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The exploration of heath data by clustering algorithms allows to better describe the

populations of interest by seeking the sub-profiles that compose it. This therefore

reinforces medical knowledge, whether it is about a disease or a targeted population

in real life. Nevertheless, contrary to the so-called conventional biostatistical methods

where numerous guidelines exist, the standardization of data science approaches in

clinical research remains a little discussed subject. This results in a significant variability

in the execution of data science projects, whether in terms of algorithms used,

reliability and credibility of the designed approach. Taking the path of parsimonious

and judicious choice of both algorithms and implementations at each stage, this

article proposes Qluster, a practical workflow for performing clustering tasks. Indeed,

this workflowmakes a compromise between (1) genericity of applications (e.g. usable

on small or big data, on continuous, categorical or mixed variables, on database of

high-dimensionality or not), (2) ease of implementation (need for few packages, few

algorithms, few parameters, ...), and (3) robustness (e.g. use of proven algorithms and

robust packages, evaluation of the stability of clusters, management of noise and

multicollinearity). This workflow can be easily automated and/or routinely applied

on a wide range of clustering projects. It can be useful both for data scientists with

little experience in the field to make data clustering easier and more robust, and for

more experienced data scientists who are looking for a straightforward and reliable

solution to routinely perform preliminary data mining. A synthesis of the literature on

data clustering as well as the scientific rationale supporting the proposed workflow is

also provided. Finally, a detailed application of the workflow on a concrete use case is

provided, along with a practical discussion for data scientists. An implementation on

the Dataiku platform is available upon request to the authors.
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1. Introduction

Health data are of great importance to public health, research, and medical development.

It is any data related to the health conditions, outcomes, and quality of life of an individual or

population. Health data may be collected during the course of ongoing patient care (e.g., claims

data, medical records, administrative data) or as part of a formal clinical trial program.

In health data analysis, clustering methods are a primary tool, for finding pockets of

homogeneity within a heterogeneous population, to uncover different disease phenotypes, stages

of a disease, or variations in disease outcomes (Fränti et al., 2022). A precise understanding of the

clusters of patients suffering from a disease ultimately allows for the overall improvement of their

care (Windgassen et al., 2018). In this respect, there is extensive literature to discuss clustering

tasks, be it for the choice of appropriate clustering methods (Obembe and Oyelade, 2019), for the
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FIGURE 1

The general clustering process [It is broken down into four steps. Step

1 corresponds to the identification of the problem and the collection

of data. Step 2 is a pre-processing step that includes the di�erent

transformations of the data. Step 3 is the clustering of the data itself,

while step 4 is the interpretation of the clusters with respect to the

original data. The contents of each box (steps) are examples and not

sub-steps that must be followed].

clustering algorithms for large data (Shirkhorshidi et al., 2014), for

clustering methods for qualitative/mixed data (Hennig and Liao,

2013), for methods to assess clustering quality, stability, and the

number of clusters (Lange et al., 2004; Nietto and Maria, 2017), or

for performing in-depth comparative statistical analysis of methods

(Jain, 2010; Nagpal et al., 2013).

The profusion of methods makes it difficult for most data

scientists to choose and systematically apply a methodology that

is complete, reasonably fast, and satisfactory from a robustness

point of view with respect to the clinical question they are

trying to answer. The data scientist is indeed confronted with

a very wide range of choices regarding both the algorithms and

their implementations (including R and Python), in particular,

according to the nature of the data and their volume. Furthermore,

contrary to the more “conventional” bio-statistical methods in

clinical studies, the lack of clear guidelines on which data science

approaches to use leads to a greater subjectivity in the choice

of approaches, and in particular, those of clustering in clinical

data. This makes the statistical analysis plans for observational

studies proposed by data scientists and the results obtained

more variable.

The clustering process involves many decision steps, from the

data preparation step to the evaluation of clusters’ stability and

clusters’ description. To the authors’ knowledge, there is not yet a

single, simplified workflow in the literature that is easy to implement

for both expert and non-expert health data scientists (with off-the-

shelf tools in R or Python), well-supported by the literature, generic

(e.g., regardless of the nature -continuous/binary/categorical/mixed-

or volume of data -small/large), which facilitates its routine

application. Most of the articles that come close to this goal focus

on process automation (autoML, e.g., Kamoshida and Fuyuki, 2020)

or clustering methods comparison (Wiwie et al., 2015). This study

(obviously) does not pretend to impose a single solution to a

clustering problem as experience and literature have both shown that

there is no single solution to a clustering task [refer to in particular

Kleinberg (2002)]. However, this study aims to give to give data

scientists guidance through an easy framework that can be used

in routine practice in a wide variety of cases. This article is, thus,

intended to:

i health data scientists, companies, or institutions that need a

general workflow for routine—possibly automated—clustering

projects on data of various types and volumes (e.g., for

preliminary data mining), or

ii health data scientists with limited experience, who are looking

for both an overview of the literature and an accessible and

reusable workflow with concrete practical recommendations

to quickly implement a complete unsupervised clustering

approach adapted to various projects.

