
TYPE Original Research

PUBLISHED 11 January 2023

DOI 10.3389/frai.2022.1025148

OPEN ACCESS

EDITED BY

Dongpo Xu,

Northeast Normal University, China

REVIEWED BY

Juliana Vizzotto,

Federal University of Santa Maria, Brazil

Caixia Zheng,

Northeast Normal University, China

*CORRESPONDENCE

Tiago de Souza Farias

tiago939@gmail.com

SPECIALTY SECTION

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

RECEIVED 22 August 2022

ACCEPTED 23 December 2022

PUBLISHED 11 January 2023

CITATION

Farias TdS and Maziero J (2023)

Feature alignment as a generative

process. Front. Artif. Intell. 5:1025148.

doi: 10.3389/frai.2022.1025148

COPYRIGHT

© 2023 Farias and Maziero. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Feature alignment as a
generative process

Tiago de Souza Farias* and Jonas Maziero

Departament of Physics, Center for Natural and Exact Sciences, Federal University of Santa Maria,

Santa Maria, Brazil

Reversibility in artificial neural networks allows us to retrieve the input given an

output. We present feature alignment, a method for approximating reversibility

in arbitrary neural networks. We train a network by minimizing the distance

between the output of a data point and the random output with respect to a

random input. We applied the technique to the MNIST, CIFAR-10, CelebA, and

STL-10 image datasets. We demonstrate that this method can roughly recover

images from just their latent representation without the need of a decoder.

By utilizing the formulation of variational autoencoders, we demonstrate that

it is possible to produce new images that are statistically comparable to the

training data. Furthermore, we demonstrate that the quality of the images can

be improved by coupling a generator and a discriminator together. In addition,

we show how this method, with a few minor modifications, can be used to

train networks locally, which has the potential to save computational memory

resources.

KEYWORDS

machine learning, neural network, generative, reversibility, local training

1. Introduction

Feature visualization (Olah et al., 2017) is a set of techniques for neural networks

aiming to find inputs that maximize the activation of one or more selected neurons

from the same network. Usually, feature visualization is used as a method for model

interpretability, where one seeks to understand a neural network by analyzing howmuch

each neuron contributes to a neural network by perceiving the images generated by

these techniques. The process of obtaining these inputs is, in a sense, an attempt toward

reversing a neural network. Since a neural network is composed by functions that map

inputs to outputs, the visual representation of a feature is the input we would have given

a target activation for a group of posterior selected neurons.

The reversibility of neural networks relates to how well one can reverse the map from

the activation of target neurons back to the input neurons (Gomez et al., 2017). In most

cases, neural networks are not reversible, primarily due to three reasons: (1) The presence

of non-reversible activation functions [e.g., ReLU (Nair andHinton, 2010)], whichmeans

that in general, it is impossible to directly recover the input value x given the output

value f (x). (2) Non-orthogonal weights, as there are neither constraints nor incentives

for their matrix representation to converge to having this property. (3) Lack of one-to-

one relationships as a result to the reduction of dimension as the information is passed

through each layer of a network. In addition to the reversing mapping, reversible neural

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.1025148
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.1025148&domain=pdf&date_stamp=2023-01-11
mailto:tiago939@gmail.com
https://doi.org/10.3389/frai.2022.1025148
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2022.1025148/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

networks have the benefit of memory efficiency: unlike non-

invertible neural networks, which must store all of the

activations for the backward pass during training, reversible

neural networks only need to store a portion of the activations

in order to update the trainable parameters.

Reversibility also constrains the number of possible models,

as many possible parameters configurations model the data.

For example, if one considers an analytical function that

one wants a sufficiently parameterized neural network to

approximate, with the pair of data {x, f (x)}, several local minima

estimate the function x → f (x), each of which was obtained

by a different random initialization of the neural network

parameters (assuming optimal convergence). By restricting the

reversibility f (x) → x, we can reduce the number of optimal

points toward which a neural network can converge. Since many

local optima converge to comparable losses, local optima do

not pose a problem for neural networks; however, they lack

interpretability because the inputs cannot be recovered from a

given output.

Memory is often a bottleneck for neural networks. Modern

deep learning techniques frequently use the backpropagation

algorithm (Linnainmaa, 1976; Rumelhart et al., 1986), which

requires the storage of all network activations in order to update

its parameters. Local training rules enable a more effective

memory optimization of neural networks (Baldi and Sadowski,

2016). By constraining the trainable parameters, such as the

weights, to be updated only by local variables (the information

contained in the neurons that share the same parameter),

we can reduce the memory requirements to load a model

in hardware such as CPUs and GPUs. This constraint can

conserve memory resources and has a wide range of potential

applications, including low-memory devices (Sohoni et al., 2019;

Velichko, 2020), training large batch sizes (You et al., 2017;

Gao and Zhong, 2020), and, even training very large neural

networks (Jing and Xu, 2019).

Our goal in this paper is to show that feature alignment

can be used for approximate reversibility of neural networks

as well as sampling of images. This approximation is based

on performing gradient descent on the input space while

simultaneously training a network to estimate the input given

an output. To show the feasibility of the proposed technique, we

make use of generative networks to generate samples statistically

similar to the training data by making use of approximated

reversibility. We also adapt the technique for local training,

showing that is possible to reverse an encoder by mapping the

output latent vector back to the images of a dataset with only

local variables.

2. Related work

Several works have been done in the area of feature

extraction, especially applied for model interpretability and

explainability (Gilpin et al., 2019; Fan et al., 2021; Ismail

et al., 2021; Shahroudnejad, 2021; Thakur and Han, 2021).

These techniques, used for extracting features, usually consist

in activation maximization (Mahendran and Vedaldi, 2016; Ellis

et al., 2021), where a group of neurons, which can involve

from a single neuron up to an entire layer (or channel for

convolutions), is selected to extract the feature bymaximizing its

activation.Many of these techniques of feature extraction consist

in studying features in already pre-trained classifiers (Nguyen

et al., 2016b). Other techniques consist in searching for features

in the latent space (Shen et al., 2020). Feature extraction can also

be utilized for understanding which parts of an input contribute

the most for the target activations (Springenberg et al., 2015;

Zintgraf et al., 2017; Selvaraju et al., 2020).

In a generative process, we want to produce new examples

with the same statistical distribution as the training data.

There are several different techniques to model the data for

a generation. Among these techniques, autoencoder based

networks, generative adversarial networks, and normalizing

flows are very popular. Autoencoders (AE), while not generative

networks, they constitute of building blocks for other generative

networks and offer insights about mapping the input to other

representations. Autoencoder consist of two networks: an

encoder that projects the inputs into a vector, usually with a

smaller dimension, and a decoder that reconstructs the input

from this vector. The compressed vector has a high-level

representation of the model, in which each neuron contributes

to properties beyond the data level at the input layer (Lee et al.,

2011). Autoencoders are commonly trained in an unsupervised

fashion, nevertheless, some variants include labeled information

to further increase training for a specific objective. Variational

autoencoders (VAE) (Kingma andWelling, 2014, 2019; Doersch,

2021) gives autoencoders generative capability by projecting the

data into a probabilistic latent vector, thus we can generate

data statistically similar to the training data by sampling

random latent vectors and projecting them to a decoder

network. Generative adversarial networks (GANs) (Goodfellow

et al., 2014; Gui et al., 2020; Salehi et al., 2020) are another

example of a generative method. By having two competing

networks, a generative network which takes a random low-

dimensional input and outputs an image, and a discriminator

network that compares the images from the training dataset

and the sampled ones from the generator. The competition

arises by training the generator to fool the discriminator by

generating images as closest to the training dataset as possible.

Normalizing flows (Kingma and Dhariwal, 2018; Papamakarios,

2019; Kobyzev et al., 2020) is another generative paradigm that

generate images by transforming a simple distribution to a more

complex one by a series of reversible transformations.

