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A rapidly increasing rate of melanoma diagnosis has been noted over the past

three decades, and nearly 1 in 4 skin biopsies are diagnosed as melanocytic

lesions. The gold standard for diagnosis of melanoma is the histopathological

examination by a pathologist to analyze biopsy material at both the cellular

and structural levels. A pathologist’s diagnosis is often subjective and prone

to variability, while deep learning image analysis methods may improve

and complement current diagnostic and prognostic capabilities. Mitoses are

important entities when reviewing skin biopsy cases as their presence carries

prognostic information; thus, their precise detection is an important factor

for clinical care. In addition, semantic segmentation of clinically important

structures in skin biopsies might help the diagnosis pipeline with an accurate

classification. We aim to provide prognostic and diagnostic information on skin

biopsy images, including the detection of cellular level entities, segmentation

of clinically important tissue structures, and other important factors toward

the accurate diagnosis of skin biopsy images. This paper is an overview of

our work on analysis of digital whole slide skin biopsy images, including

mitotic figure (mitosis) detection, semantic segmentation, diagnosis, and

analysis of pathologists’ viewing patterns, and with new work on melanocyte

detection. Deep learning has been applied to ourmethods for all the detection,

segmentation, and diagnosis work. In our studies, deep learning is proven

superior to prior approaches to skin biopsy analysis. Our work on analysis of

pathologists’ viewing patterns is the only suchwork in the skin biopsy literature.

Our work covers thewhole spectrum from low-level entities through diagnosis

and understanding what pathologists do in performing their diagnoses.

KEYWORDS

whole slide image, melanocyte, melanoma, mitosis, semantic segmentation, deep
learning, viewing patterns, diagnosis
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1. Introduction

Skin cancer is the most common type of cancer. The main

types of skin cancer are squamous cell carcinoma, basal cell

carcinoma, and melanoma. Melanoma is much less common

than the other types, but much more likely to invade nearby

tissue and spread to other parts of the body. Most deaths

from skin cancer are caused by melanoma. Melanoma usually

begins in melanocytes, which are specialized cells that make

melanin (the pigment that gives skin its color). The current

gold standard for melanoma diagnosis is the pathologists’

assessment after microscopic viewing examination of skin

biopsies using hematoxylin and eosin (H&E) stained tissue

sections; however, the histologic interpretation of melanocytic

lesions is challenging with pathologists’ diagnosis noted to

be neither accurate nor reproducible (Elmore et al., 2017).

Whole slide digital imaging of pathology specimens can be used

to create digitized slides, which in turn can be included in

biorepositories or used in telepathology to enable diagnosis at

a distance. By investigating the potential to improve diagnoses

using digitized slides and associated image characteristics, we

show that artificial intelligence can provide clinical support for

pathologists. This paper provides an overview of multiple efforts

by our research group to this end. Our work differs from prior

work on melanoma biopsy analysis in its use of deep learning as

the major tool. Our contributions include:

• A new mitosis detection method that compares two deep

learning architectures and has been tested on both skin

biopsies and breast cancer biopsies,

• A newmelanocyte detection method that uses a Generative

Adversarial Network (GAN) to generate synthetic SOX10-

stained images and is novel in its use of the features of the

GAN decoder for the melanocyte detection,

• A new deep learning-based semantic segmentation system

that segments a whole slide skin biopsy image into

important components, such as the epidermis, the dermis,

and the nests within them, for use in diagnosis,

• A scale-aware transformer system that can diagnose whole

slide skin biopsy images usingmultiple scales and is the first

such deep learning system to do so,

• A thorough analysis of the viewing patterns of a group of

practicing pathologists who diagnosed digital whole slide

skin biopsy images using a web-based viewing platform in

order to understand what variables affected their diagnoses.

Our work is novel in its use of advanced deep learning

architectures to tackle a set of problems in the skin biopsy

analysis domain that together can lead to a full diagnostic aid

system. Limitations include the use of only a single curated data

set, since there were no publicly available data sets, and that we

have not yet integrated all the above work into an end-to-end

system. Such work is still underway.

