparent motion on the
retina. We will express this idea in terms of feature fields (i.e.
functions of the given pixel and the specific time instant) that are
invariant along the trajectories defined by their conjugate velocity
fields, extending, in turn, the classical brightness invariance
principle for the optical flow estimation (Horn and Schunck,
1981). Visual features and the corresponding optical flow fields
make up an indissoluble pair linked by the motion invariance
condition that drives the entire learning process. Each change in

the visual features affects the associated velocity fields and vice
versa. From a biological standpoint, recent studies have suggested
that the ventral and dorsal pathways may not be as independent
as originally thought (Milner, 2017). Following this insight, we
endorse the joint discovery of visual features and the related
optical flows, pairing their learning through a motion invariance
constraint. Motion information does not only confer object
identity, but also its affordance. As defined by Gibson in his
seminal work (Gibson, 1966, 1979), affordances essentially
characterize the relation between an agent and its environment
and, given a certain object, correspond to the possible actions that
can be executed upon it. A chair, for example, offers the
affordance of seating a human being, but it can have other
potential uses. In other words, the way an agent interacts with
a particular object is what defines its affordance, and this is strictly
related to their relative motion. Extending and generalizing this
classic notion of affordance to visual features, we will define the
notion of affordance field, describing the interaction between
pairs of visual features. Essentially, these interactions are defined
by the relative motion of the features themselves so that the
corresponding affordance fields will be required to be invariant
with respect to such relative motion. Hence, in the rest of the
paper, we will use the term affordance in this broader sense.

This paper is organized as follows. Section 2 is focused on
classical methods for optical flow estimation. In this case, the
brightness is given by the input video and the goal is to determine
the corresponding optical flow through the brightness invariance
condition. Typical regularization issues, necessary to specify a
unique velocity field, are also addressed. Section 3 is devoted to
extend the previous approach to visual features. This time,
features are not given in advance but are jointly learnt
together with the corresponding velocity fields. Features and
velocities are tied by the motion invariance principle. After
that, the classical notion of affordance by Gibson (1966),
Gibson (1979) is introduced and extended to the case of visual
features. Even in this case motion invariance (with respect to
relative velocities) plays a pivotal role in defining the
corresponding affordance fields. At the end of Section 3
regularization issues are also considered and a formulation of
learning of the visual fields is sketched out, together with the
description of a possible practical implementation of the
proposed ideas through deep neural networks. Finally, Section
4 draws some conclusions.

2 OPTICAL FLOW

The fundamental problem of optical flow estimation has been
receiving a lot of attention in computer vision. In spite of the
growing evidence of performance improvement (Fischer et al.,
2015; Ilg et al., 2017; Zhai et al., 2021), an in-depth analysis on the
precise definition of the velocity to be attributed to each pixel is
still questionable (Verri, 1987; Verri and Poggio, 1989; Aubert
and Kornprobst, 2006). While a simple visual inspection of some
recent top level optical flow estimation systems clearly indicates
remarkable performance, the definition of “optical flow” is
difficult and quite slippery. Basically, we need to associate each
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pixel with its velocity. When considering the temporal
quantization, any sound definition of such a velocity does
require to know where any pixel moves on the next frame.
How can we trace any single pixel? Clearly, any such pixel
corresponds to a “point” of an “object” in the visual
environment and the fundamental requirement to fulfill is that
of tracking the point of the object.

An enlightening answer to this question was given by Horn
and Shunck in a seminal paper published at the beginning of the
eighties (Horn and Schunck, 1981). The basic assumption is the
local-in-time constancy of the brightness intensity function I: Ω ×
[0, T]→ [0, 1] where Ω is a subset of R2. In other words, ∀t0 > 0
there exists a τ > 0 such that for every x0 ∈ Ω we can define the
trajectory cx0: [t0, t0 + τ]→Ω that maps t1cx0(t) ∈ Ω for
which

I cx0(t), t( ) � I x0, t0( ), ∀t ∈ t0, t0 + τ[ ];
cx0 t0( ), t0( ) � x0, t0( ). (1)

Assuming smoothness we can approximate this condition to
the first order taking into account only infinitesimal temporal
distances and obtain at t � t0:

ztI x0, t0( ) + u x0, t0( ) · ∇I x0, t0( ) � 0, (2)

where u(x0, t0)d(dcx0/dt)(t0) is the optical flow and · is the
standard scalar product in R2.

Assumption Eq. 1 is reasonable when there are no occlusions
and changes of the light source are assumed to be “small.” Of
course, in real world applications of computer vision these
scenarios are not always met. On the other hand, it is clear
that the optical flow u could be derived from an invariance
condition of the type Eq. 1 applied to different and possibly
more “stable” visual features rather than to the brightness itself.
As shown in Figure 1, this would give a different optical flow with
respect to the one defined through the brightness invariance
condition (Figure 1C). For example, a feature responding to the
entire barber’s pole, that is standing still, would have an
associated optical flow that is null everywhere (Figure 1D).
Still, we have to keep in mind that in both cases the resulting
optical flow is different from the 2-D motion field (defined as the
projection on the image plane of the 3-D velocity of the visual

scene, see e.g. Aubert and Kornprobst (2006)) shown in
Figure 1B.

This indeed is the main motivation to couple the problem of
feature extraction together with motion invariance constraints
and the derivation of robust and meaningful optical flows
associated to those visual features.