Diffusion models is another method that can be utilized

to generate samples that are statically comparable to a dataset

(Sohl-Dickstein et al., 2015; Ho et al., 2020; Rombach et al.,

2022). They are trained to predict the noise that is presented in a

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

sample by repeatedly exposing them to increasing levels of noise

as part of their training. The state-of-the-art capability of this

method, which can generate samples with high fidelity and that

are similar to the training dataset, is the primary benefit of using

this method. On the other hand, diffusion models take a long

time to sample because they require a large number of steps to

denoise an image, which is a process that is very computationally

intensive.

There have been works combining autoencoders with GANs

(Larsen et al., 2016). The work done in Dosovitskiy and Brox

(2016) and Nguyen et al. (2016a) is related to ours. They

synthesized new images with the same statistics as the training

data by inputting features to a generator network. The main

difference is that, in these previous articles, the features are

obtained with a pretrained network.

Most works on reversibility consist in architectural changes

of neural networks (Baird et al., 2005; Grathwohl et al.,

2018; Schirrmeister et al., 2018; Atapattu and Rekabdar, 2019;

Behrmann et al., 2019). These changes guarantee a one-to-

one relationship between inputs and outputs. BiGAN (Donahue

et al., 2017) constructs a generative network and a reverse

network that inputs images back to noise, which can be used to

obtain a latent representation of a dataset directly. Dong et al.

(2021) shows that is possible to reverse neural networks in the

case of reconstruction of images.

Local learning rules have been explored since Donald Hebb

proposed a simple model for learning in the brain (Hebb,

1949). The main advantage of this kind of learning algorithm is

requiring lower memory resources. Some works are biologically

inspired (Krotov and Hopfield, 2019; Lindsey and Litwin-

Kumar, 2020), while others focus solely on efficiency (Isomura

and Toyoizumi, 2016, 2018; Wang et al., 2021; Guo et al., 2022).

There is a growing body of work discussing whether the brain

does backpropagation (Whittington and Bogacz, 2019; Song

et al., 2020), with some approximations for training artificial

neural networks (Lillicrap et al., 2020; Millidge et al., 2020;

Laskin et al., 2021; Salvatori et al., 2021).

Another approach for saving memory resources is gradient

checkpoint (Dauvergne and Hascoët, 2006; Chen et al., 2016;

Kumar et al., 2019; Sohoni et al., 2019), where memory is traded

with computation time by re-evaluating neurons when they are

needed for backpropagation instead of storing their activations

all at once. While this technique decreases the amount of

memory necessary to train a neural network, it requires many

forward propagation calculations on the network, depending

on its size, which can increase time consumption, while local

learning rules, as opposite, require only one forward propagation

to update the parameters.

Table 1 summarizes the related works. We classified each

method by four properties: being able to train with new

data, whether the method can reconstruct data from a

latent space, if the method is able to produce new samples,

and reversibility. Three methods have all four properties:

normalizing flows, diffusion models and feature alignment.

Architecturally, normalizing flows is composed entirely by

reversible layers, while feature alignment allows for arbitrary

networks. Diffusion models contain a reversibility restriction

that is reversing samples from noise; consequently, diffusion

can only reverse samples with higher noise to lower noise. This

requirement does not apply to feature alignment because the

mapping can be done with any number of dimensions from the

input space to the output space and loss does not always require

noise for optimization.

3. Methods

The method of feature alignment is covered in this section.

It consists of two phases: first, we perform a gradient descent

on a random input using a loss function that measures the

distance between the encoded random input and an encoded

image. After that, the network is then trained on a different loss

function, which evaluates the distance between the inputs and

the gradient that was performed on it. By doing this, the network

is able to learn the inverse map that leads from its outputs to

the inputs that correspond to those outputs, thus recovering the

information that triggered its activation.

3.1. Feature alignment

The feature alignment encoder consists of a encoder with

parameters θ and an arbitrary number of latent variables as the

output. From a dataset x ∈ X, zx = E(x; θ) is the output from an

input x. With the same network, zr = E(r; θ) is the output from
a random input r, chosen from some probability distribution,

with the same dimension as the input data.

The feature r̂ of zx is obtained by minimizing a distance

function L(zx, zr) with respect to the random inputs r. We

choose a gradient flow for minimizing this distance, since it

can evolve the random input continually, as follows in the

Equation (1).

∂r

∂t
= −∂L

∂r
. (1)

Since zx is fixed, r will evolve such as the function of the

random variables will approximate z(x) as much as possible

(see Appendix A). We want to solve Equation (1) as efficiently

as possible in time and memory. By discretizing the gradient

flow, we obtain an approximation for the feature, as shown in

Equation (2).

rt = rt−1 − τ
∂L

∂r
, (2)

with τ being a hyperparameter that weights the contribution of

the gradient. Equation (2) is similar to activation maximization,

except that we are minimizing for the neurons to have a target

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

TABLE 1 Comparative table among previous works from the literature and with this article.

Method Trainable Reconstruction Sampling Reversible References

AE ✓ ✓ ✗ ✗ Lee et al., 2011

VAE ✓ ✓ ✓ ✗ Kingma and Welling, 2014

GAN ✓ ✗ ✓ ✗ Goodfellow et al., 2014

BiGAN ✓ ✓ ✓ ✗ Donahue et al., 2017

Feature extraction ✗ ✗ ✗ ✓ Mahendran and Vedaldi, 2016

Normalizing flow ✓ ✓ ✓ ✓ Kingma and Dhariwal, 2018

VAE-GAN ✓ ✓ ✓ ✗ Larsen et al., 2016

Reversible guidance ✗ ✓ ✗ ✓ Atapattu and Rekabdar, 2019

Diffusion models ✓ ✓ ✓ ✓ Rombach et al., 2022

Feature alignment ✓ ✓ ✓ ✓ This work

FIGURE 1

An encoder that has been trained using feature alignment for

the purposes of reconstruction. Left: the encoder receives an

input that is batched from training data as well as a random

input, which is updated by minimizing the distance between

their latent representations. The network is trained to

approximate r̂ ≈ x. Right: during inference, we reconstruct x by

only using its latent representation zr and doing gradient

descent on the random input r.

activation, which is the latent representation of an image x.

These updates are done in T time steps. Properly optimized,

the solution to Equation (2) converges to the input x by

approximating the inverse of the weights (see Appendix A). So,

by optimizing the parameters of the network, the weight matrix

between layers will have the orthogonal property w
T
w = I,

which implies in approximated reversibility (see Appendix B).

After we extract the representation r̂, we measure how

similar it is to the inputs x by a new loss function C(x, r̂).

This second loss function is used for training the encoder by

optimizing its parameters. As the neural network is trained,

the encoder learns, not only to map the inputs to the latent

variables, but also the reconstruction of the inputs from the

latent vector. Following training, we can reconstruct the inputs

by knowing only the latent vector. Figure 1 and Algorithm 1

summarize the feature alignment technique. First, using an

encoder E(θ), we obtain the latent representation zx of an

input, x, which can be an image. The same encoder is then

given a random input of the same size as the input that is

drawn from a predetermined distribution (such as a uniform

or Gaussian distribution), outputting the latent representation

zr . We then perform a gradient descent on the random input

for T steps (a chosen hyper-parameter). Once we have both

latent representations, we update the encoder parameters θ by

minimizing the distance between the optimized random input r̂

and the input x.