In this article, we propose in Section 2, a synthesis of the different

methods related to unsupervised clustering in the literature and

in relation to the implementations available in R or Python. In

Section 3, we propose Qluster, a generic workflow for clustering

tabular data of any nature and size, while considering (1) the

literature guidelines on how to perform robust clustering, and (2)

the availability and ease of use of R or Python implementations

for data scientist users. Then, in Section 4, we detail this workflow

through a step-by-step application on the open-access Cardiovascular

Disease1 practice dataset to help data scientists to reapply this

workflow on their own project with concrete recommendations. We

then provide a practical discussion in Section 5 and conclude in

Section 6. Data scientists will also find in both Sections 2 and 4

all the necessary literature (rationale) to support the use of this

workflow, which greatly facilitates the tedious work of writing the

statistical analysis plan with innovative approaches (data science) in

clinical research.

2. Statistical rationale and literature
review on data clustering

This section discusses the state-of-the-art of

clustering methods in the general clustering process

(refer to Figure 1, steps 2–4. Step 2 will be discussed

both in this section and in Section 4 through an

illustrative example).

1 https://www.kaggle.com/sulianova/cardiovascular-disease-dataset?

select=cardio_train.csv
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2.1. Overview of unsupervised clustering
methods

As generally defined, clustering is “the task of grouping a set of

objects in such a way that objects in the same group (called a cluster)

are more similar (in some sense) to each other than to those in other

groups (clusters)” (Altman and Krzywinski, 2017). Such a task is used

to group homogeneous subsets of observations to better understand

their global heterogeneity. This is, particularly, true in clinical data

analysis to describe disease heterogeneity, stratify patients, and

obtain profiles of targeted populations. The result of a clustering

task is in general an assignment of the input data into a fixed

number of clusters. Two categories of clustering methods are usually

distinguished according to the nature of such assignment: hard and

soft clusteringmethods. Hard clustering provides a partition in which

each object in the data set is assigned to one and only one cluster.

Soft (or Fuzzy) clustering generates a fuzzy partition that provides a

degree of membership of each object to a given cluster. This gives the

possibility to express that objects belong to more than one cluster at

the same time. It is of note that the definition of a cluster itself is not

very precise, which partly explains why there are so many clustering

algorithms (Estivill-Castro, 2002).

In the field of Machine Learning, clustering methods pertain

to the so-called unsupervised learning methods. Clustering should

not be confused with the field of Subgroup Discovery, which also

aims at finding groups but in a supervised way, for example, to

identify prognostic factors of an outcome or predictive factors of the

treatment effect on an outcome (Zhou et al., 2019; Esnault et al.,

2020). The many clustering algorithms that exist in the literature

(Xu and Donald, 2010; Fahad et al., 2014; Ahmad and Khan, 2019)

can be classified according to the cluster models (e.g., centroid,

connectivity, distribution, density, and graph). Among the wide

variety of methods, they are three main types, all producing a hard

partition of the observations (Figure 2, which is adapted from Figure

1 in Fahad et al., 2014):

• Partitioning-based methods2 [e.g., K-means (MacQueen,

1967), K-medoid (Jin and Jiawei, 2010), PAM (Ng and Han,

1994), K-modes (Huang, 1997), K-prototype (Huang, 1998),

CLARA (Kaufman and Rousseeuw, 2009), and FCM (Bezdek

et al., 1984)].

• Hierarchical-based methods [e.g., BIRCH (Zhang et al., 1996),

CURE (Guha et al., 1998), and ROCK (Guha et al., 2000)].

• Density-based methods [e.g., DBSCAN (Ester et al., 1996) and

DENCLUDE (Hinneburg and Keim, 1998)].