2.1 Regularization of the Optical Flow
Before going on to lay out the theory for the extraction of motion
invariant visual features, we need to recall some facts about the
optical flow condition Eq. 2. Given a video stream described by its
brightness intensity I as it is defined as in Section 1, the problem
of finding for each pixel of the frame spatial support at each time
instant the velocity field u(x, t) satisfying

ztI(x, t) + u(x, t) · ∇I(x, t) � 0 ∀(x, t) ∈ Ω × [0, T] (3)

is clearly ill posed since a scalar equation is not sufficient to
properly constrain the two components of u. Locally, we can
unequivocally determine only the component of u along ∇I.

Althoughmanymethods have been proposed to overcome this
issue (see for example the work of Aubert and Kornprobst
(2006)), that is usually referred to as the aperture problem,
here we are interested in the class of approaches that aims at
regularizing the optical flow:

inf
v

AI(v) + S(v) +HI(v)( ) (4)

where AI is a functional that enforces constraint Eq. 3, hence a
standard choice is

AI(v)d∫
Ω

ztI(x, t) + v · ∇I(x, t)( )2 dx, (5)

S imposes smoothness and H may be used to condition the
extraction of the flow over spatially homogeneous regions.
Depending on the regularity assumptions on I and the
properties that we want to impose on the solution of this
regularized problem (namely if we want to admit solutions
that preserve discontinuities or not) the exact form of S and
the form and presence of HI may vary. For example, in the
original approach proposed in Horn and Schunck (1981)
we find:

FIGURE 1 | Barber’s pole example. (A) The 3-D object spinning counterclockwise. (B) The 2-D projection of the pole and the projected velocity on the retinaΩ. (C)
The brightness of the image and its optical flow pointing downwards. (D) A feature map that responds to the object and its conjugate (zero) optical flow.
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Horn–Schunck regularization:

S(v) � ∫
Ω
|∇v1|2 + |∇v2|2dx, HI ≡ 0. (6)

Note that since we are interested in extracting the optical flow
for any frame of a video, namely the field u(x, t), it is useful for any
function f: Ω × [0, T]→Rp to define ft: Ω→Rp as f t(x)df(x,
t). With this notation, when the infimum in Eq. 4 is attained, we
can pose.

u(x, t) � ut(x) � arg min
v

AI(v) + S(v) +HI(v)( ). (7)

Notice that the brightness might not necessarily be the ideal
signal to track. Since the brightness can be expressed as a weighed
average of the red R, green G, and blue B components, one could
think of tracking each single color component of the video signal
by using the same invariance principle stated by Eq. 3. It could in
fact be the case that one or more of the components R, G, B are
more invariant in the sense of Eq. 3 during the motion of the
corresponding material point, see Figure 2. In that case, in
general, each color can be associated with corresponding
optical flows vR, vG, vB that might differ. In doing so, instead
of tracking the brightness, one can track the single colors. Instead,
under the assumption that each color component has the same
optical flow v � vR � vG � vB we have.

z

zt

R
G
B

⎛⎜⎝ ⎞⎟⎠ + v · ∇
R
G
B

⎛⎜⎝ ⎞⎟⎠ � 0, (8)

where v ·∇(R,G,B)′d(v ·∇R,v ·∇G,v ·∇B)′. It is worth mentioning
that the simultaneous tracking of different channels might contribute
to a better positioning of the problem since, in general, rank∇(R, G,
B)′ � 2 and the system Eq. 8 admits an unique solution.1 One can
think of the color components as features that, unlike classical
convolutional spatial features, are temporal features.

Before proceeding further, let us underline that some other
optical flow methods try to directly solve the brightness
invariance condition Eq. 1 without differentiating it. This is the

case, for example, of the Gunnar Farnebäck’s algorithm (Farnebäck,
2003): the basic idea here is to approximate the brightness of the
input images through polynomial expansions with variable
coefficients, and the brightness invariance condition Eq. 1 is then
solved under this assumption. Figure 3 shows the optical flows
extracted by the Horn-Schunck and Farnebäcks methods in the
barber’s pole case.

In the next section, we will discuss how to use a very similar
approach, based on the consistency of features along apparent
motion trajectories on the frame spatial support, to derive visual
features φi along with the corresponding conjugate optical flows
vφi

. We anticipate that this motion consistency condition will also
play a prominent role in defining affordance features, as described
in Section 3.2.

3 FEATURE EXTRACTION AND
CONJUGATE VELOCITIES

As we have already anticipated in the previous sections, the optical
flow extracted by imposing an invariance condition like the one in
Eq. 3 strongly depends on the features on which we are imposing
that invariance; hence it should be not surprising that different sets of
features could give rise to different optical flows. This can be easily
understood by considering the barber’s pole example in Figure 1.
The related classical optical flow is depicted in Figure 1C, see also
Figure 3, and it is different from the projection of the 3-D velocities
on the frame spatial support Figure 1B (the resulting optical flow is
an optical illusion indeed). Let us now assume the existence of a
visual feature φr characterizing the red stripes, that is φr(x, t) � 1 iff
(x, t) is inside a stripe. As the barber’s pole rotates, the conjugate
velocity vφr

is, in this simplified case, the same that one would have
obtained from the brightness invariance condition Eq. 3. An

FIGURE 2 | Tracking of different color components in a synthetic
example. In this case, each color component is associated to a specific
velocity field.