3.2. A toy example

To gain a better understanding on how feature alignment

works, here we will look at a straightforward example. Let’s

say we want to approximate a function y = f (x) with a

neural network. While we can approximate y with a sufficiently

parameterized neural network F(x; θ), we can not recover x

given only F(x; θ) for functions that do not have a one-to-one

relationship.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

zx = E(x; θ)
initialize r = x.shape from a random distribution

t = 0

while t < T do

zr = E(r; θ)
L = ||zx − zr||22
r = r − τ ∂C

∂r

t = t + 1

end while

r̂ = r

C = ||x− r̂||22
update θ by optimizing C

Algorithm 1. Training with feature alignment.

With the feature alignment method, we can constrain the

network F to be able to approximate the reversible map x =
f−1(y). In this example, we will look at the function y =
sin(3πx). The network used consists of two fully connected

hidden layers with 1,024 neurons each, with both input and

output single neurons. The network trained with FA has an extra

neuron in the output layer to act as a latent variable because

sin(3πx) has a correspondence many-to-one. The equation

L = ||lx − lr||22 + α||fx − fr||22, (3)

represents the auxiliary loss function for reversing the network,

with a hyper-parameter α, which in this example was set to

α = 0.01, fx is the output of the network we want to approximate

and fr is the output given a random input, lx is the latent neuron

and lr is the latent neuron from the random input. Then, we can

recover x by using the equation r̂ = r − ∂L
∂r .

The parameters of network are updated tominimize both the

difference between the input to its approximation and the output

to the function we want to approximate, with the loss function:

C = ||y− fx||22 + ||x− r̂||22. (4)

Figure 2 shows the results for a network trained with and

without feature alignment. We can observe that in the absence

of FA, the network is only able to approximate the inputs

partially. On the other hand, when the loss of feature alignment

is included, we have complete approximation within the entire

function domain.

3.3. Variational autoencoders with
feature alignment

In the context of generative processes, autoencoders,

in general, are unable to generate new samples with the

same statistical distribution as the training data. The latent

variables from the data, if associated with a distribution of

variables, may be too complicated or convoluted for effective

sampling. To enable feature alignment with sampling, we use the

variational autoencoder (VAE) formulation, without a decoder

network. As a result, the inverse of the encoder becomes

its own decoder, just as was previously with autoencoders.

In the VAE, the output of the encoder is coupled with two

layers that return the mean value µx and variance σ 2
x of the

data. We constrain the latent vector to have a distribution

that is easy to sample (typically a Gaussian distribution),

by comparing two probability distributions using a metric

such as the Kullback-Leibler divergence. Subsequently, the cost

function in Equation (5) is used to train the feature encoder

with a constraint to the output latent variables from a known

random probability distribution p(z), from which we can easily

sample. The constant β is a hyper-parameter that improves the

disentanglement representation of the data by regularizing the

latent vector (Higgins et al., 2016; Burgess et al., 2018; Sikka et al.,

2019):

L = ||x− r̂||22 − βDKL(qθ (z|x)||p(z)) (5)

The distribution p(z) is chosen according to the principle of

maximum entropy: since the latent variables are in the range

(−∞,+∞), the Gaussian distribution is the most appropriate

for this case. Each latent variable is then constrained to have a

Gaussian distribution with zero mean and one variance. Similar

to VAE, we cannot train the encoder by directly sampling the

mean and variance of the latent vector. Instead, we employ the

re-parametrization trick: we sample a random vector ǫ from a

normal distribution, the latent vector is represented as zx =
µx + ǫ ⊙ σ 2

x , with ⊙ the element-wise product. Because the

role of zr is only to reconstruction, it should be noted that we

do not have a random normal vector for this variable. Figure 3

summarizes training a VAE with feature alignment.

3.4. Improving the quality of the features
(VFA-GAN)

As will be shown in the results section, the images extracted

using the feature alignment trained with VAE are blurry, due to

the variational autoencoder nature (Rezende and Viola, 2018).

We add a generator network G and a discriminator network

D to the images generated by the technique to improve their

quality. In this manner, the optimized random vector functions

as a second latent vector, thereby sampling a more complex

distribution from the latent representation. This generator

network is similar to the refiner network described in Atapattu

and Rekabdar (2019), which takes an image as input and outputs

an improved version of it.

The optimized random input is fed into the generator,

which then generates a new output that is compared to

the input x. The discriminator is trained as a generative

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

FIGURE 2

Approximation of reversibility. (A) The network trained without feature alignment can only recover partially the inputs. (B) The network trained

with feature alignment can retrieve all the inputs.

FIGURE 3

Variational autoencoder with feature alignment. Left: training the encoder to reconstruct the inputs x. Right: we randomly sample a normal

vector ǫ to generate new data statiscally simillar to the training data. Note that the main di�erent between encoders with FA and VFA is on the

latent representation.

adversarial network, that assesses the likelihood that G(r̂)

is genuine or fake (that is, i.e., whether it comes from

training data or not). The generator is updated by receiving

gradients from the discriminator. For more stable training, we

use the least square loss for the discriminator (Mao et al.,

2017). Alternatively, it may be possible to use the Wasserstein

GAN formulation (Arjovsky et al., 2017), which replaces the

discriminator with a critic network that measures the score of

the “realness” of an image.

We propose using a random schedule for the variable β in

order to reduce the potential effects that could be caused by the

posterior collapse problem in VAEs (Lucas et al., 2019; Havrylov

and Titov, 2020; Takida et al., 2021) and to maintain a balance

with the reconstruction loss. We take a sample from a uniform

distribution β ← U(0, 1) for every example that we go through

in the training process.

Although pixel-level loss is typically used to optimize

image reconstruction, high-level data properties can also

be considered. Perceptual loss (Johnson et al., 2016)

is a type of measurement that compares the output of

the reconstruction with the original image at high-level

neurons (presented near the end of the network). The

mean and variance layers from the encoder network are

used in this case as the perceptual loss, requiring the

reconstruction to have the same statistical properties as

the original input.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

FIGURE 4

Training in the VFA-GAN setting, with the addition of generator

and discriminator networks.

The final losses, for the encoder,

generator, and discriminator are shown in

Equations (6)–(8), respectively:

LE = ||x− r̂||22 + βDKL(qθ (z|x)||p(z)), (6)

LG = ||1− D(G(r̂))||22 + λ(||µ(x)− µ(G(r̂))||22
+ ||σ 2(x)− σ 2(G(r̂))||22), (7)

LD = ||1− D(x)||22 + || − 1− D(G(r̂))||22. (8)

with λ a hyperparameter that weights the perceptual

loss contribution.

If training data contains additional information, such as

labels, it is possible to train a neural network simultaneously with

supervised training for specific related tasks such as conditional

generation, in which samples must correspond to a desired

class. We can condition the latent variables to have different

distributions from different classes. The output of the network

is trained using the Gaussian distribution z ∼ Q(zi, ci), with ci

being a one-hot vector containing the class information. Similar

to the work done in Ardizzone et al. (2019), we couple a linear

classification layer on top of the network, parallel to the mean

and variance layers. Since the class layer is linear, we can choose

a higher value for the one-hot vector during inference time to

emphasize the selected class. The improvements made on the

variational autoencoders with feature alignment discussed in

this section are illustrated in Figure 4.

3.5. Local feature alignment

The rules for feature alignment were presented as a global

rule: the auxiliary loss is defined with the output layer (with

the pair zx and zr) and the loss is defined with the input layer

(with the pair x and r̂), allowing full exchange of information

between all layers. However, we can reformulate this rule with

local losses, similar to target propagation rules (Bengio, 2014;

Farias and Maziero, 2018; Ororbia et al., 2018): the auxiliary loss

and loss are defined as the interaction between two connected

layers only (or even individual neurons), as follows: for each

layer l, from the first to the last, we activate xl+1 from its inputs

xl and store a second activation from a random input rl with

the same dimension. We then optimize the random input rl
with an auxiliary loss between activation of the random output

rl+1 and the true output xl+1. Finally, the parameters of the

chosen layer θl are updated by optimizing the loss between

the reconstruction r̂l and true input xl. This technique of

local training is summarized in Algorithm 2 and illustrated in

Figure 5.