2. Related work

While there has been a great deal of work in other areas of

pathology, such as breast cancer pathology, there is little work in

computer analysis of skin cancer biopsies. This is due to the lack

of public data sets with ground truth available, so researchers

have to collect their own data. Our work was preceded by

some groundbreaking work at the University of Alberta in

Professor Mrinal Mandal’s group in which all topics we address,

from finding low-level entities to diagnosing the images, was

pursued. Lu worked on melanocyte detection (Lu et al., 2013a)

and mitotic cell detection (Lu and Mandal, 2014b) as well as

segmentation and analysis of the epidermis (Lu and Mandal,

2014a). He also developed the first diagnosis system (Lu and

Mandal, 2015). Hong Xu created a full system that segmented

the epidermis and dermis (Xu and Mandal, 2015), analyzed the

features of both of them from a computer-vision-feature point

of view, and used these features to perform diagnosis (Xu et al.,

2018).

Our work follows these studies but has substantial

differences. The Alberta work was feature-based, while our work

is deep-learning based. Their hand-crafted features for finding

melanocytes (the halo approach) (Lu et al., 2013a) did not

transfer well on our data set. To capture the complexity of skin

biopsy images, we have divided our work into three sections:

finding low-level entities, semantic segmentation of the images,

and diagnosis. We also study the association of pathologists’

viewing behavior with diagnostic accuracy.

3. Low-level entity detection

3.1. Methods

There are several low-level entities to be found in skin biopsy

images that are clinically useful to pathologists when making

their diagnoses, and we have developed methods for finding

two of them: (1) melanocytes, which can be found alone or in

nests, and (2) mitotic figures, which are cells in a biopsy that

are actively dividing into two cells, indicating that the diagnosis

could be more severe.

3.1.1. Melanocyte detection and results

Melanocytes are cells that produce and contain the pigment

called melanin, which protects against ultraviolet radiation.

They normally reside in the basal layer of the epidermis,

but in abnormal biopsies, they can be found in multiple

different locations and the distribution disorder is important

for diagnosis. In prior work (Lu et al., 2013a,b), a feature-

based method was proposed based on the assumption that

melanocytes were cells surrounded by a halo appearance.

However, this turned out to not apply to some melanocytes in

our preliminary work. Thus we took a different approach, using
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FIGURE 1

Sample H&E stained image and SOX10 stained image. The SOX10 stain highlights the melanocytes in red-brown (This figure appears in a

manuscript submitted to WACV 2023). (A) H&E staining. (B) Sox10 staining—melanocytes are red. (C) Crop from Sox10.

FIGURE 2

Our VSGD-Net framework: H&E images are virtually stained to SOX10. The jointly trained detection branch utilizes the intermediate features in

the generator to detect melanocytes and provides feedback to the generator to enhance synthesis quality. The inference phase only uses the

upper part of the architecture (This figure appears in a manuscript submitted to WACV 2023).

deep learning for melanocyte detection. To enable supervised

learning and have a fair evaluation, we began to look at specific

immunohistochemical (IHC) stainings that could highlight

the melanocytes (the SOX10 stain, for example, turns the

melanocytes red-brown) (see Figure 1). Since the SOX10 stain is

not routinely used in both clinical practice and computer vision

study, we wanted to keep it as an auxiliary reference to facilitate

melanocyte detection and only take H&E images as input. With

this in mind, we first trained the ESPNetV2 (Mehta et al., 2019)

to classify pre-segmented nuclei patches. However, this deep

learning classifier was not satisfactory due to the visual similarity

of melanocytes and other cells. Inspired by the application of

Generated Adversarial Networks (GANs) in virtual staining

(Xu et al., 2019; Liu et al., 2021), we assume the mapping

between H&E and SOX10 can be learned and can facilitate

melanocyte detection. Thus we propose VSGD-Net, a virtual

staining guided detection network, which learns melanocyte

identification through virtual staining from H&E to SOX10.

Figure 2 illustrates the architecture, which is comprised

of the generator G, the discriminator D, and the detection

branch Det. We built the generator G based on an adapted

UNet (Ronneberger et al., 2015) structure with ResNet-50 (He

et al., 2016) being the backbone. The encoder-decoder structure

learns the high-dimensional feature representation of input

H&E images, and translates them into target SOX10 stained

images. We incorporated attention blocks (Woo et al., 2018)

in the skip connections between the encoder and the decoder.

While the generator learns the virtual staining process, the

discriminator attempts to differentiate real and synthesized

SOX10 images. Inspired by Pix2PixHD (Wang et al., 2018), we

adopted a multi-scale architecture that has 2 identical CNN

networks as discriminators: the two discriminators work at
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TABLE 1 Comparison with nuclei detection methods for melanocyte
detection (This table appears in a manuscript submitted to WACV
2023).