FIGURE 3 | Barber’s pole optical flow (sub-sampled). (A)
Horn–Schunck method (Horn and Schunck, 1981) with smoothing factor
coefficient � 1 (B) Gunnar Farnebäck’s algorithm (Farnebäck, 2003) in the
quadratic expansion case.

1Under the assumption rank∇(R, G, B)′ � rank(∇(R,G, B)′| − z(R,G, B)′/zt).
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additional level of abstraction can be gained when looking at the
whole object. Again, we are assuming the existence of an higher level
visual feature φobject characterizing it. Then, considering that the
barber’s pole is standing still, the velocity field associated to that
feature is everywhere null, as shown in Figure 1D.

This example clearly explains how different velocity fields can be
associated to different visual features, but we still have to go one step
further. Until now, mimicking the case of the classical optical flow
estimation given the corresponding input brightness, we have
described the construction of velocity fields starting from visual
features whose existence was a priori assumed. Recent studies have
suggested that the ventral and dorsal pathways may not be as
independent as originally thought. Evidence for contributions
from ventral stream systems to the dorsal stream indicates a
crucial role in mediating complex and flexible visuomotor skills.
Meanwhile, complementary evidence points to a role for posterior
dorsal-stream visual analysis in certain aspects of 3-D perceptual
function in the ventral stream (but seeMilner, 2017 for a review). As
pointed out by Milner (2017) potential cross-stream interactions
might take three forms:

1) Independent processing: computations along the separate
pathways proceed independently and in parallel and reintegrate
at some final stage of processing within a shared target brain
region; this might be achieved via common projections to the
lateral prefrontal cortex or superior temporal sulcus (STS);

2) Feedback: processing along the two pathways is modulated by
the existence of feedback loops which transmit information
from downstream brain regions, including information
processed along the complementary stream; feedback is
likely to involve projections to early retinotopic cortical areas.

3) Continuous cross-talk: information is transferred at multiple
stages and locations along the two pathways.

The three forms need not be mutually exclusive and a
resolution of the problems of visual integration might involve
a combination of such possibilities (Milner, 2017).

Yet, from a learning standpoint, the cross-talk mode is intriguing
for setting someminimal conditions for an agent (either biological or
artificial) in order to develop visual capabilities. Following this
biological insight, we endorse the indissoluble conjunction of
features and velocities and, consequently, their joint discovery
based on the motion invariance condition.

ztφi(x, t) + vφi(x, t) · ∇φi(x, t) � 0

∀(x, t) ∈ Ω × [0, T],∀ i � 1, . . . , d, (9)

where we are considering d different visual features. Locally, this
equation means that, at each pixel x of the frame spatial support and
specific time instant t, features φi are preserved along the trajectories
defined by the corresponding velocity fields vφi

and starting at (x, t).
An object clearly does not change its identity while it is moving.
Consequently, the identity of the corresponding pixels on the frame
spatial support has to remain invariant along the apparent motion
defined by the associated optical flows. Thinking of the brightness as
the simplest visual feature based on single pixels, Eq. 9 correctly
reduces to the brightness invariance condition Eq. 3. Notice that if

there is no opticalflow for a given pixel �x, that is, if vφ(�x, t) � 0 for all
t ∈ [0, T], then φt(�x, t) � 0. This means that the absence of the
optical flow in �x results intoφ(�x, t) � cφ for all t ∈ [0,T], which is the
obvious consistency condition that one expects in this case. Likewise,
a constant field φ(x, t) in a subregion C ⊂ Ω × [0, T] makes Eq. 9
satisfied on C independently of vφ.

Like for the brightness, in general, the invariance condition Eq. 9
generates an ill-posed problem. In particular, when themoving object
has a uniform color, we can notice that brightness invariance holds
for virtually infinite trajectories. Likewise, any of the features φ is
expected to be spatially smooth and nearly constant in small portions
of the frame spatial support, and this restores the ill-posedness of the
classical problem of determining the optical flow that has been
addressed in the previous section. Unlike brightness invariance, in
the case of visual features the ill-posedness of the problem has a
double face. Just like in the classic case of estimating the optical flow,
vφ is not uniquely defined (the aperture problem). On top of that,
now the corresponding featureφ is not uniquely defined, too.Wewill
address regularization issues in Section 3.3 where, including
additional information other than coherence on motion
trajectories, we will make the learning process well-posed. Of
course, the regularization process will also involve a term similar
to the one invoked for the optical flow v, see Eq. 6, that will be
imposed on vφ. Given what we have discussed so far, we can also
expect the presence of some regularization term concerning the
features themselves and their regularity. Finally, these terms will
be complemented with an additional “prediction” index necessary to
avoid trivial features’ solutions (we postpone its description to
Section 3.3).

The basic notion at the core of this section is that {(φi, vφi
)} can be

treated as indissoluble pairs bounded by the motion invariance
condition that steers the entire learning process. The structure of
each φi affects the associated velocity vφi

and vice versa—it is
therefore natural to pair their learning. Leaving aside for the
moment regularization issues of Section 3.3, learning is based on
a functional generalizing to Eq. 5, that is

A {φi, vφi}( )d1
2
∑
i

∫
Γ
ztφi(x, t) + vφi(x, t) · ∇φi(x, t)( )2dμ(x, t),

(10)

where Γ � Ω × [0, T] and μ is an appropriately weighted Lebesgue
measure on R2

x × Rt; its exact form defines the dynamics of the
learning process itself. The minimization of such functional (plus the
additional regularitation terms) is expected to return the pairs (φi, vφi

)
satisfying themotion consistency condition Eq. 9. Sometimes, in what
follows and when the notation is clear from the context, we will drop
the subscript φ of vφ so that vφi

will be denoted as vi.

