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High-frequency trading (HFT) offers an excellent use case and a potential killer application
of the commercially available, first generation quasi-quantum computers. To this end, we
offer here a simple game-theoretic model of HFT as the famous two player game,
Prisoner’s Dilemma. We explore the implementation of HFT as an instance of
Prisoner’s Dilemma on the (quasi) quantum cloud using the Eisert, Wilkens, and
Lewenstein quantum mediated communication protocol, and how this implementation
can not only increase transaction speed but also improve the lot of the players in HFT.
Using cooperative game-theoretic reasoning, we also note that in the near future when the
internet is properly quantum, players will be able to achieve Pareto-optimality in HFT as an
instance of reinforced machine learning.
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1 INTRODUCTION

Non-cooperative game theory is the art of strategic interaction between individuals competing for
joint stakes over which they entertain differing preferences. Game-theoretic reasoning can formally
be traced back the Ancient Chinese General Sun Tzu (circa 500 BCE) and the ancient Indian
minister, Chanakya (circa 300 BCE).

Mathematical formalization of non-cooperative game theory in the 20th century goes back to the
work of von Neumann and Nash. The publication the seminal work of von Neumann and
Morgenstern titled Theory of Games and Economic Behavior (von Neumann et al., 1944)
brought focus upon game theory as the right mathematical language to analyze economic
behavior and strategic decision making. The practical usefulness of the subject was made
apparent by the awarding of several Noble prizes in Economics to developers of game-theoretic
reasoning, including Nash (Nash, 1950), Harsanyi (Harsanyi, 1968), Selten (Selten, 1994), Aumann
(Robert, 2005), and Smith (Maynard Smith and Price, 1973) for work in applications of game-
theoretic reasoning to economics, political stratagem, and evolutionary biology. With the ongoing
Covid-19 pandemic, game theoretic reasoning has also been used to shed light on best practices in
developing optimal public health policy (Elgazzar, 2021).

With the recent advent of commercially viable quantum computation and communication
technologies, the confluence of ideas from game theory and quantum information processing has
gained strong interest. This interest has given birth to the subject known as quantum game theory
(Section 3), where the impact of quantum information technology on game-theoretic reasoning is
studied. An area where quantum game theory may be of particular interest is the area of high-
frequency trading. Here, many players participate in iterated buy/sell interactions at a very high rate,

Edited by:
David Orrell,

Systems Forecasting, Canada

Reviewed by:
Sudip Patra,

O. P. Jindal Global University, India
Marek Szopa,

University of Economics of Katowice,
Poland

*Correspondence:
Faisal Shah Khan

faisal@darkstarquantumlab.com

Specialty section:
This article was submitted to

Artificial Intelligence in Finance,
a section of the journal

Frontiers in Artificial Intelligence

Received: 02 September 2021
Accepted: 18 October 2021

Published: 03 November 2021

Citation:
Khan FS and Bao N (2021) Quantum

Prisoner’s Dilemma and High
Frequency Trading on the

Quantum Cloud.
Front. Artif. Intell. 4:769392.

doi: 10.3389/frai.2021.769392

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 7693921

BRIEF RESEARCH REPORT
published: 03 November 2021
doi: 10.3389/frai.2021.769392

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.769392&domain=pdf&date_stamp=2021-11-03
https://www.frontiersin.org/articles/10.3389/frai.2021.769392/full
https://www.frontiersin.org/articles/10.3389/frai.2021.769392/full
https://www.frontiersin.org/articles/10.3389/frai.2021.769392/full
http://creativecommons.org/licenses/by/4.0/
mailto:faisal@darkstarquantumlab.com
https://doi.org/10.3389/frai.2021.769392
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.769392


capitalizing on small market fluctuations in either duration,
intensity, or both to gain revenue. Because the timing of such
interactions is critical to the success of high-frequency firms
compared to firms that trade at slower rates, new tools that
can improve the degree of synchronicity between the firms and
which can provide provably-secure communication, are of great
interest.

2 PRISONER’S DILEMMA - A GAME
THEORY PRIMER

Consider the non-cooperative game called Prisoner’s Dilemma, a
2-player non-cooperative game in which each of the two players
(prisoners) who committed a crime together are given the
opportunity to reduce their time served in prison by helping
authorities implicate the other player for the crime. This game is
presented in tabular form in Figure 1 where the outcomes of the
game are given as ordered pairs of numbers. The first number in
each outcome is the payoff to Player I in the form of the number
of years commuted from his sentence, and the second number is
the payoff to Player II.