Method Precision Recall F1 Jaccard

Nuclei classification 0.693 0.506 0.585 0.413

RLS (Lu et al., 2013b) 0.443 0.570 0.499 0.332

Mask R-CNN (He et al., 2017) 0.735 0.514 0.605 0.434

U-Net (Ronneberger et al., 2015) 0.630 0.639 0.635 0.465

HoverNet(Graham et al., 2019) 0.729 0.499 0.592 0.421

CHR-Net (Gao et al., 2021) 0.607 0.688 0.645 0.476

Ours VSGD-Net 0.660 0.710 0.684 0.520

The bold values are the best scores in each column.

coarse and fine levels separately, where the input to the coarse-

level discriminator is down sampled by a factor of 2 from the

input to the fine-level discriminator. Optimized by the minimax

loss (Goodfellow et al., 2014), the intermediate features in G

contain the hidden correlation between H&E and SOX10, thus

can be exploited to detect melanocytes. Similar to Mask R-

CNN (He et al., 2017), our detection branch Det contains a

feature pyramid network (FPN), a region proposal network

(RPN), and the downstream heads. As the SOX10 stain can

highlight melanocytes, we placed Det after the decoder of G,

which is closer to the SOX10 stain. G, D, and Det are trained

jointly to simultaneously learn from the image synthesis and the

detection tasks.

We compared our VSGD-Net with a nuclei

classification method performing melanocyte detection using

ESPNetv2 (Mehta et al., 2019), and a group of nuclei detection

methods performing melanocyte detection including Radial

Line Scanning (RLS) (Lu et al., 2013b), Mask R-CNN (He et al.,

2017), U-Net (Ronneberger et al., 2015), HoverNet (Graham

et al., 2019), and the state-of-the-art CHR-Net (Gao et al., 2021).

Precision, Recall, F1-score, and Jaccard index were reported

on the test set. As Table 1 shows, VSGD-Net achieved the

best F1-score and Jaccard index by balancing the performance

between precision and recall.

3.1.2. Mitotic figure detection and results

A mitosis (or mitotic figure) is an important entity

in the review of skin biopsy cases as its presence may

aid in the diagnosis of a melanoma in addition to being

associated with poorer prognosis. A high mitotic rate in a

primary invasive melanoma is associated with a lower survival

probability. Among the independent predictors of melanoma-

specific survival, mitotic rate is the strongest prognostic factor

after tumor thickness (Thompson et al., 2011). Thus, the

accurate detection of mitotic activity plays an important role

in making cancer diagnoses for the pathologist, and because

mitoses are small objects with various shapes that can resemble

normal nuclei, mitosis detection remains a challenging task for

humans.

Various approaches have been applied to detect mitotic

figures. For example, Irshad et al. used morphological features

to identify cellular entities in a breast biopsy dataset (Irshad

et al., 2013). Cireşan et al. (2013) used a CNN-based method

for mitosis detection and won the International Conference

on Pattern Recognition 2012 (ICPR 2012) mitosis detection

challenge by a significant margin. Since then, much of the

research on mitosis detection in breast cancer biopsy images

has used CNNs, and CNN-based methods have been proposed

for mitosis detection in different tissues, including breast, stem

cells, and skin. To the best of our knowledge, there are no

publicly available skin biopsy datasets with mitosis annotations

from experienced dermatopathologists. To conduct our research

on mitotic figures in skin biopsy images, we created a new

dataset with mitosis-level markings from an expert pathologist.

We studied and compared the performance of two different

state-of-the-art CNNs, one that is small and was designed for

use in low-capacity devices and one that is much bigger, in

terms of accuracy, sensitivity, specificity, precision, recall, and

F-score. Our research, in general, gives a methodology and

architecture for mitosis finding in both melanoma and breast

cancer whole slide images, and that is likely to be useful for

finding mitoses in any whole slide biopsy images (Nofallah et al.,

2021) .

An expert pathologist (S. Knezevich) chose six skin biopsy

cases of ≥ T1b invasive melanoma, from our dataset and

cropped 34 areas in the whole slide images (WSIs) of these cases.

The size of the areas and the number of areas per each case

were not fixed but were based on the pathologist’s judgment with

the aim of marking as many mitoses as possible. A total of 628

mitoses in the cropped image areas were marked by the same

pathologist using the Sedeen Viewer. These marked mitoses

provide “class mitosis” samples for training and validation of our

binary classifiers.

Figure 3 shows some examples of mitoses and normal nuclei.

