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In this work, we focus on human-agent interaction where the role of the

socially interactive agent is to optimize the amount of information to give to

a user. In particular, we developed a dialog manager able to adapt the agent’s

conversational strategies to the preferences of the user it is interacting with

to maximize the user’s engagement during the interaction. For this purpose,

we train an agent in interaction with a user using the reinforcement learning

approach. The engagement of the user is measured using their non-verbal

behaviors and turn-taking status. This measured engagement is used in the

reward function, which balances the task of the agent (giving information) and

its social goal (maintaining the user highly engaged). Agent’s dialog acts may

have di�erent impact on the user’s engagement depending on several factors,

such as their personality, interest in the discussion topic, and attitude toward

the agent. A subjective study was conducted with 120 participants to measure

how third-party observers can perceive the adaptation of our dialog model.

The results show that adapting the agent’s conversational strategies has an

influence on the participants’ perception.

KEYWORDS

interaction human-agent, dialog manager, reinforcement learning, adaptation, task

and social dialog acts

1. Introduction

Socially intelligent agents (SIA) (Cassell, 2001) are virtual entities with a human-

like appearance. They communicate verbally as well as non-verbally and are used in

human-machine interactions to play different roles, such as assistant, tutor, guide, or

companion (Lugrin and Rehm, 2021). To communicate efficiently, these agents should

be able to adjust in real-time to their users’ engagement, one of the features that ensure

high quality users’ experience (O’Brien and Toms, 2008). Engagement can be defined as

“the value that a participant in an interaction attributes to the goal of being together with

the other participant(s) and continuing the interaction” (Poggi, 2007), and is associated

with high-level behaviors such as synchrony, alignment, mimicry, feedback, backchannel,

and collaboration. These high-level behaviors can be expressed with various lower-level

behaviors, such as head nods (Allwood and Cerrato, 2003), smiles (Castellano et al.,

2009), mutual gaze (Nakano and Ishii, 2010), or body posture (Sanghvi et al., 2011).

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.1029340
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.1029340&domain=pdf&date_stamp=2022-10-25
mailto:galland@isir.upmc.fr
https://doi.org/10.3389/frai.2022.1029340
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2022.1029340/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Galland et al. 10.3389/frai.2022.1029340

In information-giving context, studies have demonstrated

that addressees’ level of engagement has a significant impact

on their motivation, effort, and memorizing gains (Wentzel,

1999). The more people are engaged during an interaction,

the more information they will remember at the end. Hence,

one of the main challenges for an information-giving SIA is

to dynamically manage the conversation by selecting the best

dialog policy to fulfill its task (e.g., by delivering relevant

information) and to maintain user’s engagement at the same

time (e.g., by disclosing personal information, telling jokes, or

using small talk).

Manually authoring optimal dialog policies for deep and

complex scenarios can be overwhelming (Rich and Sidner,

2012), and dialog authoring becomes even harder when the

SIA has to adapt its behavior according to the conversational

preferences of the user. Indeed, while some people will

appreciate a friendly interlocutor that livens up the interaction

with jokes, personal anecdotes, or opinions, others would prefer

to interact with someone who solely focuses on the task (Tracy

and Coupland, 1990). That is, when it gets the speaking turn,

the agent should find the right balance and timing for choosing

between using a task-oriented dialog act or a socially-oriented

dialog act.

One solution to teach conversational agents the optimal

sequence of actions to perform is Reinforcement Learning

(RL). RL agents can not only learn the optimal policy to help

users achieve their task, but they can also learn how to adapt

their behavior to engage different types of users depending

on their preferences (Walker, 2000; Li et al., 2016). Such RL

approaches require a large amount of data to explore all possible

dialog options before learning the optimal dialog policy. User

simulators (Schatzmann et al., 2007) were created as a solution

to overcome this shortcoming by approximating the behavior

of real users during an interaction. User simulators have been

developed to explicitly approximate different types of user, for

instance, from different age categories (Georgila et al., 2010) or

with different conversational preferences (Jain et al., 2018). We

rely on a similar approach to simulate different types of user that

prefer specific levels of social and task behavior from the agent

with which they are interacting.

In this work, we present a conversational agent capable

of maximizing users’ engagement during an interaction while

delivering specific information. More specifically, we train

our agent using deep reinforcement learning to optimize its

conversational strategies based on users’ preferred behavior

from the agent in terms of task and social behavior. We

present the related works in Section 2, before introducing our

conversational agent architecture in Section 3 and the NoXi

corpus (Cafaro et al., 2017) in Section 4. We describe the user

simulator we built in Section 5, and the agent we trained using

RL in Section 6. Finally, we evaluate our agent and discuss the

results in Section 7.

2. Related works

Using RL to optimize SIAs’ behaviors during an interaction

has been a topic of interest in the past years.

Some agents rely on RL to learn a new optimal policy each

time they interact with a user. These agents only have a limited

number of conversational turns to learn which optimal behavior

to express, hence the limited number of actions at their disposal.

In Leite et al. (2011), a chess companion has to choose from

four different empathetic strategies to encourage a child playing

chess. The robot first derives children’s emotional state from

their non-verbal behavior and the status of the game. This

emotional state is used as a reward each turn to teach the robot

which empathetic strategy is the most efficient to encourage the

children. An evaluation shows that the empathetic version of the

chess companion was perceived as more engaging, helpful, and

also obtained higher ratings in terms of self-validation than the

non-empathetic one. The robot described in Weber et al. (2018)

relies on RL to improve user amusement by selecting a joke, a

grimace, or a sound. The authors in Gordon et al. (2016) enhance

the behaviors of a robot tutor by adding affective feedback on

top of predefined task-related responses. Similarly to Leite et al.