1: for l=0, L do ⊲ for each layer

2: zlx = E(x; θl)
3: initialize r = x.shape

4: t = 0

5: while t < T do

6: zlr = E(r; θl)
7: Ll = ||zlx − zlr||22
8: r = r − τ

∂Ll
∂r

9: t = t + 1

10: end while

11: r̂ = r

12: Cl = ||x− r̂||2

13: update θl by optimizing Cl

14: x = zlx .detach

15: end for

Algorithm 2. Training with local feature alignment.

Each layer of the neural network trains its parameters to

become a predictive machine by attempting to predict the

inputs using knowledge of the outputs. The local learning

constraint has a greater impact on the non-linearity of a

neural network trained in this manner. Local rules can only

rely on very strict information content available, whereas

backpropagation can adjust all network parameters so that the

feature reconstructs the input. Non-reversible functions, like

the ReLU function, propagate loss of information, resulting

in low-fidelity reconstructions. In order to retain as much

information as possible, a non-linear function must be carefully

chosen. The function inverse hyperbolic sine (arc sinh(x) =
ln(x +

√

1+ x2))), is similar to the hyperbolic tangent near

zero and logarithmic at large (absolute) values. This function

has the properties of being fully invertible, zero-centered mean,

unbounded, continuously differentiable and its gradient does

not vanish as fast as for tanh. These properties make arc sinh a

good candidate function for local training.

Similar to how non-local feature alignment is typically

done, we must propagate the information backward from the

output to the input layer by layer at inference time. However,

the non-linear function will be crucial in this situation because it

must be reversible in order to approximate reversibility. This is

accomplished by applying the inverse of the non-linear function

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

FIGURE 5

Illustration of the local training rule. Within the network, we

select a pair of layers input-output l and l+ 1. The parameters θl

are updated by minimizing the distance between x and r̂l,

in which is obtained by minimizing the distance xl+1 and rl+1
with respect to rl.

after each layer that makes use of the function, following the

input of the latent vector. The Algorithm 3 provides a summary

of this procedure.

1: sample z
L
x

2: for l=L, 0 do

3: initialize r = x.shape with x as z
l
x = E(x; θl)

4: t = 0

5: while t < T do

6: z
l
r = E(r; θl)

7: Ll = ||zlx − z
l
r||22

8: r = r − τ
∂Ll
∂r

9: t = t + 1

10: end while

11: r̂ = r

12: if layer = non-linear function f then

13: r̂ = f−1(r̂)

14: end if

15: z
l
x = r̂

16: end for

Algorithm 3. Reconstruction with local feature alignment.

4. Implementation details

The encoder network consists of a series of convolutional

layers, similar to the AlexNet architecture (Krizhevsky et al.,

2012), but with stride one and two for down-scaling, instead

of maxpool, with LeakyReLU activation. The generator network

has three convolutional layers. The discriminator network has

the same architecture as the encoder, except for the last layer

that outputs a single value. Only the generator utilizes batch

normalization after each convolution. All convolutions have

kernel size k = 3. Details of the networks can be found in

Tables 7–12 in Appendix B for MNIST, CIFAR-10, CelebA and

STL-10, respectively.

We use the Adam optimizer (Kingma and Ba, 2017) with

learning rate η = 0.00001 and batch size 128. The parameters

of the encoder and generator networks are initialized with

orthogonal initialization (Saxe et al., 2014; Hu et al., 2020).

We set the hyperparameter λ = 0.01 and sample β from a

uniform distribution, with a different random value for each

training example. We set the hyper-parameter τ = 1 for the

reconstruction of the input at one-shot T = 1.

From Appendix B, we have that the loss becomes unstable

when the weights w2 > 2, so we restrict the weights to the range

−
√
2 ≤ w ≤

√
2 by clamping then, as shown in Equation (9).

w =















−
√
2 if w < −

√
2,

√
2 if w >

√
2,

w otherwise.

(9)

We also report the results of the modified feature alignment

for local training as a proof of concept by training an encoder

for reconstruction from a latent vector. For GAN, when used

for reconstruction, we search the latent space that leads to most

similar images by optimizing argminz||x− G(z)||22.

5. Results

We compare the results against traditional variational

autoencoders and generative adversarial networks. The results

show the reconstruction of the inputs using feature alignment

and generator applied to the generated input. Additionaly,

we also show random samples from the generator network.

Furthermore, we display the model size and inference time

for each dataset in the next section. All models were trained

and evaluated on an Nvidia RTX 2070 graphics processing unit

(GPU) card.

We measured the quality of the results by using the Fréchet

Inception Distance (FID) (Heusel et al., 2018; Seitzer, 2020).

The FID score is calculated by extracting the activation of

the global spatial pooling layer of a pre-trained Inception V3

model (Szegedy et al., 2016), for equally numbered images from

the dataset (here we choose 10,000 images) and sampled from a

generator model, as shown in Equation (10).

FID = ||µ1 − µ2||22 + tr(61 +62 − 2
√

6162) (10)

with µ the mean of activations, 6 the covariance matrix and

tr the trace function. The FID score, as opposed to pixel-level

comparisons, compares the similarity of images at a high level in

the feature layers, where significant patterns can be identified.

This is in contrast to comparisons that are made at the pixel

level. Due to the fact that FID is measured on a collection of

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

TABLE 2 FID scores across four image datasets.

Method MNIST CelebA CIFAR-10 STL-10

VAE 39.84± 0.15 84.84± 0.10 163.59± 0.37 201.59± 0.46

GAN 21.50±2.79 32.85± 1.22 63.39± 0.62 247.35± 2.43

VFA (ours) 120.02± 1.11 143.51± 1.04 209.32± 1.96 259.96± 2.46

VFA− GAN (ours) 41.24± 2.71 132.18± 2.73 73.20± 2.67 167.26± 5.18

Mean and standard deviation from three trials. Lower is better. We can see that the generator improves the quality of the samples by lowering the FID score from sampling variational

autoencoders trained with feature alignment.

FIGURE 6

Representation of the latent space. (A) Latent space with two neurons, (B) images from features extracted by manipulating the classification layer.

images, we are able to make a comparison between the statistics

of the distributions found in natural images (or any other set of

images that may be desired) and those produced by a generative

method. Because it operates in a manner analogous to that of a

distance metric, values that are lower indicate that the generated

images are statistically more comparable to either the training or

test data.

Table 2 shows the average FID score results for three

different initializations. We can see that across the four datasets,

feature alignment has higher scores, which indicates that,

in comparison to the other approaches, it has a lower sampling

quality. When a generative network is used, however, feature

alignment can achieve scores that are more comparable to those

achieved by GANs.

The results of each dataset section below demonstrate that

VFA has a lower sample quality and, thus, a greater FID.

This behavior is primarily caused by two factors: first, VFA

has the same limitations as variational auto-encoders, in which

sampling is constrained by the latent layer and tends to produce

blurry images to some extent as a result of the loss attempting

to approximate the distribution on the latent space to a normal

distribution. Second, in addition to optimizing reconstruction

and approaching the normal distribution, the loss of VFA must

FIGURE 7

Reconstruction of images of the MNIST dataset from four

di�erent models.

also optimize reversibility when the encoders of a VAE and

VFA are set to have the same size. The GAN formulation and

publications concerning the FID metric both demonstrate that

both VFA and VAE contain losses that act on pixel space, which

is not always the optimal measure to produce sharp images.

Since the generator is trained with a discriminator and both

have losses that function on a different space than the pixels,

connecting the generator network to enhance the quality of the

reconstructed inputs leads to better samples and a lower FID.