The first type of method is considered to be the most

popular class of clustering algorithms for its ease-of-implementation,

simplicity, efficiency, and empirical success (Jain, 2010). It aims at

directly obtaining a single data partition into K clusters. Partitioning-

based methods require setting the number K of clusters, which are

rarely known a priori but can be estimated from the data using

several known methods (Caliński and Harabasz, 1974; Milligan

and Martha, 1985; Gordon, 1999; Halkidi et al., 2001; Meilă,

2007; Hennig and Liao, 2013; Hennig, 2014). These include the

2 For further details, see Celebi (2014).

optimization of internal validity metrics that reflect the compactness

and separation of the clusters (e.g., Average Silhouette Width,

Davies–Bouldin index, Calinski–Harabasz index, and Dunn index).

Equally, some of the partitioning-based methods rely on random

initialization of different K-centroids that can lead to different

outputs (local optimum), non-reproducible clusters, or wrong or

empty clustering. Some solutions exist, such as the K-means++

algorithm, which includes a smart centroid initialization method for

the K-means algorithm (Arthur and Vassilvitskii, 2007). The goal

is to spread out the initial centroid by assigning the first centroid

randomly and then selecting the rest of the centroids based on

the maximum squared distance. The idea is, therefore, to push

the centroids as far as possible from one another. Similarly, the

PAM algorithm is a deterministic K-medoid algorithm that directly

integrates an initialization procedure called BUILD. During the

BUILD phase, the first medoid is selected to be the one that has

the minimum cost, with cost being the sum over all distances to all

other points.

The second type produces a hierarchy of clusters, called a

dendrogram, especially useful when one needs several hard partitions

at different hierarchical levels (i.e., from a macro vision with a few

groups to a micro vision with many groups). These hierarchical

methods have a major drawback though, once a step (merge or

split) is performed, it is not undone, potentially making erroneous

decisions impossible to correct: they are often greedy algorithms that

optimize local criteria without backtracking, whereas the clustering

problem is (by definition) a global optimization problem. Moreover,

hierarchical-based methods generally have higher time and space

complexities than partitioning-based methods and rely on more

input parameters that leave more room for subjectivity regarding

the choice of settings, with a direct impact on the generated

clusters (Fahad et al., 2014). Some studies have also shown that

hierarchical-based algorithms lead to worse clustering results than

partitioning algorithms, suggesting that the latter are well-suited

for clustering large datasets due to not only their relatively low

computational requirements but also comparable or even better

clustering performance (Zhao and Karypis, 2002; Kaushik and

Bhawana, 2014).

The third type of method does not explicitly require a number

of clusters, nor does it rely on a distance threshold from a “center”

(like partitioning-based methods do). On the contrary, density-based

methods rely on the estimated density of observations to perform

the partitioning. Such a method is, in this sense, more local and

allows us to represent clusters whose topology is less induced by

the sole distance used (like hyper-spheres when using the Euclidean

distance in partitioning-based methods). This strategy may, however,

be associated with a greater propensity to overfit data and greater

difficulties to set up the hyper-parameters.

Beyond these three main types of methods, there are many other

alternative clustering approaches including grid-based methods [e.g.,

Wave-Cluster (Sheikholeslami et al., 1998) and STING (Wang et al.,

1997)]. They perform the clustering on grids rather than on the whole

dataset. There are also model-based methods that optimize the fit

between the data and predefined models, assuming that the data are

generated by a mixture of underlying probability distribution e.g.,

mixture density model [EM (Do and Serafim, 2008)], conceptual

clustering [COBWEB (Fisher, 1987)], and neural networks model

[SOMs (Ciampi and Yves, 2000)]. More recently, a wide range of
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FIGURE 2

A taxonomy of clustering algorithms. Below the boxes are listed well-known algorithms of the corresponding types.

new approaches to clustering based on deep learning have emerged

(Aljalbout et al., 2018); they are mainly used to cluster unstructured

data. Deep neural networks (DNN) can be effective ways to map a

high-dimensional data space to a lower-dimensional feature space.

Nevertheless, DNN often requires large datasets and a procedure for

post-hoc interpretability of the clusters (the representation learned

by DNN architectures is not easily understandable). Finally, recent

methods for graph clustering focus more specifically on finding sets

of nodes in networks or graphs that have more connections within

the set than outside the set (Sieranoja and Pasi, 2022). For more

information on the types of clustering algorithms and their suitability

to the data types (categorical, text, multimedia, stream, and time

series), refer to Oyelade et al. (2019).

2.2. Choosing an appropriate clustering
approach

The choice of the appropriate approach to be used relies on many

aspects (Fahad et al., 2014; Ahmad and Khan, 2019) such as:

i its ability to handle the desired type of

data (binary/nominal/ordinal/numerical),

ii the dimensionality of the data (refer to e.g., Mittal et al., 2019),

iii the size of the data (small to large data),

iv the availability of reliable implementations in software (e.g.,

R and Python—the two most popular statistical softwares for

data scientists).