(2011), the robot tutor detects the affective state of users based

on their non-verbal behaviors, and uses this emotional state

as a reward to optimize its affective policy. In Biancardi et al.

(2019a) and Biancardi et al. (2019b), the agent learns to optimize

the first impression of users by adapting its linguistic and non-

verbal style in an online manner. At each agent’s speaking turn,

a Q-learning algorithm selects one out of four conversational

styles (Biancardi et al., 2019a) or chooses between verbal and

non-verbal cues (Biancardi et al., 2019b) to improve users’ first

impression of the agent.

These agents focus solely on the social aspect of the

interaction, either by adding a social layer on top of a

predetermined scenario or by selecting appropriate social

feedback. They rely on RL to select the best social option

amongst a limited space, pay little if no attention to the task

goal of the user, and the social option selected does not have any

impact on the course of the interaction.

Some agents have been designed to address this problem by

combining task and social rewards. These agents rely on RL to

learn which optimal sequence of actions would help their users

achieve their task and maximize their engagement at the same

time, instead of relying on a pre-determined scenario.

In Shi and Yu (2018), the authors combined an emotional

reward with a task reward to train an information search

conversational system. They first trained a sentiment estimator

that relied on dialogic, acoustic, and textual features to predict

a sentiment score at the end of an interaction. Then they built

a rule-based user simulator to generate synthetic interactions

and train the agent. The authors found that combining both

emotional and task reward resulted in shorter conversations on
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average. Although this work considers task and social rewards

to train an agent, the actions that the system can take are all

task-oriented. Another approach is taken in Yu et al. (2017),

where the authors train a conversational system that interleaves

task and social actions to improve the task success rate and

increase user engagement. At each time step, the system chooses

between a task-oriented action or a social one. The reward

function used to train the system is a linear combination of

four metrics: turn-level appropriateness, conversational depth,

information gain, and conversation length. Their subjective

evaluation showed that participants thought they were more

engaged when they interacted with a system that could interleave

social content within the task-oriented conversation. Overall,

these works consider one single policy for their agent to

optimize. None of these systems adapt their conversational

behavior depending on whether their users care about the social

aspect of the interaction or not, which means that the single

policy learned might actually be sub-optimal. Closer to our

work, the conversational recommendation agent in Pecune and

Marsella (2020) learns two different dialog policies depending

on its users conversational goals. Each turn, the agent selects

a combination of task-oriented and socially-oriented dialog

act to optimize both the task performance and the level of

rapport occurring during the interaction. However, this work

only focuses on dialog acts and does not consider non-verbal

behavior. Hence, our research questions are:

RQ1: How to simulate the behavior (dialog acts and non-

verbal behaviors) of users with different conversational

preferences interacting with an information-giving

conversational agent.

RQ2: How to optimize an information giving conversational

agent’s dialog policy to maximize both task-performance

and users’ engagement?

3. Our approach

Our aim is to build an SIA capable of delivering a certain

amount of information during an interaction with a user.

To convey as much information as possible and to maintain

interaction quality, the agent tries to maintain user’s engagement

during their interaction. To this aim, the agent may rely on

different conversational strategies that may involve providing

details on a topic or introducing another topic (these acts are

referred to as task-oriented) or that may correspond to self-

disclosure, small talks, or even to telling a joke (referred to as

socially-oriented). At any of its speaking turn, the conversational

strategy of the agent can be either task- or socially-oriented. The

agent adapts to the user’s preferences in terms of topics and of

balance between task/social dialog acts. By adapting dynamically

the choice of its dialog acts to the user’s perceived preference, the

agent aims to maximize user’s engagement.

To optimize the dialog policy of our SIA, we rely on

Reinforcement Learning. As in Pecune and Marsella (2020),

Shi and Yu (2018), and Yu et al. (2017), we build a user

simulator to approximate human users’ behaviors and generate

enough synthetic interactions to train the agent. The use of

a simulated user allows to pretrain the model and avoid the

“cold start problem” where the model behaves badly in the

first interactions with human users. Our agent is built in

three parts that interact with each other, as represented in

Figure 1: an engagement estimator, a conversation preferences

estimator, and a dialog manager. This modular approach allows

for more explainability of each of the modules. At each

speaking turn, the simulated user module computes which

intentions to convey by imitating the behavior of real users;

for this, it generates a dialog act (Stolcke et al., 1998) and

a sequence of non-verbal behaviors (Grimaldi and Pelachaud,

2021). Then, the engagement estimator computes the perceived

level of engagement of the simulated user from the non-

verbal behavior and turn-taking information, as in Sidner and

Dzikovska (2002). The dialog state is then updated with this

information. Depending on the simulated user’s reaction to the

agent’s previous action, the conversational preferences estimator

module updates the estimated conversational preferences of

the user. The agent dialog manager then produces a dialog

act based on the current dialog state and the simulated user’s

estimated conversational preferences. Finally, the simulated user

updates its own engagement according to the agent’s behavior

and produces another dialog act that updates the dialog state and

gives back the turn to the agent.