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

FIGURE 8

Left: random samples. Right: interpolation among four images reconstructed from the dataset.

TABLE 3 Size and execution time required to draw a single sample

using multiple models trained on the MNIST dataset.

Model Size (×105 parameters) Time (×10−4 s)
VAE 27.40 9.44

GAN 13.44 5.73

VFA 14.0 11.66

VFA-GAN 14.16 20.59

VFA takes approximately the same amount of time as VAE, but only half the number of

parameters.

5.1. MNIST

The MNIST dataset (Lecun et al., 1998) is a collection of

60,000 grayscale images with size 28× 28 pixels that contain

hand drawings of digits from zero to nine. Figure 6A shows the

latent space trained on two neurons as outputs, we can see that

the network attempts to cluster the images to similarity, while

Figure 6B shows the reconstruction for a fixed latent vector but

varying a trained classified output vector according to the labels

of the dataset. Figure 7 shows the reconstruction of images by the

features and with the generator applied to them, compared with

traditional AE, VAE, and GAN. Even though the reconstructions

are frequently noisy, the generator can sharpen the images to

make them more similar to the original inputs. Figure 8 shows

random samples from the generator with a class layer coupled to

the encoder. To show the consistency of transitions on the latent

space, the same image also features the interpolation of the latent

vector between four pairs of images.

The size of the model and the amount of time required to

draw a single sample are provided in the Table 3. The size of

a feature algorithm is approximately half that of a variational

autoencoder because it trains a network without a decoder,

but its execution time is roughly the same due to the backward

pass used to update the random input.

5.2. CelebA

The CelebA dataset (Liu et al., 2015) is a collection of 202,600

images of celebrity faces. The images were resized to 64 ×
64 pixels. Figures 9, 10 show the reconstruction and sampling

with interpolation between samples, respectively. Without the

perceptual loss (with λ = 1), we noticed a failure on the

convergence of the generator network, resulting in samples

containing only noise.

The size and duration of sampling a single image for various

models are displayed in Table 4. As before, we can see that VFA

takes about the same amount of time despite being half the size.

5.3. CIFAR-10

The CIFAR-10 dataset (Krizhevsky and Hinton, 2009)

contains 70,000 natural images with size 32× 32 pixels across 10

different classes. Figure 11 shows the reconstruction of images

from the dataset. While the features do approximate the original

inputs, the transformation of the generator tends to be more

dissimilar due to its loss being dependent only on the adversarial

contribution (λ = 0). Just as before, Figure 12 shows random

samples and interpolation, which show a diversity of images,

albeit less perceptual similar to the original dataset.

Table 5 shows the size and time of sampling for different

models. Since VFA is very similar to VAE, but without the

decoder, we can see that it maintains the half-size pattern for the

same amount of time, due to the backward pass.

5.4. STL-10

The STL-10 dataset (Adam et al., 2011) is a subset of the

ImageNet dataset that contains 100,000 unlabeled images, and

a additional of 500 labeled images for training and 800 images

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

FIGURE 9

Reconstruction of images of the CelebA dataset from four di�erent models.

FIGURE 10

Two sets of interpolation among four random sampled images.

TABLE 4 Size and execution time required to draw a single sample

using multiple models trained on the CelebA dataset.

Model Size (×105 parameters) Time (×10−4 s)
VAE 37.48 19.41

GAN 18.48 12.45

VFA 19.04 22.79

VFA-GAN 19.24 41.71

VFA takes approximately the same amount of time as VAE, but only half the number of

parameters.

for testing. This dataset is mostly used for unsupervised tasks,

but since in this work we are interested in image generation, we

used only the set of unlabeled images, resized to 64× 64 pixels.

The reconstruction results are shown in Figure 13. We can

see that the reconstruction r̂ fromVFA is visually similar to VAE,

but has slightly better fidelity to shapes.

Random samples from VFA-GAN are shown in Figure 14.

We also show, in Table 6, the size of each model and the time

required to draw samples. Note that the size of the model

VFA-GAN includes both the encoder and generator networks.

It is important to note that feature alignment is not expected

to outperform the reconstruction and sample qualities of VAEs

and GANs. Because the reversibility condition is a constraint

on neural network optimization, which must thus balance the

reversibility cost with other losses. Nevertheless, we compare

the reconstruction L2 loss with other networks to analyze how

different each network is compared to the same metric. These

results are shown in Figure 15.

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

FIGURE 11

Reconstruction of images on CIFAR-10.

FIGURE 12

Left: random samples. Right: interpolation among four images reconstructed from the dataset.

TABLE 5 Size and execution time required to draw a single sample

using multiple models trained on the CIFAR-10 dataset.

Model Size (×105 parameters) Time (×10−4 s)
VAE 97.55 10.01

GAN 47.48 7.20

VFA 50.28 11.25

VFA-GAN 51.95 21.56

VFA takes approximately the same amount of time as VAE, but only half the number of

parameters.

Given that it is optimized directly for reconstruction,

autoencoders have the lowest loss, which is to be expected given

the nature of the network. Because they are optimized with the

same amount of loss, the reconstructions from feature alignment

should be compared to VAEs and the generator should be

compared to GAN. It is clear from this that the lack of perceptual

loss on the generator network (for the CIFAR-10 dataset) has

FIGURE 13

Reconstruction of images on STL-10 from di�erent models.

a negative impact on the reconstruction ability (without first

optimizing the latent vector).

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

FIGURE 14

Random samples from VFA-GAN of images on STL-10.

TABLE 6 Size and execution time required to draw a single sample

using multiple models trained on the STL-10 dataset.

Model Size (×105 parameters) Time (×10−2 s)
VAE 254.22 1.51

GAN 32.74 1.50

VFA 221.48 1.72

VFA-GAN 229.90 2.18

FIGURE 15

Comparison of the reconstruction L2 loss for AE, VAE, GAN, r,

and G(r).

5.5. Local feature alignment

In this section, we present the results obtained by an

encoder that was trained for reconstruction using the local

feature alignment training. Figures 16A–D show reconstruction

pairs for the MNIST, CIFAR-10, CelebA and STL-10 datasets,

respectively. We can observe that local training can reconstruct

images even though the layers do not receive any information

from the reconstruction loss of images. This can be attributed

to the same reason as non-local feature alignment: the weights

form an orthogonal matrix that attempts to reverse information

between layers as much as possible, that is only limited by

the network capacity, which is directly related to the number

of neurons.

6. Conclusions

We presented feature alignment, a technique to approximate

reversibility in neural networks. By optimizing the features to

match the inputs, we trained an encoder to predict its input,

given an output. For a simple case, we showed that it is

possible to recover the inputs given only the outputs by adding

latent variables, which are optimized only with the reversibility

loss. We can generate new samples with the same statistical

distribution as the training data by coupling a probabilistic

layer with the same formulation as the variational autoencoders.

We combined the generative adversarial network method by

coupling a generator and a discriminator network to the images

generated by the method to improve the quality of the generated

samples, which suffer from noise effects. We also demonstrated

that the technique can be modified to use a local training

rule instead of backpropagation, which has the advantage of

using less memory for training and extracting gradients from

neural networks.

Mathematical analysis on the convergence of the proposed

technique shows that the weights converge to a pseudo-

inverse matrix, which justifies the convergence of a network

trained in this way to map its outputs back to its inputs.

Since the bottlenecks do not permit a one-to-one relationship,

the restriction is the architecture of the network itself.

We used the technique to reconstruct and generate images

from the datasets MNIST, CIFAR-10, CelebA and STL-10.

The results demonstrate that the features can approximate the

inputs. Despite the fact that it cannot improve on the sampling

quality of other current generative techniques, reversibility

can be advantageous when a mapping of the outputs back

to their inputs is desired. The CIFAR-10 and STL-10 datasets

are notoriously difficult due to the small image size and high

variance, resulting in samples with a high FID measure.