Partitioning-based methods are known to be composed of many

variants to directly handle continuous (K-means, PAM, CLARA,

and FCM), categorical (K-modes and K-medoid), and mixed

variables [K-prototype and KAMILA (Foss and Marianthi, 2018)]. In

addition, the ability of some of these algorithms to directly handle

input dissimilarity matrices facilitates the pre-transformation of the

original data into data of the desired type prior to clustering, using

suited distance measures (e.g., McCane and Michael, 2008). This

strategy is, particularly, used to convert categorical or mixed data

into numerical data, as there is more literature and algorithms

implemented in software for continuous data (e.g., scikit-learn3 in

Python, or cluster4 and FPC5 R packages. The two latter packages

provide both a large number of clustering and cluster stability

assessment methods and functions to compute dissimilarity matrices

and describe the results). Another known alternative consists of

one-hot-encoding categorical data into binary variables and treating

the latter as continuous (e.g., Li and Latecki, 2017). It is, however,

necessary to down-weight the variables obtained, so that no more

weight is given to the original variables with more modalities.

Finally, dimensionality reduction methods, such as factor analysis

[Principal Component Analysis (PCA) for continuous data, Multiple

Correspondence Analysis (MCA) for qualitative data, and Factor

Analysis of Mixed Data (FAMD) for mixed data (Pagès and Husson,

2017)], can be used before the clustering as a first step to transform

the data into numerical components (i.e., the coordinates of the

observations on each dimension).

Factor analysis has many other advantages for clustering tasks,

such as reducing the dimensionality (making easier the clustering

task), reducing noises (by removing the last components that

only bear random noise, leading to a more robust unsupervised

learning), and dealing with variables that carry similar information

and/or are highly correlated (Pagès and Husson, 2017). In the

case of qualitative data, a convenient practice for accommodating

cluster-level observation heterogeneity in MCA is to adopt a two-

step sequential, tandem approach (Arabie and Hubert, 1994): in

the first step, a low-dimensional representation of the categorical

variables is obtained via MCA; in the second step, some variety of

cluster analyses are used to identify a set of relatively homogeneous

observations groups on the basis of the low-dimensional data. In

3 https://scikit-learn.org/stable/

4 https://cran.r-project.org/web/packages/cluster/index.html

5 https://cran.r-project.org/web/packages/fpc/index.html
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addition to the ease with which the two-step sequential approach

can be implemented, there can be substantive reasons for adopting

this approach as well (Green and Abba, 1995). Alternative methods

consist of using simultaneously both MCA and a clustering approach

in a single framework so that the low-dimensional data can be

chosen to facilitate the identification of clusters (Bock, 1987; DeSarbo

et al., 1991; De Soete and Carroll, 1994). However, these methods

lack implementations (both in R and Python), hindering their use

within a clustering workflow. Finally, the selection of the number of

components to be kept is the key step. This can be based on several

methods including permutation tests (Takane and Hwang, 2002),

cross-validation-based methods (Bro et al., 2008; Josse et al., 2012),

or methods based on the amount of information carried by each of

the dimensions, either compared to an average value equivalent to

the Kaiser’s rule in PCA (Lorenzo-Seva, 2011) or represented by a

scree plot (Clausen, 1998; Drennan, 2010). The latter method has

been found to perform fairly well and is the most commonly used to

select the optimal number of dimensions (Zwick and Wayne, 1986;

Bandalos and Boehm-Kaufman, 2010). It consists of looking at the

bend in the falling curve (so-called “elbow”) indicating an optimal

dimensionality (if there is no obvious elbow, one can choose the

number of components just before a flat appears). It has been adapted

from PCA (Cattell, 1996) and used in the context of correspondence

analysis (Costa et al., 2013). All factor analysis methods can notably

be found in R in the well-known FactoMineR6 package, and in Python

in the prince7 GitHub library (although issues are still open for the

latter). Methods for estimating the number of dimensions to be

kept can be found in R in many packages such as the FactoMineR

andmissMDA8, using cross-validation methods, or in the factoextra9

package (e.g., scree plot). In Python and to the best of the authors’

knowledge, one would need to code these methods to apply them as

no specific functions were found.