4. Corpus

To answer our first research question RQ1 and to simulate

users interacting with an information-giving conversational

agent to be able to train our RL agent, we first analyze how real

humans behave in a similar situation. We studied NoXi (Cafaro

et al., 2017), a video corpus of dyadic interactions between

experts in a specific domain (e.g., cinema, cooking, sport) and

novices who wish to learn about this domain. The NoXi corpus

is annotated with non-verbal behaviors (head movements, head

direction, smiles, gaze direction, arm positions) for both the

expert and the novice. The interactions in NoXi are also

annotated with an engagement score that continuously varies

between 0 (very low engagement) and 1 (very high engagement)

over the course of the conversation. A Boruta analysis showed

that all the annotated non-verbal behaviors were relevant for

the estimation of engagement (p = 0.01). The most important

features positively correlated with a high level of engagement

are arm openness and smiles. To gain a better understanding of

how novices behaved during the interaction, we automatically

annotated the corpus in terms of dialog act using the DialogTag

package (Malik, 2022). 0.03 % of NoXi’s novice’s dialog acts
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FIGURE 1

System architecture. DA, dialog act; NVB, non-verbal behavior.

were annotated as questions, 96% as feedback, and 3,97% as

informative statements.

In this paper, we specifically investigate the evolution of the

engagement score during interactions. First, we analyze how

engagement evolves over time. The linear regression illustrated

in Figure 2 shows a significant negative effect of time on

engagement (Engagement =−6.969e-05∗Time+ 5.480e-01 with

p ≤ 2e − 16 and adjusted R2 = 0.03), showing that novices

slowly disengage themselves during the course of the interaction.

Expending the work of Mayne and Ramsey (2001), we also

analyze the relation between the variation of engagement and

the actual engagement score. The linear regressions shown

in Figure 3 show a significant negative effect of the absolute

value of the engagement variation and the distance between the

actual engagement and a neutral engagement score (for positive

engagement = −0.12 * engagement variation + 0.05 with p ≤

2e − 16 adjusted R2 = 0.16) and negative [engagement = 0.38 *

log(engagement variation)−4.57 with p ≤ 2e− 16 and adjusted

R2 = 0.001], a log is applied to negative engagement variations, as

they were not normally distributed). In other words, Figure 3A

shows that the current level of engagement drops further when

it was previously high than when it was medium. On the other

hand, Figure 3B shows that it is easier to gain engagement when

the previous level of engagement was medium than when it was

already high.

5. User simulator

To emulate the behavior of users interacting with our

information-giving agent, we rely on our analyses from Section

4 to build simulated users. For each interaction, a new simulated

user is created by the user simulator. Each simulated user is

characterized by two features: its conversational preferences and

its topic preferences.

5.1. User’s preferences

5.1.1. Conversational preferences

As shown by Pecune and Marsella (2020), people’s

conversational goals and preferences influence the perceived

quality of an interaction. For instance, people only focusing

on the task might quickly get disengaged if their interlocutor

uses social conversational strategies. On the other hand, people

interested in building a social relationship with their interlocutor

might disengage themselves if their interlocutor only cares
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FIGURE 2

Evolution of engagement over time in NoXi.

FIGURE 3

Variation of engagement in NoXi according to the current level of engagement. (A) Positive variations. (B) Negative variations.

about the task being accomplished. In our work, we define our

simulated user’s conversational preferences along the following

two variables:

• (S)∈ {0, 1}: If (S) = 1 the user likes to interact with an agent

using social strategies, while if (S) = 0 the user dislikes it.

• (T) ∈ {0, 1}: If (T) = 1 the user likes to interact with an

agent that focuses on its task, while if (T) = 0 the user

dislikes it.

Each of our simulated users will be assigned to one type

denoting their preferences. Different types of simulated users

could have one of the above preferences defined by the variables

S or T or by a combination of the two:

• (TS) user: prefers the agent to use socially- as well as

task-oriented dialog acts

• (S) user: prefers the agent to use socially-oriented dialog

acts and will disengage when faced with task-oriented

dialog acts.

• (T) user: prefers the agent to use task-oriented dialog acts

and will disengage when faced with socially-oriented dialog

acts.

5.1.2. Topic preferences

The study from Glas and Pelachaud (2015) shows that

people are significantly more engaged in a conversation when

their interlocutor talks about a topic they like. Hence, in our

work, each simulated user has preferences for certain topics.

We represent the different topics to be discussed during the

conversation with a matrix SIM. For each pair of topics (oi, oj),

the value SIM(oi, oj) ∈ [0, 1] represents the similarity between

the two topics. The higher the score, the closer the topics.
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Whenever a new simulated user is created, the matrix SIM is

multiplied by a random vector to represent the user’s topic

preferences.

5.2. Engagement function

The engagement of the simulated user is updated at each

dialog turn according to the current simulated user’s state s ∈ S.

et = et−1∗W(et−1)+ida∗lda(et−1)−ht−1(at)∗lh(et−1)+b (1)

Where:

• et−1 is the previous engagement value

• W(et−1) is a Gaussian function that represents how

engagement decreases over time applied to the engagement

value observed in NoXi (see Figure 3)

• ida is the impact of the dialog act. It is positive

if it corresponds to the user’s preferences (topic and

conversational), and negative otherwise.

• ht−1 represents the history of the conversation. A growing

penalty is added to the engagement each time the agent uses

a strategy to model tiresomeness faced with repetitions.

• lh and lda represent the non-linearity in engagement

variation observed in Noxi (Figure 3).

• b is a Gaussian random noise that is used to model the

variability of human interaction.

5.3. User’s action choice

At each speaking turn, the simulated user outputs two types

of information: a dialog act and a list of non-verbal behaviors.

5.3.1. Simulated user’s dialog act

As often used in the literature Schatzmann et al. (2007),

the simulated user is a finite-state machine (FSM). An FSM is

defined by the list of its states, its initial state, and the inputs

that trigger transitions between states. For each s ∈ S, a function

P(s) : a → p gives the probability p of performing the action a.