3.1 Feature Grouping
As already noticed, when we consider color images, what is done in
the case of brightness invariance can be applied to the separated
components R,G,B. Interestingly, for a material point of a certain
color, given by a mixture of the three components, we can establish
the same brightness invariance principle, since those components
move with the same velocity. Said in other words, there could be
group of different visual features φi, i � 1, . . .,m that share the same
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velocity (vi� v) and are consistent with it, that is ztφi + v ·∇φi� 0 ∀i�
1, . . .,m. Thus, we can promptly see that any featureφ of span(φ1, . . .,
φm) is still conjugated with v; we can think of span(φ1, . . ., φm) as a
functional space conjugated with v.

Let us now consider the feature group ϕ � (φ1, . . . ,φm)′ and
the corresponding invariance condition.

ztϕ + v · ∇ϕ � 0, (11)

where ∇ϕ ∈ Rm×2 is the matrix with elements (∇ϕ)ij � (∇ϕi)j and
v · ∇ϕd(v · φ1, . . . , v · φm)′. An important observation, very
related to the discussion about color tracking of Eq. 8, is the
following one. Notice that, if we consider the case in which the
only scalar feature we are dealing with is the brightness, then Eq. 11
boils down to a single equation with two unknowns (the velocity
components). Differently, in the case of the feature group ϕ, we have
m equations and still two unknowns. The dimension m of matrix
∇ϕ can enforce the increment of its rank, which leads to a better
posedness of the problem of estimating the optical flow v. Because of
the two-dimensional structure of the frame spatial support, which
leads to v ∈ R2, and since ∇ϕ ∈ Rm×2, with m ≥ 2, it turns out that
feature grouping regularizes the velocity discovery. In order to
understand the effect of feature grouping we can in fact simply
notice that, under the assumption rank∇ϕ � rank(∇ϕ| − ϕt), a
random choice of the features yields rank∇ϕ � 2. As a consequence,
by Rouché-Capelli theorem, linear Eq. 11 admits a unique solution
in v. However, this regularization effect of feature grouping does not
prevent ill-posedness, since ϕ is far from being a random map. On
the opposite, it is supposed to extract a uniform value in portions of
the frame spatial support that are characterized by the same feature.
Hence, rank∇ϕ � 1 is still possible whenever the features of the
group are somewhat dependent.

Feature groups, that are characterized by their common
velocity, can give rise to more structured features belonging to
the same group. This can promptly be understood when we go
beyond linear spaces and consider for a set of indices F .

α � ∑
j∈F

wjφj

η � σ(α).
⎧⎨⎩ (12)

Evaluating ztη + v ·∇η we obtain indeed

ztη + v · ∇η � σ ′(α) ztα + v · ∇α( ) � σ ′(α)∑
j∈F

ωj ztφj + v · ∇φj( ).
(13)

and we conclude that if ∀j ∈ F we have ztφj + v ·∇φj � 0 then also
the feature η defined by Eq. 12 is conjugated with v, that is ztη +
v ·∇η � 0. However, the vice versa does not hold true. Basically, the
inheritance of conjugation with v holds in the direction towards
more abstract features. Of course, the feedforward-like recursive
application of the derivation stated by Eq. 12 yields a feature that is
still conjugated with v.

3.2 Affordance-Related Features
Any learning process that relies on the motion of a given object
can only aspire to discover the identity of that object, along with
its characterizing visual features such as pose and shape. The

motion invariance process is in fact centered around the object
itself and, as such, it does reveal its own features in all possible
expositions that are gained during motion. Humans, and likely
most animals, also conquer a truly different understanding of
visual scenes that goes beyond the conceptualization with single
object identities. In the early Sixties, James J. Gibson coined the
notion of affordance in (Gibson, 1966), even though a more
refined analysis came later in (Gibson, 1979). In his own words:
“The affordances of the environment are what it offers the animal,
what it provides or furnishes, either for good or ill. The verb to
afford is found in the dictionary, the noun affordance is not. I have
made it up. I mean by it something that refers to both the
environment and the animal in a way that no existing term
does. It implies the complementarity of the animal and the
environment.” Considering this animal-centric view, we gain
the understanding that affordance can be interpreted as what
characterizes the “interaction” between animals and their
surrounding environment. In more general terms, the way an
agent interacts with a particular object is what defines its
affordance, and this is strictly related to their relative motion.
In the last decades, computer scientists have also being working
on this general idea, trying to quantitatively implement it in the
fields of computer vision and robotics (Ardón et al., 2020;
Hassanin et al., 2021). As far as visual affordance is
concerned, that is, extracting affordance information from still
images and videos, different cognitive tasks have been considered
so far, as for example affordance recognition and affordance
segmentation, see (Hassanin et al., 2021) for a recent review.