Whether a factor analysis is performed as a first step or not, the

need to choose a distance measure is critical, as some of them are

only appropriate according to the type of data, or are preferred in

some cases. Indeed, continuous data require appropriate distance

measures to obtain the dissimilarity matrix (e.g., Euclidean and

Manhattan distances), while categorical data are widely handled with

simple matching methods (e.g., Hamming distance for symmetric

measures, which is equivalent to Manhattan distance on binary

variables, and Jaccard similarity coefficient for asymmetric measures

to favor positive co-occurrences over the negative ones). Methods to

handle mixed data can consist of combining the above-mentioned

methods, such as the Gower distance (i.e., simple matching methods

and Manhattan distance).

Finally, some aspects need careful attention when dealing with

large data. Indeed, the candidate algorithm must handle either or

both high dimensionality and a massive number of observations

(including outliers/noisy data), which makes difficult, and sometimes

impossible, dissimilarity matrices to be computed. Equally, fast

running time is essential with large data as the clustering needs to

be performed several times, notably to assess cluster stability and

optimize the clustering hyperparameters (e.g., in the use case in

6 https://cran.r-project.org/web/packages/FactoMineR/index.html

7 https://github.com/MaxHalford/prince

8 https://cran.r-project.org/web/packages/missMDA/index.htmlpackages

9 https://cran.r-project.org/web/packages/factoextra/index.html

Section 4, clustering was replicated 550 times). Few strategies exist

to deal with massive data, such as relying on algorithms of lower

complexity [e.g., K-modes and FCM that are O(n), (Fahad et al.,

2014)]. The latter, however, is quickly limited as computing time

increases linearly with the size of the data. Alternative methods

consist of working on approximations (Sieranoja and Pasi, 2019)

or subsets of the whole dataset to cluster smaller datasets before

generalizing them [e.g., Mini Batch K-means (Sculley, 2010), CLARA

(Kaufman and Rousseeuw, 2009), and CLARANS (Ng and Jiawei,

2002)].

The CLARA algorithm is an extension to K-medoids methods

(e.g., PAM), which is known to be more robust than K-means-based

algorithms as they minimize a sum of dissimilarities instead of a sum

of squared Euclidean distances (Jin and Jiawei, 2010). CLARA allows

dealing with data containing a large number of observations (more

than several thousand) using a sampling approach, in order to reduce

computing time and RAM storage problems. Instead of finding

medoids for the entire dataset, CLARA considers a small sample of

the data and applies the PAM algorithm to generate an optimal set

of medoids. CLARA repeats the sampling and clustering processes

several times in order to minimize the sampling bias. In practice, its

strength lies in the possibility to adjust the number of samples and

the sample sizes, in order to make calculation both time acceptable

and storage in RAM possible. This is indeed essential to enable the

stability of clustering to be assessed and the best partitioning to be

found by repeating the clustering process many times. Compared to

CLARA, CLARANS presents a trade-off between the cost and the

effectiveness of using samples to obtain clustering. Mini-batch K-

means, CLARA, and CLARANS can all be found both in R (e.g.,

respectively, cluster, FPC, and QTCAT10 packages) and in Python

(e.g., respectively, scikitlearn, pycluster11, and pyclustering12). Please

note though that both the quality and the maintenance of libraries on

GitHub (QTCAT, pycluster, and pyclustering) cannot be guaranteed

by the present authors.

2.3. Methods for clusters description

The interpretability of clusters generated by clustering algorithms

remains one of themost important challenges in clinical data analysis,

as is often the case with machine learning algorithms (Vellido, 2020).

Indeed, the best results will only make sense if they are interpretable

by end users. Conventional methods do not provide consensus on

how to characterize clusters and this is even more valid in the health

sector, where the interpretation of clusters is a matter of medical

knowledge of the data itself (Kiselev et al., 2019).

The simplest yet most efficient method remains to compute

relevant intra- and inter-clusters descriptive statistics using the initial

variables to identify a mapping of the generated clusters based

on means or median values (resp. proportions) for continuous

(resp. categorical) variables. This can be completed by performing

clusterwise distributions comparison with overall distributions,

as well as using hypothesis testing to identify input variables

whose differences are statistically significant between clusters

10 https://rdrr.io/github/QTCAT/qtcat/man/clarans.html

11 https://github.com/daveti/pycluster

12 https://pyclustering.github.io/
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(Bousquet et al., 2015). Such implementations dedicated to clusters’

description may be found in R [e.g., the cluster.varstats() function in

the FPC package that also provides tables and plots] and to the best

of our knowledge, no such function was found in Python.