At each speaking turn given the current state S, an action a is

sampled according to this distribution P(s).

At each turn, the simulated user is able to either:

• Stay silent

• Give a feedback (positive or negative): A positive feedback

insists on the interest of the user namely “That is

really interesting” while a negative feedback only gives

acknowledgment on the agent’s utterance, namely “Ok.”

• Ask for more information on a topic

• Answer if the agent asks a question

• Leave the conversation

The simulated users are built such to have similar dialog act

distributions as the Noxi’s novices.

5.3.2. Simulated user’s non-verbal behavior

The simulated user also provides non-verbal behavior

to the engagement detector module. This behavior must be

representative of the level of user engagement. Non-verbal

behaviors are sampled from the NoXi database (Cafaro et al.,

2017). At each simulated turn, the simulated user randomly

selects a speaking turn in NoXi where the novice shows the

same level of engagement as the simulated user. The simulated

user displays the same non-verbal behaviors as the novice in the

selected turn.

6. Agent’s model

To answer to our RQ2 and optimize our conversational

agent’s dialog policy to maximize both task-performance and

users’ engagement, we endow our agent’s model with the

following components: the engagement estimator estimates the

engagement of the user based on their non-verbal behavior (see

Section 6.1) and turn taking status, the topic manager keeps

track of the user’s favorite topics, the conversational preferences

estimator estimates the conversational preferences of the user

at each turn, and the dialog manager selects the next dialog act

based on the information provided by the other modules.

6.1. Engagement estimator

The engagement estimator is trained using the NoXi corpus

(Cafaro et al., 2017). Based on Sidner and Dzikovska (2002)

and Dermouche and Pelachaud (2019) and our Boruta analysis

of NoXi (see Section 4), the inputs considered are non-

verbal behaviors such as arm openness, arm closed, head nod,

head shake, head touch, smile, look at/away, and whether the

user is talking or not. First, we discretize the engagement

annotation (initially ranging from 0 to 1) on a five items

scale (Yannakakis et al., 2018). Then, we rebalance the data

using random oversampling (Menardi and Torelli, 2014) to

solve the engagement distribution issue in Noxi (70% of NoXi’s

speaking turns are annotated on the fourth scale, depicting high

engagement).

Non-verbal behaviors are annotated frame by frame in the

NoXi corpus when our agent estimates an engagement score

at each speaking turn. In our work, we consider the ratio of

appearance over the turn of each non-verbal behavior. The

engagement estimator is composed of five linear layers separated

by leaky relu activations (Xu et al., 2015) and dropout layers
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(Srivastava et al., 2014). Leaky ReLu is an activation function

based on ReLu (identity for the positive values) but also has a

small slope for negative values, avoiding vanishing gradients and

dropout is a regularization technique that temporarily deactivate

parts of the network neurons to avoid overfitting. The first

hidden layer is 16 units wide and each hidden layer is twice as

wide as the previous one. These blocks are separated by batch

norm layers. The optimal width and depth of the model were

determined using a grid search. The model performs with a

mean square error of 1.41.

6.2. Topic manager

The dialog manager has a representation of the user’s topics

preferences to choose when to change the topic and which would

be the most relevant topic to maintain the simulated user’s

engagement. This estimation is computed following the work

from Glas and Pelachaud (2018) that updates a value of the

estimated engagement ENG∗u(t, oj) for each topic oj at each turn

according to the equation :

ENG∗u(t + 1, oj) = ENGobs
u (t, oi)SIM(oi, oj)

+ ENG∗u(t, oj)(1− SIM(oi, oj)) (2)

The estimated engagement for the topic oj is updated based

on the engagement observed for the current topic ENGobs
u (t, oi)

and the similarity between the topics oi and oj, SIM(oi, oj) ∈

[0, 1].

6.3. Conversational preferences
estimator

To estimate users’ conversational preferences, we build a

two layer LSTM neural network (Hochreiter and Schmidhuber,

1997). A LSTM (Long Short Term Memory) neural network

is a recurrent neural network designed to display short term

memory. The estimator takes as input: the previous state,

the previous action and the obtained reward, and it outputs

an estimation of the user conversational preferences. The

conversational preferences of the user t is in [0, 1]2, the first

component represents the probability that the user prefers

the agent to perform social behavior and the second one the

probability that the user prefers the agent to focus on the task.

Estimating the conversational preferences as a probability allows

the dialog manager to produce subtle behaviors depending on

the certainty outputted by the estimator.

This approach of estimating conversational preferences

detects successfully the conversational preferences of the user

during a conversation between our dialog manager and the

user simulator with a mean square error of 0.2 (see Figure 4).

The user with preferences (TS) is considered as a user with

preferences (T). Indeed, focusing on the task is sufficient to

reach both goals of the agent: performing the task and keeping

the engagement high. Thus, the model chooses to only consider

task-driven dialog acts.

6.4. Dialog manager

The goal of the dialog manager is to find the optimal dialog

policy and to adapt its conversational strategies to the estimated

engagement of its user and the estimated conversational

preferences of the user. The dialog manager is a Deep Q Neural

network (DQN) (Mnih et al., 2013). A DQN is a neural network

that takes as input the state of the agent and outputs Q-values

over the possible actions. the Q-values represents the expected

reward of each actions. The next action is chosen using a ǫ-

greedy policy. The network is optimized tomaximize the reward.