The players have disparate preferences over the outcomes of
the game, which are captured below using the symbol _ to
denote the notion of “preferred over”:

Player I: (5, 0)_(3, 3)_(1, 1)_(0, 5)
Player II: (0, 5)_(3, 3)_(1, 1)_(5, 0). (1)

It is assumed that the players are rational, that is, each player
will play the game in way that is consistent with his preferences.
The game is played by employing strategies to optimize the
payoffs. The two strategies available to both players are to
either cooperate with the authorities to implicate the other
player (C), or to defect from offer to help the authorities (D).
The question is: what is the outcome of the game (or the play of
the game)?

The answer is provided in the form of Nash equilibrium, a
profile of strategies, one per player, in which no player has
motivation to deviate from his strategic choice. In other
words, Nash equilibrium is a strategy profile in which each
player’s strategy is a best reply (with respect to the players’
preferences) to all others. Not all games have a Nash equilibrium.

For Prisoners’ Dilemma, Figure 2 shows that the Nash
equilibrium is the strategy profile (D, D). This is the dilemma;
for clearly, each player will be better off playing the strategy C, but
this is not a best reply to the strategic choice of C by the other
player. The strategy profile (C, C) (and its corresponding

outcome) is Pareto-optimal, that is, its corresponding outcome
is such that moving away from it to make one player better off will
necessarily make another player worse off. Note that the strategy
profiles (C, D) and (D, C) are also Pareto-optimal; however, no
player wishes to complete her full sentence while her partner in
crime walks free [as evidenced by the preference relations in
expression (1)].

2.1 Mixed Strategies and Mediated
Communication
When Nash equilibrium is not present in a game, or if it is sub-
optimal, game-theorists suggest that players employ
randomization over the outcomes as a mechanism for
introducing or improving Nash equilibrium. To this end,
players are allowed to independently randomize over their
respective strategies, a notion referred to as mixed strategies,
to produce probability distributions over the outcomes. The
resulting mixed game will have at least one Nash equilibrium
outcome (John Nash’s Nobel prize winning result Nash, 1950).
However, this mixed strategy Nash equilibrium need not be better
paying than the one available in the original game, and it need not
be Pareto-optimal. Indeed, this holds true for Prisoner’s
Dilemma.

Further refinement of the Nash equilibrium may be possible if
a referee is inducted into the game at negligible cost. This proper
extension of a game is know as the game with mediated
communication. In such games, the referee creates a
probability distribution over the outcomes of the game that
the players could not using mixed strategies. The referee then
tells each player in confidence which strategy he should employ.
Each player than checks the viability of the referee’s advice with
respect to his preferences and the 50–50 chance of the other
player agreeing to the advice given to him by the referee. If the
viability checks out, the player agrees with the referee. When both
players agree to the referees advice, the resulting Nash
equilibrium is known as a correlated equilibrium.

Even further refinements of Nash equilibrium are conceivable
by simply extending the domain of the game from Euclidean
space to more exotic (and non-trivial) mathematical spaces such
as Hilbert space and Banach space. The challenge then becomes
how to keep the mathematical extensions grounded in physical
reality. For the case of games extended to complex projective

FIGURE 1 | Prisoner’s dilemma.

FIGURE 2 | Nash equilibrium versus Pareto-optimal outcomes in
Prisoner’s Dilemma.
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Hilbert space, the physical context is quantum mechanics. The
result of this extension is the theory of “quantum games.”

3 QUANTUM GAMES

Foreseeing the rise of quantum technologies like quantum
computers and quantum communication devices and protocols,
Meyer offered the first game-theoretic model of quantum
algorithms. In his seminal work (Meyer, 1999) on the topic, he
showed that in a simple penny flipping game, the player with access
to quantum physical operations (or “quantum strategies”) acting
on the penny always won the game. His work was followed by
Eisert et al.’s work (Eisert et al., 1999) where the authors showed
how to properly extend a game into the quantum realm with
quantummediated communication. These authors presented a two
qubit (two player) quantum circuit that implemented the quantum
communication protocol for Prisoner’s Dilemma. This protocol is
known as the EWL protocol and appears in Figure 3.