In the spirit of the previous section, we will consider a more
abstract notion of affordance, characterizing the interaction
between different visual features along with their
corresponding conjugate velocity fields. We will focus our
attention on actions that are perceivable from single pictures2

and on the related local notion of affordance, that will be defined
by some function characterizing the interaction between feature
φj and feature φi when considering the pixel x at the specific time
instant t. As we will see, the principle of motion invariance can be
extended to naturally define (explicitly or implicitly) this
generalized notion of affordance. A natural choice is to
consider what we will denote as the affordance field ψij as a
function of space and time. To implicitly codify the interaction
between features i and j, ψij(x, t) has to be constrained by some
relation of the form g(ψij, ztψij,∇ψij, (φi, vi), (φj, vj)) � 0,
where we are considering only first order derivatives of the
affordance field and g is a scalar function. In the lower order
approximation (we also need quadratic terms to build scalars
from vectors):

g ψij, ztψij,∇ψij, φi, vi( ), φj, vj( )( )
� a1 + a2ψij + a3φi + a4φj + a5ztψij + a6vi∇ψij + a7vj∇ψij,

(14)

2For example, we can understand that a person is sitting on or standing up from a
chair just considering a still image.
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where a1, . . ., a7 are scalars. Considering the case in which the
motion field associated to feature φj is everywhere null, the
affordance field ψij will codify a property only related to φi
itself and strictly related to its identity, that has to be invariant
with respect to vi. Thus, from this observation, we can infer a1 �
a2 � a3 � a4 � 0 and a5 � a6 so that the above constraint becomes:

ztψij + vi + bjvj( ) · ∇ψij � 0 (15)

where bj � a7/a5. Requiring bj � −1 this constraint assumes a very
reasonable physical meaning, that is the motion invariance of the
affordance field ψij in the reference of feature φj. Within this
choice, the affordance field is conjugated with the velocity vi − vj
indeed, which is in fact the relative velocity of feature φi in the
reference of feature φj. Considering points at the border of φi, this
can lead to slightly expand ψij outside the region defined by φi
itself, as shown in Figure 4. In the case vi � 0, the motion
consistency is forced “backward” along the pixels’ trajectories
defined by − vj. In the case bj � 1 Eq. 15 becomes symmetric under
permutations instead so that ψij and ψji will be developed
exploiting the same constraint. This will likely result in the
same affordance feature unless some other factor (let us think
for example to different initializations in neural architectures)
breaks that symmetry. From the classic affordance perspective
this is not a desirable property as we can easily understand
considering, for example, a knife that is used to slice bread:
the affordance transmitted by the knife to the bread would be
strictly related to the possibility of being cut or sliced, that is
clearly a property that could not be attached to the knife.

Another viable and different alternative to codify the
interaction between features may be the one of directly

evaluating the affordance as function of the feature fields and
their respective velocities: ~ψij(x, t, (φi, vi), (φj, vj)). Here, we are
giving up the previous field theory approach, being explicitly
codifying the interaction between features in the computational
scheme of the ~ψij function. On the other hand, since we have
already distinguished ~ψij and φi by the different computational
structure, requiring the same motion invariance property of φi
with respect to vi for the affordance function ~ψij appears a very
natural choice, see also Figure 5:

zt ~ψij + vi · ∇~ψij � 0. (16)

Given the possible great variability of velocity fields in a visual
scene, let us underline that within this second approach some
problems in the learning of the affordance function
~ψij(x, t, (φi, vi), (φj, vj)) may emerge. Moreover, to pursue the
fascinating idea to describe all the visual processes entirely
through visual fields defined on the frame spatial support, in
the following we will only consider the affordance field ψij(x, t)
and the related motion invariance property Eq. 15 with bj � −1.

Given a certain visual environment we can easily realize that,
as time goes by, object interactions begin obeying statistical
regularities and the interactions of feature φi with the others
become very well defined. Hence, the notion of ψij can be evolved
towards the inherent affordance ψi of feature φi, which is in fact a
property associated with φi while living in a certain visual
environment. For example, thinking in terms of the classic
notion of affordance, when considering a knife the related
inherent affordance property is gained by being manipulated,
in a certain way, by a virtually unbounded number of different
people. Based on Eq. 15 (bj � −1) we define the inherent feature
affordance as the function ψi(x, t) which satisfies.

ztψi + vi − vj( ) · ∇ψi � 0, 1≤ i, j≤ n. (17)

FIGURE 4 | Illustration of Eq. 15 with bj � − 1. The two considered
features φi (diagonal lines), φj (wavy lines) translate over the frame spatial
support with uniform velocities vi, vj. The green area represents where ψ ij is on,
while the red border identifies the region where φi and φj overlap. On the
overlapping region the velocity fields of the two features are both present and
here the affordance field ψ ij(x, t) is constrained to be consistent along the
direction vi − vj (red arrows). Outside and on the left of the red border, the
consistency term in Eq. 15 essentially collapses to the feature identity
constraint Eq. 9 defined by the invariance motion property with respect to vi
(blue arrow). Finally, in those region where vi � 0, motion consistency of ψ ij is
required along − vj (orange arrow).

FIGURE 5 | Illustration of Eq. 16. The two considered features φi
(diagonal lines), φj (wavy lines) translate over the frame spatial support with
uniform velocities vi, vj. The green area represents where ~ψ ij is on, while the red
border identifies the region where φi and φj overlap. In this case, the
motion invariance property of the affordance feature ~ψ ij is the same of the
original feature field φi(x, t). Blue arrows identify the direction along which
motion coherence of ~ψ ij is required.
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Let us note that the above formula can also be interpreted as
the motion invariance property of ψi with respect to the velocity
vi − ∑n

j�1vj/n. The identification feature φi pairs with the
corresponding affordance feature ψi, and the visual scene turns
out to be effectively described by the collection of visual fields
V � {(φi,ψi, vi)}. In a sense, ψi can be thought of as the
abstraction of φi, as it arises from its environmental
interactions. A few comments are in order concerning these
visual fields.