The state of our dialog manager is:

S = {user’s estimated conversational preferences, agent’s last

dialog act, user’s last dialog act, mean of the last three

engagement values, number of turns, estimated topic

engagement, history of the number of times each

strategy was used}.

The action space is composed of seven possible dialog

acts (task-oriented dialog acts: Inform with a question, Ask a

question about the user’s knowledge; socially-oriented dialog

acts: Joke and Give personal opinion; and neutral dialog acts:

Give information, Ask if the user wants to continue or change

topic). The reward is crafted to balance task and social rewards

(see Table 1). The task reward relates to the transmission

of information while the social reward corresponds to the

engagement maximization goal and coherent conversational

strategies.

The dialog manager is a DQN composed of five linear layers

separated by leaky relu activations and dropout layers. The first

hidden layer is 30 units wide and each hidden layer is twice as

wide as the previous one. The three modules (dialog manager,

preferences estimator, and engagement estimator) are trained

with an Adam optimizer and learning rate of 0.001. The DQN

is trained for 500,000 epochs with a buffer of 10,000, a discount

factor gamma of 0.8 and an exploration factor epsilon starting

at 0.95 and progressively decreasing toward 0.05 in interaction

with our simulated user.

7. Evaluation

We perform an objective and a subjective evaluation of our

model. In this evaluation, our agent takes the role of a museum

guide able to present different paintings.
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FIGURE 4

Estimation of the preferred level of task-(A) and socially-(B) oriented behavior. SoDA, socially-oriented dialog act; ToDA, task-oriented dialog

act; SToDA, socially- and task-oriented dialog act.

TABLE 1 Reward.

Type Name Value

Task Task success min(−200+ 400 ∗ (ninform −

3)/3, 200)

Task End topic discussed 2 if a topic is finished

Task Stop −200 if users walks away

Task Conv length −0.001e0.3∗t

Social Engagement if detected eng ≥0.5 then

0.01(eengdetected∗2 − 1)

else (detected eng - 0.5)

Social Engagement variation detected eng–last eng value

Social Asked question at the wrong

time

−0.5

Social Used the same social

strategies twice in a row

−1,000

7.1. Objective evaluation

7.1.1. Baseline

A baseline, with no adaptation, is developed for comparison

with our adaptive model. It is a finite-state machine. The state-

space S of the machine is: S= { Last agent dialog act, last user

dialog act }. The baseline agent has a 40% chance to provide

information and a 10% chance to use any other strategy if it has

not been used just before.

For each s ∈ S, a handcrafted function P(s) : a → p gives

the probability p to perform the action a. At each speaking turn,

given the current state s ∈ S, an action is sampled according

to this distribution P(s). The baseline agent does not adapt to

users’ estimated engagement. The agent has a 40% chance to give

information and a 10% chance to use any other strategy if it has

not been used just before.

The engagement of the user is then updated and the user

performs a dialog act sampled according to its current state (see

Section 5).

1: sagent = (aagent , auser) ∈ Sagent

2: suser = (aagent , auser , typeuser , prefuser , enguser) ∈ Suser

3: Pagent ∈ Sagent → P(Aagent)

4: Puser ∈ Suser → P(Auser)

5: while Conversation 6= Finished do

6: aagent ← sample[p(sagent)] ⊲ Agent performs

a dialog act

7: e← engagement function(suser) ⊲ The user’s

engagement is updated

8: auser ← sample[p(suser)] ⊲ User performs

a dialog act

9: e← engagement function(suser) ⊲ The user’s

engagement is updated

10: end while

Algorithm 1. Baseline

Thus, the agent modeled with this baseline does not adapt to

the user with whom it is interacting.

7.1.2. Engagement levels

After training, the average engagement of the simulated user

is higher when interacting with our adaptive model (0.63) than

when interacting with the baseline (0.6; see Figure 5). A two-

way ANOVA is performed to analyze the effect of the simulated

user’s conversational preferences and of the model adaptability

on the engagement of the simulated user. The two-way ANOVA

reveals that there is a statistically significant interaction between

the effects of the conversational preferences of the simulated user

and the adaptability of the model [F(2, 36146) = 268.7, p ≤ 2e −
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FIGURE 5

Density of the level of engagement of the simulated user distribution during 1,000 interactions. SoDA, socially-oriented dialog act; ToDA,

task-oriented dialog act; SToDA, socially- and task-oriented dialog act.

FIGURE 6

Dialog act distribution. *p ≤ 0.1; **p ≤ 0.01; ***p ≤ 0.001. SoDA,

socially-oriented dialog act; ToDA, task-oriented dialog act;

SToDA, socially- and task-oriented dialog act.

16]. Simple main effect analysis shows that the simulated user’s

conversational preferences and the model adaptability have each

separately a statistically significant effect on the engagement of

the simulated user (p ≤ 2e − 16). Tukey’s HSD test finds

that the mean value of the engagement of the simulated user

is significantly higher when the agent is in adaptive condition

for users of type (T) (p ≤ 2e − 16, 95% C.I. = [0.05, 0.08]) and

(TS) (p ≤ 2e − 16, 95% C.I. = [0.04, 0.06]) and significantly

lower for users of type (S). The adaptive model significantly

improves the engagement of the simulated user when the latter

cares about the task. High engagement for a simulated user who

prefers only social behaviors is harder to obtain, since the use

of social strategies is not compatible with the task of providing

information, whichmeans that the task and the social reward are

opposite. However, the model is able to improve the engagement

of simulated user who prefers task-oriented behaviors over the

baseline.