The primary shortcoming of the approach is that it places

a restriction of reversibility on the parameters of a neural

network. This forces the parameters to be balanced between

reconstruction or sampling and reversibility, which in turn

reduces the quality of the images that are produced. When

an encoder is trained to compress an image into a latent

representation, which must approximate a normal distribution,

and also reconstruct the input given this representation, this can

be seen as an additional loss to optimize. An encoder is trained to

accomplish these two tasks simultaneously. Therefore, in order

to recover the inputs, the trainable parameters of a network not

only need to minimize some loss with respect to the forward

propagation of information, but they also need to reduce some

loss with respect to the backward propagation of information.

As a direct consequence of this, there is a limited number of

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

FIGURE 16

Local feature alignment. Each pair of images contains the reconstruction and original, respectively. (A) MNIST, (B) CIFAR-10, (C) CelebA, and (D)

STL-10.

practicable optimal configurations that the trainable parameters

are capable of reaching.

We can use label information for conditional sample

generation by connecting a classification layer to the encoder

network. Furthermore, the results of local training suggest

that we can train neural networks without using global loss

function feedback, which is an important area of application of

this technique.

The proposed method can be interpreted in a way that

places it somewhere in the middle of VAEs and GANs. The

complete architecture, which is comprised of an encoder and

a generator network, possesses more complex latent vectors

that may be exploited and generates samples that are crisper

than those produced by VAEs. Feature alignment is a technique

that can be implemented across a broad variety of neural

network designs so long as the architecture of the neural

networks being utilized can be entirely differentiated end to end.

As a result, it offers the possibility of making modifications,

which could potentially lead to an improvement in the results

in general. For instance, utilizing residual networks, such

as ResNets (He et al., 2016) for the encoder and U-Net

(Ronneberger et al., 2015) for the generator network, since

the latter can transfer the dimension of the input onto itself,

are two examples of how this may be done to both improve

the flow of information and reduce the influence of disappear

gradients.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found at: The links from the datasets are listed

on the code repository: https://github.com/tiago939/feature_

alignment.

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://github.com/tiago939/feature_alignment
https://github.com/tiago939/feature_alignment
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Funding

This work was supported by the National Institute for

the Science and Technology of Quantum Information (INCT-

IQ), process 465469/2014-0, and by the National Council for

Scientific and Technological Development (CNPq), processes

309862/2021-3 and 140758/2019-4.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer JV declared a shared affiliation, with no

collaboration with the authors at the time of the review.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

frai.2022.1025148/full#supplementary-material

References

Adam, C., Andrew, N., and Honglak, L. (2011). “An analysis of single layer
networks in unsupervised feature learning,” in Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, Vol 15, (PMLR),
215–223.

Ardizzone, L., Kruse, J., Wirkert, S., Rahner, D., Pellegrini, E. W., Klessen,
R. S., et al. (2019). Analyzing inverse problems with invertible neural networks.
arXiv:1808.04730 [cs, stat]. doi: 10.48550/arXiv.1808.04730

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein GAN.
arXiv:1701.07875 [cs, stat].

Atapattu, C., and Rekabdar, B. (2019). “Improving the realism of synthetic
images through a combination of adversarial and perceptual losses,” in 2019
International Joint Conference on Neural Networks (IJCNN) (Budapeste), 1–7.

Baird, L., Smalenberger, D., and Ingkiriwang, S. (2005). “One-step neural
network inversion with PDF learning and emulation,” in Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, 2005, Vol. 2 (Montreal, QC:
IEEE), 966–971.

Baldi, P., and Sadowski, P. (2016). A theory of local learning, the learning
channel, and the optimality of backpropagation. Neural Netw. 83, 51–74.
doi: 10.1016/j.neunet.2016.07.006

Behrmann, J., Grathwohl, W., Chen, R. T. Q., Duvenaud, D., and
Jacobsen, J.-H. (2019). Invertible residual networks. arXiv:1811.00995 [cs, stat].
doi: 10.48550/arXiv.1811.00995

Bengio, Y. (2014). How auto-encoders could provide credit
assignment in deep networks via target propagation. arXiv:1407.7906 [cs].
doi: 10.48550/arXiv.1407.7906

Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G.,
et al. (2018). Understanding disentangling in β-VAE. arXiv:1804.03599 [cs, stat].
doi: 10.48550/arXiv.1804.03599

Chen, T., Xu, B., Zhang, C., and Guestrin, C. (2016). Training deep nets with
sublinear memory cost. arXiv:1604.06174. doi: 10.48550/arXiv.1604.06174

Dauvergne, B., and Hascoët, L. (2006). “The data-flow equations of
checkpointing in reverse automatic differentiation,” in Computational Science 96
ICCS 2006. ICCS 2006. Lecture Notes in Computer Science, vol 3994, eds V. N.
Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra (Berlin; Heidelberg:
Springer). doi: 10.1007/11758549_78

Doersch, C. (2021). Tutorial on variational autoencoders. arXiv:1606.05908 [cs,
stat]. doi: 10.48550/arXiv.1606.05908

Donahue, J., Krähenbühl, P., and Darrell, T. (2017). Adversarial feature learning.
arXiv:1605.09782 [cs, stat]. doi: 10.48550/arXiv.1605.09782

Dong, X., Yin, H., Alvarez, J. M., Kautz, J., and Molchanov, P. (2021).
Deep neural networks are surprisingly reversible: a baseline for zero-
shot inversion. Techn. Rep. arXiv:2107.06304. doi: 10.48550/arXiv.2107.
06304

Dosovitskiy, A., and Brox, T. (2016). Generating images with perceptual
similarity metrics based on deep networks. arXiv:1602.02644 [cs].
doi: 10.48550/arXiv.1602.02644

Ellis, C. A., Sendi, M. S., Miller, R., and Calhoun, V. (2021). “A novel activation
maximization-based approach for insight into electrophysiology classifiers,” in
2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
(Houston, TX: IEEE), 3358–3365.

Fan, F., Xiong, J., Li, M., and Wang, G. (2021). On interpretability
of artificial neural networks: a survey. arXiv:2001.02522 [cs, stat].
doi: 10.1109/TRPMS.2021.3066428

Farias, T. S., and Maziero, J. (2018). Gradient target propagation.
arXiv:1810.09284 [cs]. doi: 10.48550/arXiv.1810.09284

Gao, F., and Zhong, H. (2020). Study on the large batch size training of
neural networks based on the second order gradient. arXiv:2012.08795 [cs].
doi: 10.48550/arXiv.2012.08795

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., and Kagal, L. (2019).
Explaining explanations: an overview of interpretability of machine learning.
arXiv:1806.00069 [cs, stat]. doi: 10.1109/DSAA.2018.00018

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. (2017). The reversible
residual network: backpropagation without storing activations. arXiv:1707.04585
[cs]. doi: 10.48550/arXiv.1707.04585

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., et al. (2014). Generative adversarial networks. arXiv:1406.2661 [cs, stat].
doi: 10.48550/arXiv.1406.2661

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., Sutskever, I., and
Duvenaud, D. (2018). FFJORD: free-form continuous dynamics for scalable
reversible generative models. arXiv:1810.01367 [cs, stat]. doi: 10.48550/arXiv.1810.
01367

Gui, J., Sun, Z., Wen, Y., Tao, D., and Ye, J. (2020). A review on generative
adversarial networks: algorithms, theory, and applications. arXiv:2001.06937 [cs,
stat]. doi: 10.48550/arXiv.2001.06937