• The pairing of φi and ψi relies on the same optical flow
which comes from φi. This makes sense, since the inherent
affordance is a feature that is expected to gain abstraction
coming from the interactions with other features, whereas
the actual optical flow can only come from identifiable
entities that are naturally defined by φi.

• The inherent affordance features still bring with them a
significant amount of redundant information. This can be
understood when considering especially high level features
that closely resemble objects. For example, while we may
have many different chairs in a certain environment, one
would expect to have only a single concept of chair. On the
opposite, ψ assigns many different affordance variables that
are somewhat stimulated by a specific identifiable feature.
This corresponds to thinking of these affordance features as
entities that are generated by a corresponding identity
feature.

• The collection of visual fields V is the support for high-level
decisions. Of course, the recognition of specific objects does
only involve the field φi, whereas the abstract affordance
semantic labeling is supported by features ψi.

In order to abstract the notion of affordance even further we
can, for instance, proceed as follows: for each κ � 1,. . ., n we can
consider another set of fields χκ: Γ→R each of which satisfies the
following condition

ztχκ + vj · ∇χκ � 0, j � 1, . . . , n. (18)

In this way the variables χκ do not depend, unlike for ψ, on a
particular vi, which contributes to lose the link with its firing
feature. Moreover, they need to take into account, during their
development, multiple motion fields which results in a motion
invariant property with respect to the average velocity ∑n

j�1vj/n
and in a greater level of abstraction.

Once the set of the χκ is given, a method to select the most
relevant affordances could simply be achieved through a linear
combination. In other words, a subselection of χ1, . . ., χn can be
performed by considering for each l � 1, . . ., nχ < n the linear
combinations

Xld∑n
κ�1

alκχκ, (19)

where (alκ) ∈ Rnχ×n is a matrix of learnable parameters. Notice
that since Xl ∈ span(χ1, . . ., χn), as we remarked in Section 3.4,
then ztXl + vj ·∇Xl � 0 for all j � 1, . . ., n. It is worth mentioning
that the learning of coefficients alκ does not involve motion

invariance principles. Interestingly, they can be used for
additional developmental steps like that of object recognition.
For example, they can be learned under the classic supervised
framework along with the correspondent regularization.

3.3 Regularization Issues
We have already discussed the ill-posed definition of features
conjugated with their corresponding optical flow. Interestingly,
we have also shown that a feature group ϕ � (φi, . . . ,φm)′ with
conjugate velocity v exhibits an inherent regularization that,
however, does not prevent ill-positioning, especially when one
is interested in developing abstract features that are likely
constant over large regions of the frame spatial support.

Let us assume that we are given n feature groups ϕi, i � 1, . . .n,
each one composed of mi single features (mi-dimensional feature
vector) ϕi ∈ Rmi . Furthermore, let vi be the velocity field shared by
each component of feature group ϕi and let us also denote with ϕ
� (ϕ1, . . ., ϕn) and with v � (v1, . . ., vn). We can then impose the
following generalization of the smoothness term (6), used for the
classical optical flow estimation, to the velocities and the
corresponding visual features:

E � 1
2
∑n
i�1

∫
Γ

∇vi(x, t)‖ ‖2 + λφ ϕi(x, t)
∣∣∣∣ ∣∣∣∣2 + λ∇ ∇ϕi(x, t)

���� ����2( ) dμ(x, t).
(20)

Here, the notation ‖Z‖2 (generic argument matrix Z) means∑i,jZ
2
ij, while λφ, λ∇ are positive constants that express the relative

weight of the regularization terms. First of all, notice that E is a
functional of the pairs {(ϕi, vi)}, that is, once they are given, we can
compute E(ϕ, v). On the contrary, the index used to regularize the
classical Horn–Schunck optical flow Eq. 6 only depends on v. The
dependence on visual features and their temporal dynamic in Eq.
20 is explained considering that, while the brightness is given, the
features are learned as time goes by, which is just another facet of
the feature-velocity conjugation. Moreover, it is worth
mentioning that E only involves spatial smoothness whereas it
doesn’t contain any time regularization term. There is also
another difference with respect to the classic optical flow
regularization Eq. 6, that is the penalizing term (1/2)|ϕi|2
which favors the development of ϕi � 0. Of course, there is no
such requirement in classic optical flow since, as already stated,
the brightness is given. On the opposite, the discovery of visual
features is expected to be driven by motion information, but their
“default value” is expected to be null. We can promptly see that
the introduction of the regularization term Eq. 20 does not suffice
to achieve a well-posed learning problem. The motion invariance
condition Eq. 9 is still satisfied by the trivial constant solution φ �
cφ indeed.

Important additional information comes from the need of
exhibiting the human visual skill of reconstructing pictures from
our symbolic representation. At a certain level of abstraction, the
features that are gained by motion invariance possess a certain
degree of semantics that is needed to interpret the scene.
However, visual agents are also expected to deal with actions
and react accordingly. As such, a uniform cognitive task that
visual agents are expected to carry out is that of predicting what
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will happen next, which is translated into the capability of
guessing the next incoming few frames in the scene. We can
think of a predictive computational scheme based on the φi codes
y(x, t) � αy(ϕ(·, t), t)(x), where αy: (RΩ)n × [0, T]→RΩ and
the prediction y needs to satisfy the condition established by the
index

R � 1
2
∫

Γ
y(x, t) − It(x, t)( )2 dμ(x, t). (21)

Of course, as the visual agent gains the capability of predicting
what will come next, it means that the developed internal
representation based on features ϕ cannot correspond with the
mentioned trivial solution. Interestingly, it looks like visual
perception does not come alone: the typical paired skill of
visual prediction that animals exhibit helps regularizing the
problem of developing invariant features. Clearly, the φ � cφ
which satisfies motion invariance is no longer acceptable since it
does not reconstruct the input. This motivates the involvement of
prediction skills typical of action that, again, seems to be
interwound with perception.