7.1.3. Dialog act distribution

The trained model favors task-oriented dialog acts when

the simulated user prefers to interact with an agent using

mainly task-oriented dialog acts (see Figure 6). A one-way

ANOVA is performed to compare the effect of the simulated

user’s conversational preferences on the number of task-oriented

dialog acts used by the adaptive model. The one-way ANOVA

reveals that there are statistically significant differences in the

number of task-oriented dialog acts between at least two groups

[F(2, 970) = 25.85, p = 1.16e-11]. Tukey’s HSD test finds that

the mean value of the number of task-oriented dialog acts is

significantly different between an agent who interacts with a

simulated user who prefers socially oriented dialog acts and an

agent who interacts with a simulated user who prefers task-

oriented dialog acts (p ≤ 2e − 16 , 95% C.I. = [0.4, 0.8]) or

with a simulated user who prefers socially- and task-oriented

dialog acts (p ≤ 2e − 16 , 95% C.I. = [0.4, 0.9]). There is no

statistically significant difference between an agent interacting

with a simulated user preferring task-oriented dialog acts and

an agent interacting with a simulated user who prefers socially-

and task-oriented dialog acts (p = 0.9). A one-way ANOVA

is performed to compare the effect of the simulated user’s

conversational preferences on the number of socially-oriented

dialog acts used by the adaptive model. It reveals that there are

no statistically significant differences in the number of socially-

oriented dialog acts between at least two groups [F(2, 580) =

0.5, p = 0.5]. The interaction is also on average 0.4 turn longer

when the user prefers task-oriented dialog acts than when it

prefers socially-oriented dialog acts. In this case task-oriented

users want to learn more about the paintings and therefore the

interaction is longer.

7.1.4. Evolution of dialog acts in time

As the interaction goes on, the agent gets a better estimation

of the type of dialog acts preferred by the current user.

Figure 7 shows the proportion of task- (Figure 7A) and socially-

(Figure 7B) oriented dialog acts used at each agent turn and for

each type of user.
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The linear regressions (prop = αtime+β) in Figure 7A show

that the agent’s proportion of task-oriented dialog acts tends to

increase over time when interacting with users who prefer task-

oriented dialog acts (α = 0.36 and R2 = 0.65) and users who

prefer task- and socially- oriented dialog acts (α = 0.182 and

R2 = 0.43). This proportion tends to decrease when the agent

interacts with users who prefer only socially-oriented dialog acts

(α = −0.546 and R2 = 0.61).

The linear regressions (prop = αtime + β) in Figure 7B

show that the agent’s proportion of socially-oriented dialog acts

tends to increase over time when interacting with users who

prefer task- and socially- oriented dialog acts (α = 0.455 and

R2 = 0.24).

These results show that our agent effectively learned

how to adapt its dialog policy over time depending on the

conversational preferences of the user it is facing.

7.2. User study

We conduct a perceptive study in which human participants

are asked to watch and evaluate a video of an agent interacting

with a simulated user. We consider different conditions in

terms of adaptability mechanisms and simulated user types.

To compute the non-verbal behaviors associated with a task-

oriented dialog acts and with a socially-oriented dialog acts,

we rely on the main dimensions of social attitudes, namely

warmth and competence (Fiske et al., 2007). An agent using

task-oriented dialog acts aims to convey a set of information

to the user and to appear knowledgeable, while an agent using

socially-oriented dialog acts has the goal to build and maintain a

positive relationship with the user and to appear friendly. We

rely on Biancardi et al. (2019b) to map task-oriented dialog

acts with behaviors expressing competence and socially-oriented

dialog acts with behaviors expressing warmth. We conduct a

perceptive study to validate (1) whether participants are able

to perceive the adaptability of our conversational agent, (2)

whether adaptability influences the perception of the agent’s

behaviors in terms of warmth and competence, and (3) whether

our model improves the perceived quality of the interaction

compared to our baseline.

7.3. Stimuli

To visualize the conversation, we implement our agent

on the Greta platform, which contains an embodied virtual

agent capable of communicating verbally and non-verbally

with human users and/or other virtual agents (Grimaldi and

Pelachaud, 2021). For this study, we associate each dialog

act of the agent with a sentence in natural language and

a list of non-verbal behaviors. The non-verbal behaviors are

generated using the meaning miner module from the Greta

platform (Grimaldi and Pelachaud, 2021). This module is based

on Image schemas and Ideational units and automatically

generates the corresponding non-verbal behaviors. These non

verbal behaviors are adapted to the detected user conversational

preferences by using the probability that the user expects

socially-oriented (here warmth) behaviors [respectively, task-

oriented behaviors (here competence)] as the probability that

the agent smiles (respectively, cross arms) during its utterance

(Biancardi et al., 2017). We use the platform Greta to instantiate

these verbal and non-verbal behaviors into sequences of

synchronized speech and animations.

Our aim is focused on understanding the adaptability of the

virtual agent in term of its choice of dialog acts. To avoid dealing

with signal processing and natural language processing in real-

time that is a common difficulty in human-agent interaction,

we chose to conduct a third-party evaluation study. The study

participants are presented with videos of the interaction between

our Greta agent and a simulated user. The Greta agent, named

Camille, takes the role of a museum guide that can discuss

three different topics (i.e., paintings). The simulated user who

plays the role of the visitor is not shown directly in the video.

To limit the number of variables regarding the user and not

to bias participant’s perception of the agent, we chose not to

display them; but rather show only their engagement level.

However, the user’s utterances are prompted as subtitles, and the

user’s engagement level is visualized through a potentiometer.