This figure shows the similarity between these entities in terms

of texture, color, and shape. We used a 101 × 101 patch

approximately centered on the target entity’s center. To help

our classifier learn rotation, scale, and translation-invariant

representations, we augmented our training set with standard

augmentation methods such as rotation (45, 90, 135 or 225

degrees) and mirroring (horizontal and vertical). The original

images were padded on the borders.

Our classification network uses a standard pipeline

(Krizhevsky et al., 2012; He et al., 2016) that stacks encoding

and down-sampling units to learn latent representations. In

our experiments, we used two state-of-the-art encoding units:

(1) Efficient Spatial Pyramid of Dilated Convolutions (ESPNet)

(Mehta et al., 2018b) and (2) Densely Connected Convolutional

Networks (DenseNet) (Huang et al., 2017). The same dataset
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FIGURE 3

Examples of (top) sampled mitoses, and (bottom) sampled

nuclei that are not mitoses. These two entities have similarity in

color, surrounding, and texture (Reprinted by permission from

Elsevier, Computerized Medical Imaging and Graphics, “Machine

learning techniques for mitoses classification,” S. Nofallah, S.

Mehta, E. Mercan, S. Knezevich, C. J. May, D. Weaver, D. Witten,

J. G. Elmore, L. G. Shapiro, Copyright Elsevier 2021.).

TABLE 2 Quantitative results of ESPNet and DenseNet on validation
set for mitosis detection (This table was adapted from Nofallah et al.,
2021).

Metrics ESPNet DenseNet

Accuracy 0.984 0.988

Precision 0.961 0.984

Recall 0.976 0.968

Sensitivity 0.976 0.968

Specificity 0.987 0.995

FP, FN 5, 3 2, 4

TP, TN 122, 370 121 , 373

Training time 35 m and 6 s 106 m and 32 s

split (training 80%, validation 20% with 3:1 ratio for normal vs.

mitosis) was used for both ESPNet and DenseNet training and

validation.

Table 2 summarizes the results of our classifiers using two

different encoding units: 1) ESPNet and 2) DenseNet. Both

networks achieved high accuracy on classifying mitoses with

a sensitivity of 0.976 and 0.968, and specificity of 0.987 and

0.995, respectively. Though DenseNet outperformed ESPNet,

this outperformance was not statistically significant (p-value is

0.5716), and the training time of ESPNet is about a third that of

DenseNet.

3.2. Discussion

In a pathologist’s decision-making process, the distribution

disorder of melanocytes on whole slide images is a key factor

for melanoma diagnosis. As shown by Table 1, our VSGD-Net

successfully detects melanocytes from only the routine H&E

staining. Although the state-of-the-art results of the melanocyte

detection in both F1-score and Jaccard index are below 0.7, they

are sufficient to reveal an estimated melanocyte distribution,

given the over 70% recall score. Our melanocyte detector is

useful to show pathologists without their having to obtain

additional immunohistochemical stained images of the biopsy

material with the corresponding time and expense.

The results of mitotic figure classification, given a good cell

finder, are very good. While the change from the 7th (Edge and

Compton, 2010) to the 8th (Amin et al., 2017) edition of the

American Joint Committee on Cancer (AJCC) cancer staging

system for melanoma no longer includes information on the

presence of mitotic figures as criteria for defining melanoma

stages, the presence of mitotic cells remains an important

prognostic feature in clinical practice.

Currently, our low-level feature detection systems are stand-

alone, but they can also be integrated into the higher-level

systems we are designing.

4. Semantic segmentation

Semantic segmentation refers to the classification of the

pixels of a WSI into categories, in our case the tissue classes

of each pixel. Accurate semantic segmentation has the potential

to improve the performance of automated diagnosis systems or

help pathologists reduce classification uncertainties. However,

a major problem of these methods is the lack of labeled

ground-truth data because pixel-level labeling of gigapixel WSIs

is extremely time-consuming and must be done by expert

pathologists.

4.1. Method

To reduce the burden of extensive label acquisition, in

the work of Nofallah et al. (2022b), we introduce a simple

two-step approach for semantic segmentation of skin biopsy

WSIs using coarse and sparse labels, which can significantly

reduce the labeling cost. Skin biopsy images have entities of

variable size. Entities like the dermis and epidermis are large

and easy to segment (Xu and Mandal, 2015), while entities like

dermal and epidermal nests are small and more difficult to

segment. When we have sparser annotations on smaller entities,

training a segmentation model that has high accuracy on all

the tissue structures might be harder to achieve. Hence, if the

segmentationmodel is trained in a single-stage with all the labels

at once, the model will perform better on larger entities and not

as well on the smaller ones.