Having described all the regularization terms necessary to the
well-posedness of the learning problem, we can introduce the
following functional.

S(ϕ, v) � A(ϕ, v) + λEE(ϕ, v) + λRR(ϕ, v) (22)

where A(ϕ, v) is the direct generalization to feature groups of Eq.
10, that is A(ϕ, v) � 1

2∑n
i�1∫Ω×[0,T]|ztϕi + v · ∇ϕi|2dμ(x, t). Here,

λR and λE > 0 are the regularization parameters. Learning to see
means to discover the indissoluble pair (ϕ+, v+) such that

ϕ+, ν+( ) � arg min
(ϕ,ν)

S(ϕ, ν). (23)

Basically, the minimization is expected to return the pair
(ϕ, v), whose terms should nominally be conjugated. The case
in which we reduce to consider only the brightness, that is
when the only ϕ is I, corresponds with the classic problem of
optical flow estimation. Of course, in this case the term R is
absent and the problem has a classic solution. Another special
case is when there is no motion, so as the integrand in the
definition Eq. 10 of A is simply null ∀i � 1, . . ., n. In this case,
the learning problem reduces to the unsupervised extraction
of features ϕ.

The learning of ψi can be based on a formulation that closely
resembles what has been done for φi, for which we have already
considered the regularization issues. In the case of ψi we can get
rid of the trivial constant solution by minimizing.

Iψ � ∑n
i�1

∫
Γ
1 − ψi(x, t)( )φi(x, t) dμ(x, t), (24)

which comes from the p-norm translation (Gori and Melacci,
2013; Gnecco et al., 2015) of the logic implication φi 0 ψi. Here
we are assuming that φi, ψi range in [0, 1], so as whenever φi gets
close to 1, it forces the same for ψi. This yields a well-posed
formulation thus avoiding the trivial solution.

As far as the χ are concerned, like for ψ, we ask for the
minimization of

Iχ � ∑n
k�1

∫
Γ
1 − χκ(x, t)( )ψκ(x, t) dμ(x, t), (25)

that comes from the p-norm translation of the logic implication
ψκ 0 χκ. While this regularization term settles the value of χκ on
the corresponding ψκ, notice that the motion invariance
condition (18) does not assume any privilege with respect to
the firing feature ψκ.

3.4 Deep Networks-Based Realization of
Vision Fields
In the previous sections we discussed invariance properties of
visual features that lead to model the processes of computational
vision as transport equations on the visual fields, see Eqs 9, 15, 17,
18. Some of those properties are based on the concept of
consistency under motion, others lead to a generalization of
the concept of affordance. In this section we will discuss how
the features φ, ψ and χ, along with the velocity fields vφ, can be
represented in terms of neural networks that operate on a visual
stream and how the above theory can be interpreted in a classical
framework of machine learning.

The first step we need to perform consists in moving to a
discretized frame spatial support
Ω◇ � {(i, j) ∈ N: 0< i≤w, 0< i≤ h}. As a consequence, the
fields φi and the velocities can be viewed as vector-valued
functions of time t1φi(t) ∈ RΩ◇

and t1vφi
(t) ∈ (RΩ◇)2;

similarly the discretized brightness can be seen as a map
t1I(t) ∈ RΩ◇

.3 Then, features φi (and similarly the fields ψ
and χ) can be modelled as neural networksΦi: R

N × RΩ◇ →RΩ◇

that given the brightness I at a certain instant and a set of N
weights wΦi ∈ RN yield the value Φi(I, wΦi) of φi. Similarly, the
velocities vφ can be estimated by a neural network Vi: R

M ×
RΩ◇ × (RΩ◇)2 → (RΩ◇ )2 that takes as inputs the temporal partial
derivative _I (that is the discrete version of the term ztI), the
discrete spatial gradient ∇I of I and a given a set ofM weights wvi

in order to predict Vi(wvi, _I,∇I) as the velocity field vφi
.

It should be noted that, within this framework, the learning
problem for the fields φ, χ, η and vφ, that is based on the principles
described in this paper and that is defined by the optimization
problem of the form described in Eq. 23, becomes a finite-
dimensional learning problem on the weights of the neural
models.

Thus, learning will be affected by the structure (i.e. the
architecture) of the network that we choose. Recent successes
of deep learning within the realm of computer vision suggest that
natural choices for Φ would be Deep Convolutional Neural
Networks (DCNN). More precisely, the features extracted at
level ℓ of a DCNN can be identified with a group of Φi; in
this way we are establishing a hierarchy between features that, in
turn, suggests a natural way in which we could perform the

3Here we are overloading the symbols φ, vφ and I in order to avoid a cumbersome
notation. In the previous sections φ, vφ and I are functions defined over the spatio-
temporal cylinder Ω × [0, T], here they are instead regarded as vector-valued
functions of time only.
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grouping operation that we discussed in Section 3.1. In this way,
features that are at the same level of a CNN share the same
velocity (see Figure 6). In the case of velocities, CNN-based
architectures like the one employed by FlowNet (see Fischer et al.
(2015)) have been already proven to be suitable to model velocity
fields.