We choose to display the engagement of the user using a

potentiometer like in Glas and Pelachaud (2018) as it is a third-

party study, and participants are not directly involved in the

interaction and cannot see the user. The potentiometer allows

participants to have information about user engagement and

therefore be better able to judge the interaction1.

The scenario of the presented interaction is composed of

three phases: an introductory phase, a discussion phase, and a

closing phase. The introductory and closing phases are scripted.

During the not scripted discussion phase, the agent presents a

painting to the user with different possible strategies at each

speaking turn. After the end of the interaction, participants

completed surveys to measure their perceived quality of the

interaction, and their perceived warmth, and competence of the

agent.

We identify two between-subject independent variables.

One such variable is the adaptability of the agent (Strat-

ConvPref), which has two levels. First, the baseline C∗
baseline

,

where the system does not take into account the engagement

of the user and is based on a set of handwritten rules.

The second level C∗
model

corresponds to our model, where

the agent adapts its conversational strategies to maximize the

user’s engagement. Our aim is to investigate how participants

perceive the adaptation mechanism and whether it improves

1 Demo video available at https://youtu.be/6FXrwtlDYPc.
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FIGURE 7

Distribution in time of task-(A) and socially-(B) oriented dialog acts. SoDA, socially-oriented dialog act; ToDA, task-oriented dialog act; SToDA,

socially- and task-oriented dialog act.

the perceived quality of the interaction. The second between-

subject variable is the conversational preferences of the user

(User-ConvPref), which represents the user’s conversational

preferences and takes 3 values (see Section 5.1.1):

• CTS∗ Social and task: The simulated user has preferences

(TS)

• CS∗ Social: The simulated user has preferences (S)

• CT∗ Task: The simulated user has preferences (T)

Thus, we have 6 different conditions: CTS
baseline

, CS
baseline

,

CT
baseline

, CTS
model

, CS
model

, CT
model

. We realize 12 videos, two

per condition. To balance any possible gender effect, for each

condition, we realize one video in which the user is named Alice

and one in which the user is named Paul. Two videos of the same

condition also discuss different topics to avoid bias introduced

by the templates and paintings discussed during the interaction.

7.4. Measurement

Tomeasure the simulated user perception of the interaction,

participants are asked to rate their agreement from 1 (no

agreement) to 5 (high agreement) with a list of six statements

adapted fromTraum et al. (2012), as well as five statements about

their own perception of the interaction including participants’

perception of user satisfaction of the interaction; how much

the simulated user liked the virtual museum guide; how much

the visitor (the simulated user) learned from it; how much

the participants would be interested in interacting with the

virtual guide; whether the participants feel that the virtual agent

adapts to the simulated user; where the participants would place

the agent on a scale ranging from computer to a person, and

the perceived relationship between the simulated user and the

virtual guide from stranger to close friend; whether the user

wants to continue the interaction; whether the user wants to

knowmore about the exhibit (see Table 2). The answers are given

on a five-step Likert scale.

To measure how adaptability influences the perception of

the agent’s behavior, participants are asked to rate how well

adjectives corresponding to warmth or competence described

the agent (see Table 3; Aragonés et al., 2015).

7.5. Hypotheses

We hypothesize the following:

• H1: The adaptability type (Strat-Type) delivered by the

conversational agent has a main effect on the perceived

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2022.1029340
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Galland et al. 10.3389/frai.2022.1029340

TABLE 2 Questions to the participants to measure their perception of

the agent and of the user.

Measure Question

(a) Satisfaction The user is satisfied with its interaction with Camille

(b) Like The user liked Camille

(c) Learn The user has learned something from Camille

(i) Continue visit Camille made the user want to visit the exposition

(h) Continue The user would like to talk with Camille again

(e) Adaptation Camille was responsive to the user’s engagement

(d) Interact I would like to interact with Camille

(f1) Like-person I would describe Camille as human-like

(f2) Like-computer I would describe Camille as a computer artifact

(g1) Stranger I would describe Camille as a stranger to the user.

(g2) Relationship I would describe Camille as a close friend to the user

Camille is the agent’s name.

quality of the interaction. More specifically, interactions

when using baseline strategies C∗
baseline

are perceived as

worse than interactions when the strategies are adapted

C∗
model

.

• H2 − a (respectively, H2 − b): The adaptability type (Strat-

Type) interacts with the user conversational preferences

(CP) (User-ConvPref) regarding the perceived competence

(resp. warmth) of the agent. More specifically, the

agent facing a user of conversational preferences (TS)

or (T) [respectively, (TS) or (S)] is perceived to be

significantly more competent (respectively, warmer) than

the agent facing a user with conversational preferences (S)

[respectively, (T)] in the adaptability setting C∗
model

only.

• H3 − a (respectively, H3 − b): The adaptability type

(Strat-Type) and the user conversational preferences

(User-ConvPref) interact: The perceived competence

(respectively, warmth) will be more affected by the type

of user (User-ConvPref) in the adaptability setting C∗
model

than in the baseline setting C∗
baseline

.

7.6. Results and discussion

We collect data from 120 participants (20 per condition)

who are recruited using the Prolific crowd-sourcing platform.

20 participants from 2 conditions were removed due to an

issue during data collection. We also remove outlier responses.

Responses are considered outliers if they are out-of-the-box

plots representing the third quartile. In the following, we

consider 82 participants for six conditions. Forty-five percent of

them were women, 53% were men and 1% other. 17% of them

were between 18 and 25 years old, 32% between 26 and 35, 20%

between 36 and 45, 26% between 46 and 55, and 4% between 56

TABLE 3 Adjectives used to measure agent perceived warmth and

competence.