To overcome this problem, we developed a two-stage

segmentation pipeline: First, a segmentation U-Net model is

trained with labels of large entities in the histopathology image

(Background, Stratum Corneum, Epidermis, Dermis). Then, in
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FIGURE 4

Overview of our approach. The image first goes to stage 1 and the segmentation mask of entities (COR, Stratum Corneum; EP, Epidermis; DE,

Dermis; BG, Background; UL, Unlabeled) in stage 1 is generated. Then this mask is used to remove the epidermis from stage 2-Dermis input and

remove the dermis from stage 2-Epidermis input. The modified images are fed to their corresponding trained model. Stage 2-Dermis generates

the segmentation masks of entities present in the dermis (DMN, Dermal nests), and stage 2-Epidermis generates the entities in the epidermis

(EPN, Epidermal nests). In the end, stage 2-Dermis and stage 2-Epidermis segmentation masks are overlaid on the stage 1 mask and the final

tissue-level segmentation mask is generated (Reprinted by permission from Springer, Journal of Digital Imaging, “Segmenting Skin Biopsy

Images with Coarse and Sparse Annotations using U-Net,” S. Nofallah, M. Mokhtari, W. Wu, S. Mehta, S. Knezevich, C. J. May, O. H. Chang, A. C.

Lee, J. G. Elmore, L. G. Shapiro, Copyright 2022.).

the second stage, there are two sub-stages: (1) Stage 2-Dermis is

trained on the dermis portion of the images and uses the ground

truth for the smaller entities that are present in Dermis (i.e.,

Dermal nests). (2) Stage 2-Epidermis is trained on the epidermis

portion of the images and uses the ground truth for the smaller

entities that are present in Epidermis (i.e., Epidermal nests).

Figure 4 illustrates the structure of our segmentation system.

4.2. Results

Tissue structures used in this study are: background

(BG), epidermis (EP), dermis (DM), stratum corneum (COR),

epidermal melanocytic nest (EPN), and dermal melanocytic nest

(DMN). Figure 5 demonstrates some examples of input images,

the corresponding sparse annotations, the corresponding fine-

detailed annotations on DMN and EPN by clinical experts

in dermatopathology, and the segmentation results of our

approach. Table 3 shows quantitative results on regions of

interest (ROIs), for which we had pathologists mark the

structures in the test set. Results show that our method can

generate high-quality segmentations forDM and EP, while over-

labeling DMN and EPN, an expected problem of a small dataset

with noisy ground-truth annotations. Despite the imperfect

results, these clinically-relevant tissue segmentations can still be

informative to improve diagnostic performance, which is shown

in Nofallah et al. (2022a).

4.3. Discussion

While segmentation is a significant element in the diagnosis

pipeline, training a segmentation model generally requires a

large, high-quality annotated ground-truth set. However, one

of the biggest challenges in dealing with most medical datasets

is acquiring sufficiently-sized and carefully-annotated datasets,

since the standard ground-truth on these datasets is expert-

level annotation, which is a challenging, time-consuming, and

expensive task. In our segmentation work, we proposed a

two-stage pipeline for the segmentation of important tissue

structures in skin biopsy images using coarse and sparse

annotations on small regions of WSIs. Our system was able to

generate segmentation masks for both epidermis/dermis and

nests with high-quality performance, indicating that having

sparse annotation on important tissues has the potential for

producing a useful segmentation model.

5. Diagnosis

For a reliable diagnostic system, it is important to obtain

representations that reflect both the content and context of the

input biopsy image. HATNet, a system we developed originally

for breast biopsy analysis, achieved this using a top-down and

bottom-up approach (Mehta et al., 2022). Pathologists describe

using a different viewing behavior before making their diagnosis

of breast tissue compared with their assessment of skin biopsy
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FIGURE 5

Visualization of results by our published two-step segmentation

method (Nofallah et al., 2022b). (A) Examples of original image;

(B) Sparse expert annotation; (C) Fine-detailed epidermal and

dermal nest annotation by expert for evaluation; (D)
Segmentation results by our published work. The annotation

and segmentation images contain the dermis (DM-yellow),

epidermis (EP-blue), stratum corneum (COR-pink), background

(BG-gray), dermal nests (DMN-light green), and epidermal nests

(EPN-dark green).