It is also important to bear in mind that the choice of a
specific neural architecture has strong repercussions on the way
the invariance conditions are satisfied. For instance, let us
consider the case of Convolutional Networks together with
the fundamental condition expressed by Eq. 9. In this case,
since CNN are equivariant under translations, any feature that
tracks a uniformly translating motion of the brightness will
automatically satisfy Eq. 9 with the same velocity of the
translation of the input.

4 DISCUSSION

In this paper we have proposed motion invariance principles
that lead to discover identification features and more abstract
features that are somewhat inspired to the notion of affordance.
Those principles are expressed by motion invariance equations
that characterize the interesting visual field interactions. The
conjunction with features φ leads to believe that those features
and their own velocities represent an indissoluble pair.
Basically, the presence of a visual feature in the frame
spatial support corresponds with its own optical flow, so as
they must be jointly detectable. Apparently, in case of a visual
agent without relative movement with respect to an object, this
sounds odd. What if the object is fixed? Interestingly, foveate
animals always experiment movement in the frame of reference
of their eyes, and something similar can be experimented in
computers by the simulation of focus of attention Zanca et al.
(2019), Faggi et al. (2020). Hence, apart from the case of
saccadic movements, foveate animals, like haplorhine
primates, are always in front of motion, and conjugation of
features with the corresponding optical flow does not result in
trivial conditions.

The overall field interaction of features and velocities leads
to compose a more abstract picture, since in the extreme case
of features that represent objects, as already pointed out, we see

the emergence of the classic notion of affordance.
Interestingly, the described mechanisms of field interaction
go well beyond the connection with such a high-level cognitive
notion. We can promptly realize that it is impossible to
understand whether the discussed field interactions come
from different objects or if they are in fact generated within
the same object. Overall, the discussed field interactions
represent a natural mechanism for transmitting information
from the video by local mechanisms.

It has been shown that in order to get a well-posedness of
the motion invariance problems of Eqs 9, 15, 17, 18 we need to
involve appropriate regularization. In particular, the
development of visual features φ requires the correspondent
minimization of Eq. 21, that somewhat indicates the need of
involving action together with perception. Indeed, visual
perception coupled with gaze shifts should be considered
the Drosophila of perception-action loops. Among the
variety of active behaviors the organism can fluently engage
to purposively act upon and perceive the world (e.g, moving
the body, turning the head, manipulating objects), oculomotor
behavior is the minimal, least energy, unit. The history of these
ideas has been recently reviewed in Bajcsy et al. (2018). At that
time, such computational approaches were pervaded by the
early work of Gibson (1950) who proposed that perception is
due to the combination of the environment in which an agent
exists and how that agent interacts with it. He was primarily
interested in optic flow that is generated on the frame spatial
support when moving through the environment (as when
flying) realizing that it was the path of motion itself that
enabled the perception of specific elements, while
disenabling others. That path of motion was under the
control of the agent and thus the agent chooses how it
perceives its world and what is perceived within it Bajcsy
et al. (2018). The basic idea of Gibson’s view was that of
the exploratory behaviour of the agent. It is worth noting that
despite of the pioneering work of Aloimonos et al. (1988),
Ballard (1991), and Bajcsy and Campos (1992), gaze dynamics
has been by and large overlooked in computer vision. The
current state of affairs is that most effort is spent on salience
modelling Borji (2021), Borji and Itti (2013) as a tool for
predicting where/what to look at (the tacit though
questionable assumption is that, once suitably computed,
salience would be predictive of gaze). Interestingly enough,
and rooted in the animate vision approach, Ballard set out the
idea of predictive coding Rao and Ballard (1999):

We describe a model of visual processing in which feedback
connections from a higher-to a lower-order visual cortical area
carry predictions of lower-level neural activities, whereas the
feedforward connections carry the residual errors between the
predictions and the actual lower level activities. When exposed to
natural images, a hierarchical network of model neurons
implementing such a model developed simple cell-like
receptive fields. A subset of neurons responsible for carrying
the residual errors showed endstopping and other extra-classical
receptive field effects. These results suggest that rather than being
exclusively feedforward phenomena, nonclassical surround
effects in the visual cortex may also result from cortico-

FIGURE 6 | Different visual features along with the corresponding
velocity fields.
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cortical feedback as a consequence of the visual system using an
efficient hierarchical strategy for encoding natural images.

This idea has gained currency in recent research covering many
fields from theoretical cognitive neuroscience (e.g., Knill and Pouget,
2004; Ma et al., 2006) to philosophy Clark (2013). Currently, the
most influential approach in this perspective has been proposed by
Friston (e.g., Feldman and Friston, 2010; Friston, 2010) who
considered a variational approximation to Bayesian inference and
prediction (free energy minimization, minimization of action
functionals, etc).

The principles on visual feature flow introduced in this paper
might also have an impact in computer vision, since one can
reasonably believe that the proposed invariances might overcome
one of the major current limitation of supervised learning
paradigms, namely the need of a huge amount of labeled
examples. This being said, deep neural networks, along with
their powerful approximation capabilities, could provide us
with the ideal computational structure to complete the
theoretical framework here proposed.
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