Warmth adjective Competence adjective

Kind Effective

Friendly Skilled

Pleasant Competent

Warm Intelligent

and 65. They were all fluent in English and came from various

countries, but 58% were from the UK and 20% were from the

United States. Ten percent of them were very used to interacting

with an artificial agent, 51% moderately, and 38% a little. To

compute the warmth and competence score, we compute the

Cronbach alpha score on the four adjectives associated with

warmth and the four adjectives associated with competence and

find good reliability (α = 0.91 and α = 0.84, respectively). For

each participant, we compute the warmth and competence score

by summing the scores obtained for each adjective. With the

same method, the questionnaire associated with the perception

of the simulated user of the interaction is very reliable (α =

0.97) and the one associated with the participant’s perception

of the interaction acceptable reliability (α = 0.67). We sum

the score obtained for each question to compute the perception

score.

7.6.1. Perception score

On average, the perception of our model is similar to the

perception of the baseline, and no significant effects are found.

Therefore, our hypothesis H1 is not verified.

7.6.2. Competence score

The competence scores are normally distributed (Shapiro’s

test p = 0.016) and their variances are homogeneous (Bartlett’s

test p ≥ 0.29). Therefore, we run an ANOVA test. Conditions

CT
model

and CT
model

S are on average perceived as more competent

than conditions CS
model

(see Figure 8B). This is consistent with

H2−a, but no significant effect is found. The difference between

the perceived competence of CT
model

and CS
model

conditions

is larger on average between the conditions of CT
baseline

and

CS
baseline

. This is consistent with H3 − a, but no significant

effect is found. We can interpret these results as an agent using

significantly more task-oriented dialog acts to comply to user’s

preferences is not perceived significantly more competent than

the other agents.

7.6.3. Warmth score

The warmth scores are normally distributed (Shapiro’s test

p = 0.009) and their variances are homogeneous (Bartlett’s
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FIGURE 8

Warmth (A) and Competence (B) scores. CP, conversational preferences; SoDA, socially-oriented dialog act; ToDA, task-oriented dialog act;

SToDA, socially- and task-oriented dialog act. *p ≤ 0.1.

test p ≥ 0.46). Therefore, we run an ANOVA test. On

average, the perceived warmth of the model is superior when

the user expects warmth from the agent (see Figure 8A). This

is consistent with hypothesis H2 − b, but no significant effect

is found. An interaction is found between (Strat-Type) and

(User-ConvPref) for the perceived warmth (see Figure 8A). The

condition CS
model

tends to be perceived as warmer than the

condition CS
baseline

, p = 0.07. Therefore, our results are coherent

with H3 − b.

7.6.4. Discussion

While the engagement density of the simulated user

interacting with our baseline is similar regardless of their

conversational preferences, our adaptive agent is able to

maximize engagement for two types of user (those who prefer

task-oriented dialog acts and those who prefer socially- and task-

oriented dialog acts). The results of the objective evaluation also

show that our adaptive agent effectively manages to generate

significantly different sequences of dialog acts depending on

the simulated user’s conversational preferences. However, our

subjective evaluation shows that human participants did not

perceive any significant difference between our adaptive agent

and its baseline counterpart, meaning that the sequences of

dialog acts generated are not different enough to be perceived

by real humans witnessing an interaction. An interesting fact is

that our adaptive agent still tends to be perceived warmer than

the baseline when it interacts with simulated users who prefer

socially-oriented dialog acts, even though they do not generate

more socially-oriented dialog acts. This can be explained as

the non-verbal behavior of the agent during the interaction

is different depending on the simulated user’s conversational

preferences. Indeed, the instantiation of the dialog acts into non-

verbal behaviors differs depending if they are socially or task-

oriented (see Section 7.3). The agent may display a smile, cross

arms, show beat gesture, etc. to appear either more competent

or warmer.

8. Conclusion and future work

In this paper, we design a dialog manager that can adapt its

conversational strategies to the conversational preferences of the

user. This dialog manager is trained using a user simulator. The

simulated user is given preferences. Its preferences determine

whether it prefers an agent with socially- and/or task-oriented

behaviors. The preferences of the users have an impact on

the user’s next engagement levels and dialog acts. The dialog

manager is trained to adapt to user’s engagement. To measure

the engagement, an engagement estimator is developed that

uses as input the user’s non-verbal behavior and outputs its

estimated engagement level. The dialog manager adapts to the

user using a conversational preferences estimator. Finally, the

dialog manager itself is a DQN. We observe that adaptation to

the user’s preferences improves the overall engagement over a

non-adaptive baseline. A subjective study in which participants

watch a video of an interaction between the agent and a

simulated user also shows that the adaptation is perceivable.

On average, the agent facing a user preferring socially-oriented

behaviors tends to be judged warmer than the baseline. The

agent facing a user expecting only task-oriented behavior is

found to be more competent than the baseline. The model

trained with simulated users display a first correct strategy.

However, this policy might be sub-optimal, it can be finetuned

with later interactions with real users.To extend this work,

a more complicated user simulator can be used to train the

model. NoXi novices make some impromptu inform statements

(3.97%) in which they add information they already know or

change the topic of the conversation. Our simulated users do

not have this possibility. Themodel produces conversations with

high quality variability because of natural language repetitions.

One possibility thus is to realize more templates and add more

possible strategies to the model. A next step to improve the work

would also be to test the model with real users and/or test the

model with more nuanced simulated users with a non binary

combination of users conversational preferences.
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