TABLE 3 Evaluation of the segmentation model on ROI testing set
(This table appeared in Nofallah et al., 2022b).

Segmentation stage Dice score IoU

Stage 1 (all tissues) 0.942 0.906

Stage 2-Dermis (DMN) 0.558 0.638

Stage 2-Epidermis (EPN) 0.332 0.558

images. Pathologists often examine features of various tissues,

such as skin biopsies, by changing the magnification of a

microscope back and forth. Our methodology for skin biopsies,

called ScAtNet, is motivated by pathologists’ viewing behavior.

5.1. Method

Following (1) the success of transformers in vision (Vaswani

et al., 2017), (2) the methods for learning representations from

different input scales (Chen et al., 2016; Lin et al., 2017; Mehta

et al., 2018a), and (3) the importance of input scales for diagnosis

in clinical settings (Brunyé et al., 2017; Mercan et al., 2018), we

introduced a self-attention-based deep neural network called the

Scale-Aware Transformer Network (ScAtNet) that adapts to

the information from different input scales using self-attention

and predicts the classification label (Wu et al., 2021). Figure 6

shows an overview of ScAtNet, which has three main steps: (1)

learn local patch-wise embeddings using a CNN for each input

scale, (2) learn contextualized patch-embeddings for each input

scale using transformers, and (3) learn scale-aware embeddings

across multiple input scales using transformers.

The input WSI image is divided into m non-overlapping

patches. Patch-wise feature representations, referred to as patch

embeddings, are obtained using an off-the-shelf CNN. The

patch embeddings are produced independently for each patch.

In other words, these embeddings do not encode inter-patch

relationships. They are fed to a transformer to learn inter-patch

relationships. Similar to vision transformers (Dosovitskiy et al.,

2021), patch-wise sinusoidal positional embeddings are added to

the original embeddings to encode the position of input patches.

The resultant embeddings are then fed to a transformer to

produce contextualized patch embeddings. These contextualized

embeddings are then averaged along the m-dimension to

produce an e-dimensional embedding vector, which encodes the

local (from CNN) and global (from Transformer) information

in an image Xsc.

A contextualized patch embedding encodes the information

in an image Xsc at scale sc. Let us assume that we have S scales.

For each scale sc ∈ [0, ...,S], we produce an embedding vector

and concatenate them all to produce a scale-level embedding

vector. These embeddings do not encode information about

the relationships between the different scales. To learn scale-

aware representations while retaining positional information

about each scale, scale-level learnable positional embeddings

are added. The resultant embeddings are then fed to another

transformer to produce contextualized scale embeddings. For

predicting the diagnostic class, ScATNet first flattens the scale-

aware embeddings to produce a (sc · e)-dimensional vector

and then classifies it using a linear classifier into C diagnostic

categories.

5.2. Results

Table 4 compares the overall performance of

ScAtNet across different metrics on single- and multi-

scale inputs. Two scales improved the performance over only

one scale. Compared to two scales, the overall performance

with three scales remains the same. However, with three scales,

the performance across all diagnostic classes was much more

evenly distributed, which is not seen in all other combinations.

Our experiments also show that our method outperforms five

other state-of-the-art whole slide image classification methods

by a significant margin. Our method also achieves comparable

performance to 187 practicing U.S. pathologists who interpreted

the same cases in an independent study.
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FIGURE 6

Overview of ScAtNet for classifying skin biopsy images (Wu et al., 2021). To learn representations from these large WSIs at multiple input scales

in an end-to-end fashion, ScAtNet factorizes the classification pipeline into three steps. The first step involves learning local patch-wise

embeddings using an o�-the-shelf CNN for each input scale independently. In the second step, ScAtNet learns inter-patch representations

using transformers and produces contextualized patch embeddings for each input scale. In the last step, ScAtNet learns inter-scale

representations from concatenated multi-scale contextualized patch embeddings using another transformer network and produces

scale-aware embeddings, which are then classified linearly into diagnostic categories (This figure was published in Wu, W., Mehta, S., Nofallah,

S., Knezevich, S., May, C. J., Chang, O. H., Elmore, J. G., Shapiro, L. G. (2021), “Scale-aware transformers for diagnosing melanocytic lesions,”

IEEE Access 9, 163526–163541, under a Creative Commons License.).

TABLE 4 Overall performance of ScAtNet(This table was published in Wu, W., Mehta, S., Nofallah, S., Knezevich, S., May, C. J., Chang, O. H., Elmore,
J. G., Shapiro, L. G. (2021), “Scale-aware transformers for diagnosing melanocytic lesions,” IEEE Access 9, 163526–163541, under a Creative
Commons License.).