The EWL protocol is a quantum circuit that takes in as input
the two-qubit state

|00〉 �
1
0
0
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (2)

With each qubit belonging to one player. This state is acted upon
by the referee to produce a higher-order randomization in the form of
a quantum superposition followed by measurement. In particular, the
referee entangles the two qubits using a general entangling operator
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c
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c

2
σx ⊗ σx (3)

where I is the 2 × 2 identity operator, σx is the Pauli-spin flip
operator, and 0≤ c≤ π

2. When c � 0, the protocol reproduces the
original “classical” game.

For c � π
2, the game exhibits maximal entanglement between the
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The referee forwards the state in Eq. 5 to the players as her
advice upon which the players can act with their quantum
strategies. Finally, the referee disentangles the resulting two
qubit state and makes a measurement, producing a probability
distribution over the outcomes of the game (the observable states)
from which expected payoffs to the players can be computed.
Since the probability distribution was created using higher-order
randomization by quantum superpositioning, the correlations it
creates between the outcomes of the game after measurement are
stronger than those possible classically (Shimamura et al., 2004).

3.1 (Almost) Solving the Dilemma
The remarkable implication of the EWL protocol for Prisoner’s
Dilemma is that under the right subset of quantum strategies, this
quantum extension of the game eliminates the dilemma and the
resulting Nash equilibrium is Pareto-optimal! The quantum
strategies that allow this are the two-parameter subset of the
set of one qubit gates:

Ad
eiϕ cos θ sin θ
−sin θ e−iϕ cos θ

( ): 0≤ θ ≤
π

2
, 0≤ ϕ≤

π

2
{ }. (6)

However, when the full set of quantum strategies is made
available to the players (Flitney and Hollenberg, 2007), that is,

Bd
eiα cos θ eiβ sin θ
−e−iβ sin θ e−iα cos θ

( ): 0≤ θ ≤
π

2
, , −π ≤ α, β≤ π{ }, (7)

The dilemma reappears in the quantumversion of the game and the
Nash equilibrium solution is the same as of the classical game. This is
because a best reply to a quantum strategy from set A is a quantum
strategy from set B. But now, the other player also responds with a
quantum strategy from set B, thus nullifying the quantum solution to
the dilemma.

Note thatwhile the EWL “quantum”Prisoner’sDilemma is a game
with quantummediated communication, the equilibrium in the game

FIGURE 3 | The quantum circuit implementation of the EWL quantum
game protocol. The referee consists of two quantum logic gates, J, which
entangles the two qubits, and its inverse, J†. In the middle of these two
operations are the players’ independent quantum strategic choices that
each of them enacts on her qubit as unitary operations. We assume the top
qubit is Player I’s and the second one is Player II’s.
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is referred to as Nash equilibrium rather than correlated equilibrium.
This is because mediated communication attempts to produce
randomization over a game’s outcomes that cannot be produced
by the player’s mixed strategies only, and therefore, one can view the
game with mediated communication as an enlargement of the mixed
game. ANash equilibrium in this larger non-cooperative game is what
is called a correlated equilibrium in the original game.

As such, Nash equilibrium in the EWL game with quantum
mediated communication is a type of correalted equilibrium in the
original Prisoner’sDilemma. A discussion on the relationship between
Nash and correlated equilibrium for classical games can be found in
(Steven, 2009), while a more comprehensive discussion about these
two notions in quantum games can be found in (Szopa, 2021).

Emulating mixed strategies, a further natural quantum
extension is possible by allowing players to randomize over
their quantum strategies, giving rise to the notion of mixed
quantum strategies. Eisert et al. showed that while the players
cannot solve the dilemma by resorting to mixed quantum
strategies in Prisoner’s Dilemma, they can come close to it. By
using mixed quantum strategies, the players can affect a Nash
equilibrium in which the payoff is (2.5, 2.5). This solution is
closer to the Pareto-optimal outcome (3, 3) than the sub-optimal
outcome (1, 1). Mixed strategies have a realistic physical
interpretation as the result of quantum strategies being
transmitted over a noisy communication channel.

Motivated by the results of the seminal works of Meyer and Eisert
et al., quantum game theory has become a major area of research since
the seminal papers of Meyer and Eisert et al. A relatively recent and
comprehensive review of the subject can be found in (Khan et al., 2018).

4 THE DILEMMA IN HIGH FREQUENCY
TRADING

High-frequency trading (HFT) is defined by Gomber et al. in
(Gomber et al., 2011) as follows.

HFT relates to the implementation of proprietary
trading strategies by technologically advanced market
participants. . .. HFT enable market participants to
dramatically speed up the reception of market data,
internal calculation procedures, order submission and
reception of execution confirmations.