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://www.frontiersin.org/articles/10.3389/frai.2022.1025148/full#supplementary-material
https://doi.org/10.48550/arXiv.1808.04730
https://doi.org/10.1016/j.neunet.2016.07.006
https://doi.org/10.48550/arXiv.1811.00995
https://doi.org/10.48550/arXiv.1407.7906
https://doi.org/10.48550/arXiv.1804.03599
https://doi.org/10.48550/arXiv.1604.06174
https://doi.org/10.1007/11758549_78
https://doi.org/10.48550/arXiv.1606.05908
https://doi.org/10.48550/arXiv.1605.09782
https://doi.org/10.48550/arXiv.2107.06304
https://doi.org/10.48550/arXiv.1602.02644
https://doi.org/10.1109/TRPMS.2021.3066428
https://doi.org/10.48550/arXiv.1810.09284
https://doi.org/10.48550/arXiv.2012.08795
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.48550/arXiv.1707.04585
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.48550/arXiv.1810.01367
https://doi.org/10.48550/arXiv.2001.06937
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2022). BackLink:
supervised local training with backward links. Techn. Rep. arXiv:2205.07141.
doi: 10.48550/arXiv.2205.07141

Havrylov, S., and Titov, I. (2020). Preventing posterior collapse
with levenshtein variational autoencoder. arXiv:2004.14758 [cs, stat].
doi: 10.48550/arXiv.2004.14758

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Las Vegas, NV: IEEE), 770–778.

Hebb, D. O. (1949). The organization of behavior.Wiley Brain Res. Bull. 50, 437.
doi: 10.1016/S0361-9230(99)00182-3

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter,
S. (2018). GANs trained by a two time-scale update rule converge to a
local nash equilibrium. arXiv:1706.08500 [cs, stat]. doi: 10.48550/arXiv.1706.
08500

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., et al.
(2016). “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational
Framework,” in International Conference on Learning Representations.

Ho, J., Jain, A., and Abbeel, P. (2020). “Denoising diffusion probabilistic models,”
in Advances in Neural Information Processing Systems, Vol. 33, eds H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (Vancouver, CA: Curran Associates,
Inc.), 6840–6851.

Hu, W., Xiao, L., and Pennington, J. (2020). Provable Benefit of orthogonal
initialization in optimizing deep linear networks. arXiv:2001.05992 [cs, math, stat].
doi: 10.48550/arXiv.2001.05992

Ismail, A. A., Bravo, H. C., and Feizi, S. (2021). “Improving deep learning
interpretability by saliency guided training,” in Advances in Neural Information
Processing Systems, eds A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan
(Virtual Conference).

Isomura, T., and Toyoizumi, T. (2016). A local learning rule for independent
component analysis. Sci. Rep. 6, 28073. doi: 10.1038/srep28073

Isomura, T., and Toyoizumi, T. (2018). Error-gated hebbian rule: a local
learning rule for principal and independent component analysis. Sci. Rep. 8, 1835.
doi: 10.1038/s41598-018-20082-0

Jing, K., and Xu, J. (2019). A survey on neural network language models.
arXiv:1906.03591 [cs]. doi: 10.48550/arXiv.1906.03591

Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual losses for
real-time style transfer and super-resolution. arXiv:1603.08155 [cs].
doi: 10.1007/978-3-319-46475-6_43

Kingma, D. P., and Ba, J. (2017). Adam: a method for stochastic optimization.
arXiv:1412.6980 [cs]. doi: 10.48550/arXiv.1412.6980

Kingma, D. P., and Dhariwal, P. (2018). Glow: generative flow with invertible
1x1 convolutions. arXiv:1807.03039 [cs, stat]. doi: 10.48550/arXiv.1807.03039

Kingma, D. P., and Welling, M. (2014). Auto-encoding variational bayes.
arXiv:1312.6114 [cs, stat]. doi: 10.48550/arXiv.1312.6114

Kingma, D. P., and Welling, M. (2019). An introduction to variational
autoencoders. arXiv:1906.02691 [cs, stat]. doi: 10.1561/9781680836233

Kobyzev, I., Prince, S. J. D., and Brubaker, M. A. (2020). Normalizing flows:
an introduction and review of current methods. arXiv:1908.09257 [cs, stat].
doi: 10.48550/arXiv.1908.09257

Krizhevsky, A., and Hinton, G. (2009). Learning Multiple Layers of Features
From Tiny Images (Master’s thesis). Department of Computer Science, University
of Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural Information
Processing Systems, Vol. 25 (Nevada).

Krotov, D., and Hopfield, J. J. (2019). Unsupervised learning by
competing hidden units. Proc. Natl. Acad. Sci. U.S.A.116, 7723–7731.
doi: 10.1073/pnas.1820458116

Kumar, R., Purohit, M., Svitkina, Z., Vee, E., and Wang, J. (2019). “Efficient
rematerialization for deep networks,” in Advances in Neural Information Processing
Systems, Vol. 32, eds H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett (Vancouver, CA: Curran Associates, Inc.).

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., and Winther,
O. (2016). Autoencoding beyond pixels using a learned similarity
metric. arXiv:1512.09300 [cs, stat]. doi: 10.48550/arXiv.1512.
09300

Laskin, M., Metz, L., Nabarro, S., Saroufim, M., Noune, B., Luschi, C., et al.
(2021). Parallel training of deep networks with local updates. arXiv:2012.03837.
doi: 10.48550/arXiv.2012.03837

Lecun, Y., Bottou, L., Bengio, Y., andHaffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2011). Unsupervised learning
of hierarchical representations with convolutional deep belief networks. Commun.
ACM. 54, 95–103. doi: 10.1145/2001269.2001295

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., and Hinton,
G. (2020). Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346.
doi: 10.1038/s41583-020-0277-3

Lindsey, J., and Litwin-Kumar, A. (2020). Learning to learn with feedback
and local plasticity. arXiv:2006.09549 [cs, q-bio]. doi: 10.48550/arXiv.2006.
09549

Linnainmaa, S. (1976). Taylor expansion of the accumulated rounding error. BIT
Num. Math. 16, 146–160. doi: 10.1007/BF01931367

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). “Deep learning face attributes
in the wild,” in Proceedings of International Conference on Computer Vision (ICCV)
(Santiago).

Lucas, J., Tucker, G., Grosse, R., and Norouzi, M. (2019). Don’t blame the
ELBO! A linear VAE perspective on posterior collapse. arXiv:1911.02469 [cs, stat].
doi: 10.48550/arXiv.1911.02469

Mahendran, A., and Vedaldi, A. (2016). Visualizing deep convolutional
neural networks using natural pre-images. Int. J. Comput. Vis. 120, 233–255.
doi: 10.1007/s11263-016-0911-8

Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z., and Smolley, S. P. (2017). “Least
squares generative adversarial networks,” in 2017 IEEE International Conference on
Computer Vision (ICCV) (Venice: IEEE), 2813–2821.

Millidge, B., Tschantz, A., Seth, A. K., and Buckley, C. L. (2020). Activation
relaxation: a local dynamical approximation to backpropagation in the brain.
arXiv:2009.05359 [cs, q-bio]. doi: 10.48550/arXiv.2009.05359

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Conference on
International Conference on Machine Learning, 807–814.

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., and Clune, J. (2016a).
Synthesizing the preferred inputs for neurons in neural networks via deep
generator networks. arXiv:1605.09304 [cs]. doi: 10.48550/arXiv.1605.09304

Nguyen, A., Yosinski, J., and Clune, J. (2016b). Multifaceted feature
visualization: uncovering the different types of features learned by each neuron in
deep neural networks. arXiv:1602.03616 [cs]. doi: 10.48550/arXiv.1602.03616

Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature visualization. Distill
2, e7. doi: 10.23915/distill.00007

Ororbia, A. G., Mali, A., Kifer, D., and Giles, C. L. (2018). Conducting
credit assignment by aligning local representations. arXiv:1803.01834 [cs, stat].
doi: 10.48550/arXiv.1803.01834

Papamakarios, G. (2019). Neural density estimation and likelihood-free
inference. arXiv:1910.13233 [cs, stat]. doi: 10.48550/arXiv.1910.13233

Rezende, D. J., and Viola, F. (2018). Taming VAEs. arXiv:1810.00597 [cs, stat].
doi: 10.48550/arXiv.1810.00597

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022).
“High-resolution image synthesis with latent diffusion models,” in 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (NewOrleans, LA:
IEEE).