Input scales
Accuracy F1 Sensitivity Specificity AUC

7.5× 10× 12.5×

✓ 0.55 0.55 0.55 0.85 0.75

✓ 0.60 0.60 0.60 0.87 0.77

✓ 0.61 0.61 0.61 0.87 0.78

✓ ✓ 0.64 0.64 0.64 0.88 0.79

✓ ✓ 0.63 0.63 0.63 0.88 0.80

✓ ✓ 0.63 0.63 0.63 0.88 0.79

✓ ✓ ✓ 0.63 0.63 0.63 0.88 0.79

5.3. Discussion

Unlike prior studies, this work classifies the full spectrum

of melanocytic skin biopsy lesions ranging from mildly

atypical nevi and more advanced atypical pre-cursor lesions, to

melanoma in situ to invasive melanoma. An independent test set

allows us to demonstrate the generalization ability of ScATNet.

A key strength of our work is that we were able to compare

the diagnostic classification of ScATNet with the performance

of actively practicing U.S. pathologists who interpreted the same

cases (test set) in an independent study.

Although the proposed method has shown great potential

for automated melanocytic lesion classification, limitations are

recognized. Our study is only relevant to melanocytic lesions,

while only about one in four skin biopsies have melanocytic

cells (Lott et al., 2018). Moreover, despite having an independent

test set, ScATNet was evaluated on only 115 WSIs. In order to

demonstrate its application in clinical settings, it should be tested

on a larger test set. Also, in this paper, we only studied skin

biopsies. However, we believe that ScATNet is generic and can

be extended to other types of biopsy images, such as breast and

lung.

6. Association of pathologists’
viewing behaviors with diagnostic
accuracy

Making a diagnosis from a pathology slide is a difficult

process that requires years of training for pathologists. A

pathologist typically uses a microscope to examine a skin sample

on a glass slide in an effort to identify important areas and

visual characteristics. These characteristics can be subtle and

difficult to understand, but they have important implications
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for diagnosis and treatment at the regional and cellular

levels. When faced with massive amounts of information on

huge slides, even experienced pathologists can make mistakes.

Studies have shown that even when pathologists see the same

characteristics on a biopsy sample slide, their diagnoses can

differ (Zhang et al., 2019). Since digital imaging is becoming

more prevalent in diagnostic pathology, it is crucial to study

the pathologists’ viewing behaviors as they diagnose a digital

image. The outcomes of these research efforts can be helpful

in a number of areas, including enhancing the education and

training of pathologists, identifying the causes of diagnostic

errors to improve pathologists’ performance, and assisting in the

creation of computer-aided diagnostic tools.

6.1. Methods

To gain a better understanding of pathologists’ viewing

behaviors, we introduce various ways of quantifying such

behaviors while the pathologist is viewing and diagnosing digital

whole slide images (Ghezloo et al., 2022). Then we investigate

how these viewing behaviors are associated with their diagnostic

accuracy and pathologist characteristics and demographics. In

our study, 32 pathologists used a web-based viewer to examine

and diagnose one of five sets of 36 digital melanocytic skin

cases (180 total cases) that were assigned to them. These

viewing sessions were recorded, producing a total of 1073

interpretations. The web-based viewing platform automatically

recorded a series of viewports in the order in which they were

viewed. A viewport is a rectangular area of the image that can

be seen at any time during interpretation on the pathologist’s

computer screen. The tracking data for each interpretation

included the location of the viewports, the zoom level used to

see the viewports, and the timestamps. Additionally, we have a

consensus reference diagnosis and a ROI (region of interest) for

each digital case that highlights key aspects of the diagnosis as

determined by our reference panel of expert pathologists.

Using the viewport tracking data, we defined variables

to measure pathologists’ viewing behaviors regarding their

interactions with the digital slides, including their zooming

and panning habits, total interpretation time, and attention to

the reference panel’s chosen consensus ROI. A list of these

variables and their definitions can be found in Table 5. Total

interpretation time measures the amount of time a pathologist

spends viewing a digital slide. To evaluate pathologists’ zooming

behavior, we measured the average, maximum and variance

of zoom levels used during an interpretation. ROI time

percentage measures the percentage of total interpretation

time spent viewing areas that intersect with our panel of

experts’ selected ROIs. For a better understanding of zooming

behavior, we defined magnification percentage, which measures

the percentage of viewports where a pathologist zooms in

consecutively, and scanning percentage, where a pathologist

utilizes a fixed zoom level to scan the slide.