Alternative for making the clusters’ description step easier

may consist of learning an interpretable multiclass supervised

classifier (e.g., decision tree) on cluster labels (outcome) to highlight

characteristics and specificities associated with each group. Other

methods propose to include the interpretability of clusters directly

within the clustering algorithm, and not as a step done afterward

(Bertsimas et al., 2021), notably by adding tunable parameters related

to interpretability (e.g., refer to Saisubramanian et al., 2020, with a

Python implementation found on GitHub13).

Finally, methods dedicated to the visualization of clusters make it

easier for their interpretation, such as PCA, multidimensional scaling

(Torgerson, 1952), t-SNE (Van der Maaten and Hinton, 2008), and

uniform manifold approximation and projection (UMAP, McInnes

et al., 2018).

2.4. Methods for clustering validity and
stability assessment

The clustering assessment step is an important phase to increase

confidence in results and consists of evaluating both the clustering

validity and stability.

Regarding the validity of clustering, one can first distinguish the

external validity metrics (Rezaei and Pasi, 2016) that can be used

to compare the clusters obtained with the ground truth, which is

rarely known. Then, the internal validity metrics that assess the

goodness of a data partition using quantities inherited from the

data, such as compactness (e.g., the maximum pairwise intra-cluster

distances), connectedness (e.g., connectivity metric), or separation

(Bezdek and Pal, 1998; Handl et al., 2005). The Dunn Validity Index

and the Silhouette coefficient are both commonly used metrics,

notably to define the optimal number of clusters, as they both assess

the separation (i.e., the inter-cluster distances) over the compactness

(intra-cluster distances). Although previous works have shown that

there is no single internal cluster validation index that outperforms

the other indices, Arbelaitz et al. (2013) compared a set of internal

cluster validation indices in many distinct scenarios, indicating that

the Silhouette coefficient yielded the best results in most cases.

Alternatives exist for estimating the number of clusters in a dataset

regardless of the clustering methods, such as the “gap statistic” that

compares the change in within-cluster dispersion with that expected

under an appropriate reference null distribution (Tibshirani et al.,

2001).

Regarding the stability of clustering, several methods are

proposed in the literature, by repeating the clustering process several

times under conditions that are different from those of origin. These

include procedures used in bioinformatics that remove one column

at a time (Handl et al., 2005; Datta and Somnath, 2006). Several

metrics can then be computed between the set of clusters (Brock

et al., 2008), such as the average proportion of non-overlap (APN),

the average distance (AD), and the figure of merit (FOM). These

methods are notably proposed in the clValid14 R package and its main

13 https://github.com/sandysa/Interpretable~Clustering

function clValid(). The latter includes many clustering algorithms (K-

means, DIANA, FANNY, SOMs, SOTA, PAM, CLARA, and AGNES)

and allows for a direct assessment of clusters’ stability through the

“validation” argument.

Other approaches consist in perturbing the original data, either

using bootstrapping (Efron, 1979; Efron and Tibshirani, 1994),

noising, and/or sampling methods (Hennig, 2008). The Jaccard

similarity statistic is then often used as a metric for assessing

stability, by computing the similarities of the original clusters to

the most similar clusters in the resampled data. Such methods are

implemented in the FPC R package, notably in the clusterboot()

function. The latter is an all-inclusive package that also allows

for clustering using a wide variety of algorithms (e.g., K-means,

hierarchical clustering, normal mixture models, PAM, CLARA,

DBSCAN, and spectral clustering), making it easy for a data scientist

to generate, compare, and assess the stability of clusters.

As for Python, while there are packages to evaluate the internal

validity of clusters [Silhouette coefficient, Rand Index, Caliński–

Harabasz Index (Caliński and Harabasz, 1974), see in particular the

sklearn.cluster library], no Python library was found to evaluate the

stability of generated clusters. This reinforces the fact that Python

does not cover as easily as R the whole clustering process, as there

is no Python package that includes all the steps of interest (clusters

generation, internal validity evaluation, clustering optimization,

clusters stability evaluation, and clusters description), as in the FPC

R package.

Finally, the methods for testing clustering stability on a hold-out

dataset are barely mentioned in the literature. This would consist

of pre-allocating the observations in the test set into the clusters

obtained from the learning set, and clustering the test dataset to check

for good allocation. However, no implementation was found in either

R or Python. We can see a simplified application of the clustering of

two independent datasets in Saint Pierre et al. (2020).

3. The Qluster workflow

3.1. Research objective

Many statisticians/data scientists are confronted with a great

number of algorithms and implementations for data clustering.