Our aim here is to show that quantum computing via the cloud
can be used to implement HFT as a quantum game. For this, first
note that HFT is an instance of Prisoner’s Dilemma where Player
I and Player II represent the trading mindset of a market, buying
and selling of commodities using the two strategies Buy or Sell.
Assuming that in markets there is a preference toward being part
of a mass-buy versus a mass-sell, we set the following preferences
for the players over the four possible strategy profiles as
reasonably reflecting the mood of any market,

Player I: (Sell,Buy)_(Buy,Buy)_(Sell, Sell)_(Buy, Sell)
Player II: (Buy, Sell)_(Buy,Buy)_(Sell, Sell)_(Sell,Buy),

(8)

with a player most preferring to sell on his terms versus buying on
the other payers terms.

These preferences are identical to those in Prisoners’Dilemma
when the numerical payoff values from expression (1) are
faithfully substituted into expression (8). Figure 4 shows HFT
as an instance of Prisoners’ Dilemma. Note that the dilemma in
HFT is that the game will reach the sub-optimal Nash equilibrium
(Sell, Sell) � (1, 1), which is a highly detrimental outcome for
markets.

4.1 HFT on the Quantum Cloud
Today, the internet is quasi-quantum, meaning that users can
access third party, first generation quantum processors via the
cloud (the quantum cloud), which can offer transnational speed
up. More importantly, the quasi-quantum internet can offer
enhanced payoffs in the transaction when implemented using
the EWL protocol for Prisoner’s Dilemma.

Due to the quasi-quantum nature of the internet, only noisy
quantum communications are possible to date. Therefore, the
referee will likely only be able to create limited entanglement
between the qubits. This means that HFT on the quantum cloud
will improve the lot of the players to only a near Pareto-optimal
Nash equilibrium, the upper-limit of which for the moment is the
appropriate equivalent of the notional (2.5, 2.5) payoff.
Nonetheless, even these small improvement in the payoffs will
be worthwhile given the large amounts of money being traded.

In the near future, the internet will be fully quantum, and
improved fidelity of the transmission of the quantum information
will mean that quantum entanglement between the players’
qubits will be maintained for longer duration. This will allow
the realization of the upper limit of the mixed quantum strategy
Nash equilibrium, (2.5, 2.5).

4.2 Optimality and Cooperation in HFT on
the Quantum Cloud
From a non-cooperative game theory perspective, the pure
quantum strategy Nash equilibrium that resolves the dilemma
and produces the Pareto-optimal Nash equilibrium (3, 3) is
fundamentally irrational. This is due to the fact that the best
reply to any strategy from the set A in Eq. 6 is a strategy from the
set B in Eq. 7. This would then seem to invalidate the whole idea
of implementing HFT on the quantum internet of the near future
for optimal benefits. However, there is an appropriate game-
theoretic solution for this issue found in the cooperative theory of
games. As Aumann points out in (Robert, 2005):

FIGURE 4 | High-frequency trading as an instance of Prisoners’
Dilemma, as per the preferences described in expression (8).
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We use the term cooperative to describe any possible
outcome of a game, as long as no player can guarantee
a better outcome for himself. It is important to emphasize
that in general, a cooperative out-come is not in
equilibrium; it’s the result of an agreement. For example,
in thewell-known “prisoner’s dilemma” game, the outcome
in which neither prisoner confesses is a cooperative
outcome; it is in neither player’s best interests, though it
is better for both than the unique equilibrium.

Hence, the solution lies in the notion of agreement contracts
and the ability to enforce them. For this, the game has to be played
repeatedly and the behavioral history of the players collected and
used to develop the contracts and the enforcement methods
(incentives and disincentives). It is noteworthy then that
quantum games such as the quantum prisoner’s dilemma can
be thought of as the available policy space for an agent undergoing
reinforcement learning. Here, however, it is known that the
quantum policy options, in for example the quantum prisoner’s
dilemma, are Pareto-optimal over the classical policy options.
Therefore, if the task undertaken in quantum reinforcement
learning can be thought of as having instances of the prisoner’s
dilemma as subtasks, an agent with quantum strategies available to
them will perform strictly better than one with only classical policy
options, as observed by Meyer in his seminal work.

5 CONCLUSION

We established a game-theoretic interpretation of high-
frequency trading as the game Prisoner’s Dilemma, and

showed how it can be implemented as a quantum game
using quantum computing processors available over the
cloud. We argue that even today’s nascent quantum
technology infrastructure allows substantial improvement
in the payoffs of the players of this game, and that in the
near future, a fully quantum internet and better performing
quantum processors will allow players to completely avoid the
dilemma via reinforced learning of contracts, as predicted by
cooperative game theory.
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