TABLE 5 Pathologists’ viewing behaviors and their association with
diagnostic accuracy (This table was published in Journal of Pathology
Informatics, Vol 13, F. Ghezloo, P. Wang, K. F. Kerr, T. T. Brunye, T. ´
Drew, O. H. Chang, L. M. Reisch, L. G. Shapiro, J. G. Elmore, “An
analysis of pathologists’ viewing processes as they diagnose whole
slide digital images,” 1–6, Copyright Elsevier (2022).).

Viewing behavior

(Predictor variable)

Adjusted OR (95% CI) P-value

Total interpretation time 1.33 (1.09, 1.62) 0.005

Average zoom 1.26 (1.03, 1.54) 0.023

Maximum zoom 1.24 (1.03, 1.50) 0.026

Zoom variance 1.37 (1.11, 1.68) 0.003

Magnification percentage 0.76 (0.63, 0.92) 0.006

ROI time percentage 1.35 (1.07, 1.69) 0.011

Scanning percentage 1.21 (1.00, 1.47) 0.054

We applied a generalized linear mixed model with logit link

that converts values to a 0-1 scale to examine the associations

between pathologists’ viewing behavior and diagnostic accuracy

on each case. The binary agreement between a pathologist’s

diagnosis and the expert-defined consensus reference diagnosis

is how we define diagnostic accuracy. We utilized one of the

viewing behaviors defined above as the explanatory variable

of interest and diagnostic accuracy as the outcome for each

univariate model. All models also included the pathologists’

years of experience withmelanocytic skin lesions and their board

certification and/or fellowship training to control for pathologist

experience or expertise.

6.2. Results

For each of the defined viewing behaviors, seven different

models were created. Table 5 displays the Odds Ratio (OR)

and P-value for each model. With a viewing behavior as the

predictor variable and diagnostic accuracy as the outcome, each

row represents one model. Except for scanning percentage,

which was marginally significant ( 0.05 < P< 0.1), all

viewing behaviors exhibit a statistically significant association

with diagnostic accuracy (P< 0.05). Each viewing behavior,

with the exception of magnification percentage, was positively

correlated with accuracy (adjusted OR > 1), indicating that

interpretations showing more of the activity were more likely

to result in a correct diagnosis. A correct diagnosis was less

likely to result from interpretations with higher magnification

percentages (adjusted OR < 1).

6.3. Discussion

One of the major causes of medical morbidity and death

is an incorrect cancer diagnosis (Zhang et al., 2019). Given the
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serious effects that diagnostic mistakes have on patients, it is

critical to comprehend the underlying causes of these mistakes.

It may be useful for both clinical and instructional purposes

to investigate how pathologists interpret the digital slides and

conduct their searches, and how these viewing behaviors affect

the accuracy of their diagnoses. The relationship between the

amount of time spent viewing the consensus ROI and diagnostic

accuracy emphasizes how crucial it is to identify key regions

and obtain high-power views of the histopathological features

in these regions. We think this outcome can be utilized in

future research and development as digital WSI and computer-

aided diagnostic (CAD) tools continue to permeate training

and clinical practice. A few computer models have been created

based on how pathologists view breast histopathology photos

when diagnosing patients (Mercan et al., 2014). Future adaptive

tutoring systems can also keep track of student viewing behavior

and adaptively direct new pathologists toward these aspects,

assisting them in learning which image parts are crucial for

making an accurate diagnosis.

7. Conclusion

This paper has described multiple different efforts to

analyze skin biopsy whole slide images, including melanocyte

and mitotic figure detection at the low level, semantic

segmentation at the mid level, and diagnosis and viewing

behavior analysis at the high level. Our deep learning results

show that it is possible for computer programs to provide

information that can aid dermatopathologists in their work.

In a recent work (Nofallah et al., 2022a), we studied

the impact of adding each tissue mask to the WSI in

the classification of our dataset into diagnostic categories.

Our experiments showed that including certain segmentation

masks such as epidermal nests and dermal nests, specifically

melanoma dermal nests, along with WSIs resulted in a better

diagnosis performance. Our analyses of pathologists’ viewing

behavior identified the variables that were most important

in the work of human pathologists as they diagnosed digital

slides. The time is ripe for a fully-automated diagnosis aid

that can support and advise pathologists as they perform

their diagnoses.
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