This can make it difficult to manage clustering studies and is likely

to generate analytical strategies that are insufficiently rigorous, not

consensual, or not adapted to the problem. This is, particularly,

the case for any statistician/data scientist in contract research

organizations that provide support to the healthcare industries,

who has the responsibility to conduct clustering analyses but is

still little experienced in using them. Our goal is to propose a

practical workflow for data scientists because of its genericity

of application (e.g., usable on small or big data, on continuous,

categorical or mixed variables, on database of high-dimensionality

or not) while preserving the simplicity of implementation and

use (need for few packages, algorithms, parameters, . . . ) and the

robustness and reliability of the methodology (e.g., evaluation

of the stability of clustering, use of proven algorithms and robust

packages, management of noisy and/or collinear data). The objective

of this workflow is therefore not to be the solution to all situations

14 https://cran.r-project.org/web/packages/clValid/index.html
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but to propose a simple and robust basis that is as generic as

possible. In a way, a choice that aims to be “globally optimal” for

practice but not optimal in every case. This generic workflow can

be useful both for data scientists with little experience in the field

to make data clustering easier and more robust, and for more

experienced data scientists who are looking for a straightforward

and reliable solution to routinely perform preliminary

data mining.

3.2. Method

The criteria15 defining the properties of the desired workflow are

the following:

• Criteria for achieving genericity: applicability to small and big

data, applicability to continuous or categorical or mixt data, and

management of high dimensionality.

• Criteria for achieving ease of implementation and use:

number of packages used, of algorithms used, of parameters to

tune, use of “all-inclusive” packages covering at best the general

clustering process.

• Criteria for achieving robustness and reliability: management

of noise data, of multicollinearity, methods considered for

clusters stability assessment, reliability of packages used (e.g.,

hosting site, renown, . . . ), and reliability of algorithms used (e.g.,

renown, literature, . . . ).

15 A discussion on other possible criteria and ways to integrate them into the

workflow is presented in Section 5.1 (e.g., management of missing data and

outliers).

Facing the great diversity of packages16 and algorithms,

and considering our goal of preserving the simplicity of

implementation and use of the desired generic workflow, we

focused on handy17 packages to cover the main algorithms

and steps in the general clustering process (refer to Figure 1).

Handy packages can include functions for clustering, cluster

optimization, cluster evaluation, cluster stability evaluation, and

cluster description (clustering algorithms suites). For Python,

we considered the module sklearn.cluster from the scikit-learn

library. For R, the following packages were selected: FPC,

cluster, clue, and clValid. All these implementations, functions,

and algorithms that compose them are considered robust and,

therefore, meet part of the criteria for achieving robustness

and reliability.

3.3. Preliminary work

When relevant, we matched the selected implementations to

the defined criteria (refer to Table 1 for R packages and skikit-

learn library, and Appendix A for clustering algorithms that

compose them).

Table 1 shows that neither the cluster R package nor the sklearn-

cluster module in Python allows the evaluation of the stability

of clusters. As indicated in Section 2, one should code this step

oneself in Python, or link (if possible) with other packages in R.

Of the selected R packages, FPC was the most downloaded in 2021

16 e.g., CRAN Task View for cluster analysis: https://cran.r-project.org/web/

views/Cluster.html.

17 e.g. of handy R packages: https://towardsdatascience.com/a-

comprehensive-list-of-handy-r-packages-e85dad294b3d.

TABLE 1 Description of selected software implementations.

Libraries Language Ease of implementation and use Robustness Number of
downloads
in 2021

Data
processing

Data
clustering

Internal validation
metrics

Clusters
description

Cluster stability
assessment

FPC R Yes Yes Silhouette width,

Caliński-Harabasz index,

Hubert’s gamma coefficient,

Dunn index, Tibshirani, and

Walther’s prediction strength,

etc.

Yes Bootstrap, noise,

resampling, etc.

985,853

Cluster R Yes Yes Silhouette width, gap statistic,

etc.

Yes / 891,577

Clue R No Yes Variance accounted for

(VEF), deviance accounted

for (DEF), . . .

Yes Bootstrap 467,260

clValid R No Yes Connectivity, Silhouette

width, Dunn Index, etc.

Yes Removing each column,

one at a time

96,676

sklearn.cluster Python Yes Yes Rand index, Normalized

Mutual Information (NMI),

Adjusted Mutual Information

(AMI), Silhouette width,

Caliński-Harabasz Index,

Davies-Bouldin Index, etc.