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: Convolutional
networks for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention-MICCAI 2015, eds N. Navab, J. Hornegger, W. M.
Wells, and A. F. Frangi (Cham: Springer International Publishing), 234–241.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
representations by back-propagating errors. Nature 323, 533–536.
doi: 10.1038/323533a0

Salehi, P., Chalechale, A., and Taghizadeh, M. (2020). Generative adversarial
networks (GANs): an overview of theoretical model, evaluationmetrics, and recent
developments. arXiv:2005.13178 [cs, eess]. doi: 10.48550/arXiv.2005.13178

Salvatori, T., Song, Y., Lukasiewicz, T., Bogacz, R., and Xu, Z. (2021). Predictive
coding can do exact backpropagation on convolutional and recurrent neural
networks. arXiv:2103.03725 [cs]. doi: 10.48550/arXiv.2103.03725

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2014). Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. arXiv:1312.6120
[cond-mat, q-bio, stat]. doi: 10.48550/arXiv.1312.6120

Schirrmeister, R. T., Chrabaszcz, P., Hutter, F., and Ball, T. (2018).
Training generative reversible networks. arXiv:1806.01610 [cs, stat].
doi: 10.48550/arXiv.1806.01610

Seitzer, M. (2020). pytorch-fid: FID score for PyTorch. Version 0.1.1.

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://doi.org/10.48550/arXiv.2205.07141
https://doi.org/10.48550/arXiv.2004.14758
https://doi.org/10.1016/S0361-9230(99)00182-3
https://doi.org/10.48550/arXiv.1706.08500
https://doi.org/10.48550/arXiv.2001.05992
https://doi.org/10.1038/srep28073
https://doi.org/10.1038/s41598-018-20082-0
https://doi.org/10.48550/arXiv.1906.03591
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1807.03039
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1561/9781680836233
https://doi.org/10.48550/arXiv.1908.09257
https://doi.org/10.1073/pnas.1820458116
https://doi.org/10.48550/arXiv.1512.09300
https://doi.org/10.48550/arXiv.2012.03837
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/2001269.2001295
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.48550/arXiv.2006.09549
https://doi.org/10.1007/BF01931367
https://doi.org/10.48550/arXiv.1911.02469
https://doi.org/10.1007/s11263-016-0911-8
https://doi.org/10.48550/arXiv.2009.05359
https://doi.org/10.48550/arXiv.1605.09304
https://doi.org/10.48550/arXiv.1602.03616
https://doi.org/10.23915/distill.00007
https://doi.org/10.48550/arXiv.1803.01834
https://doi.org/10.48550/arXiv.1910.13233
https://doi.org/10.48550/arXiv.1810.00597
https://doi.org/10.1038/323533a0
https://doi.org/10.48550/arXiv.2005.13178
https://doi.org/10.48550/arXiv.2103.03725
https://doi.org/10.48550/arXiv.1312.6120
https://doi.org/10.48550/arXiv.1806.01610
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Farias and Maziero 10.3389/frai.2022.1025148

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra,
D. (2020). Grad-CAM: visual explanations from deep networks via gradient-based
localization. Int. J. Comput. Vis. 128, 336–359. doi: 10.1007/s11263-019-01228-7

Shahroudnejad, A. (2021). A survey on understanding, visualizations,
and explanation of deep neural networks. arXiv:2102.01792 [cs].
doi: 10.48550/arXiv.2102.01792

Shen, Y., Gu, J., Tang, X., and Zhou, B. (2020). “Interpreting the latent space of
gans for semantic face editing,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (Seattle, WA), 9240–9249.

Sikka, H., Zhong, W., Yin, J., and Pehlevan, C. (2019). A
Closer look at disentangling in β-VAE. arXiv:1912.05127 [cs, stat].
doi: 10.1109/IEEECONF44664.2019.9048921

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S.
(2015). “Deep unsupervised learning using nonequilibrium thermodynamics,” in
Proceedings of the 32nd International Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, eds F. Bach and D. Blei (Lille: PMLR),
2256–2265.

Sohoni, N. S., Aberger, C. R., Leszczynski, M., Zhang, J., and Ré, C. (2019). Low-
memory neural network training: a technical report. arXiv:1904.10631 [cs, stat].
doi: 10.48550/arXiv.1904.10631

Song, Y., Lukasiewicz, T., Xu, Z., and Bogacz, R. (2020). Can the brain do
backpropagation? exact implementation of backpropagation in predictive coding
networks. Adv. Neural Inf. Process. Syst. 33, 22566–22579.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2015).
Striving for simplicity: the all convolutional net. arXiv:1412.6806 [cs].
doi: 10.48550/arXiv.1412.6806

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016).
“Rethinking the inception architecture for computer vision,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV:
IEEE), 2818–2826.

Takida, Y., Liao, W.-H., Uesaka, T., Takahashi, S., and Mitsufuji, Y.
(2021). Preventing posterior collapse induced by oversmoothing
in gaussian VAE. arXiv:2102.08663 [cs]. doi: 10.48550/arXiv.2102.
08663

Thakur, N., and Han, C. Y. (2021). A study of fall detection in assisted
living: identifying and improving the optimal machine learning method. J. Sensor
Actuator Netw. 10, 39. doi: 10.3390/jsan10030039

Velichko, A. (2020). Neural network for low-memory IoT
devices and MNIST image recognition using kernels based
on logistic map. Electronics 9, 1432. doi: 10.3390/electronics
9091432

Wang, Y., Ni, Z., Song, S., Yang, L., and Huang, G. (2021). “Revisiting
locally supervised learning: an alternative to end-to-end training,” in International
Conference on Learning Representations (Virtual Conference).

Whittington, J. C., and Bogacz, R. (2019). Theories of error back-
propagation in the brain. Trends Cogn. Sci. 23, 235–250. doi: 10.1016/j.tics.2018.
12.005

You, Y., Gitman, I., and Ginsburg, B. (2017). Large Batch training of
convolutional networks. arXiv:1708.03888 [cs].

Zintgraf, L. M., Cohen, T. S., and Welling, M. (2017). A new method to
visualize deep neural networks. arXiv:1603.02518 [cs]. doi: 10.48550/arXiv.1708.
03888

Frontiers in Artificial Intelligence 17 frontiersin.org

https://doi.org/10.3389/frai.2022.1025148
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.48550/arXiv.2102.01792
https://doi.org/10.1109/IEEECONF44664.2019.9048921
https://doi.org/10.48550/arXiv.1904.10631
https://doi.org/10.48550/arXiv.1412.6806
https://doi.org/10.48550/arXiv.2102.08663
https://doi.org/10.3390/jsan10030039
https://doi.org/10.3390/electronics9091432
https://doi.org/10.1016/j.tics.2018.12.005
https://doi.org/10.48550/arXiv.1708.03888
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Feature alignment as a generative process
	1. Introduction
	2. Related work
	3. Methods
	3.1. Feature alignment
	3.2. A toy example
	3.3. Variational autoencoders with feature alignment
	3.4. Improving the quality of the features (VFA-GAN)
	3.5. Local feature alignment

	4. Implementation details
	5. Results
	5.1. MNIST
	5.2. CelebA
	5.3. CIFAR-10
	5.4. STL-10
	5.5. Local feature alignment

	6. Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