No / NA

Number of downloads in 2021 is based on the cran_downloads() function in the cranlogs R library. NA, not applicable.
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and provides the most internal assessment metrics. Clue and FPC

evaluate cluster stability by bootstrapping but only FPC includes

other methods such as noising, the complementarity of the two

methods being recommended by Hennig (2008). clValid on the

other hand proposes simpler methods, mainly used in biology, for

evaluating the stability of clusters by removing the variables one by

one.

The table in Appendix A is created based on Table 1 in

Fahad et al. (2014), which we adapted for our purpose. Overall,

Appendix A shows that none of the algorithms included in the

selected packages satisfies all the properties sought in terms of

genericity, simplicity of use and implementation, and robustness.

For example, CLARA and Mini-batch K-means both allow very

good handling of large data and are adapted to some extent to

high dimensionality and rely on few parameters to be optimized.

However, they only apply to continuous data and are not,

particularly, suitable for noisy data. Also and unlike CLARA,

Mini-batch K-means is only included in the scikit-learn module

on Python.

This first synthesis work highlights the challenge to overcome.

3.4. Qluster

Based on the literature review (Section 2) and the preliminary

work (Section 3.3), we propose the Qluster workflow (refer to

Figure 3), a set of methods that together represent a good balance

for data scientists to make clustering on health data in a practical,

efficient, robust and simple way. It covers the cluster generation step

(step 3) through 1- factor analysis, 2- data clustering, and 3- stability

evaluation. The output of the factor analysis (PCA, MCA, or FAMD)

is the matrix of the coordinates of the individuals on the factorial

dimensions, i.e., a table of continuous variables, allowing then the

clustering by a PAM algorithm. For an in-depth discussion regarding

the Qluster workflow, refer to Section 5.

To summarize,Qluster tries to generalize clustering tasks through

a generic framework that is:

• Adapted to variables of any nature, be it categorical only,

continuous only, or a mix of both. This is made possible by

transforming all data in a continuous setting (that is both

for mature in the literature and simpler to process) using

methods for factor analysis [MCA for categorical data only

or FAMD for mixed data (Pagès, 2004)]. As mentioned in

Section 2.2, the latter also allows for dealing with collinearity,

high-dimensionality, and noise. It also makes the work for a

clustering algorithm easier, as there are both fewer variables to

deal with and greater clarity in information to cluster (factor

analysis methods are themselves meant to uncover profiles into

components of richer information).

• Adapted to datasets of any volume, be it small or large data.

Indeed, the same partitioning-based algorithm is used (PAM),

either applied entirely on a dataset of reasonable size or on

samples of a large18 dataset (CLARA algorithm), using the same

18 The notion of large data, as well as how to fix the hyperparameters samples

and sampsize in CLARA algorithm, may vary according to the computing

capabilities of the user’s system. One recommends users to pre-tests di�erent

FIGURE 3

The Qluster workflow (the colored step pads correspond to those

detailed in Figure 1).

scenarios to adapt these thresholds to their own settings. For guidance, this

workflow applied on the case study in Section 4 (34,134 observations and nine

variables) took 5h and 30min with 8 CPUs and 10 GB RAM.
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pamk() function from the FPC R package. In addition to this

practical aspect, PAM was chosen over the (widely used) K-

means algorithm based on its ability to be deterministic and

to deal with Manhattan distance, which is less sensitive to

outliers than the Euclidean distance (Jin and Jiawei, 2010).

Moreover, PAM is known for its simplicity of use [fewer

parameters, e.g., than with DBSCAN or BIRCH (Fahad et al.,

2014)] and is also implemented in an easy-to-use all-inclusive

package (not the case for, e.g., CLARANS, KAMILA, Mini

batch K-means, DENCLUE, and STING that are suited for large

datasets but where assessing clusters stability would require

extensive code development by data scientists). More details

on the choice of the clustering algorithm can be found in

section 5.

In addition, the Qluster workflow relies solely on four

state-of-the-art R packages, allowing data scientists to quickly

manage data of different natures and volumes and perform

robust clustering:

• Both the clustering and cluster stability assessment tasks are

performed using the FPC R package [functions pamk() and

clusterboot(), respectively]. R has been chosen over Python

because the former offers all the clustering methods desired,

and no package including all the steps of interest to clustering

was found for the latter (we would have to code some steps by

ourself, refer to Section 2 for more details). The clusterboot()

function offers many ways to assess clusters’ stability, but one

selects the two followings for routine practice and for their

complementarity as mentioned in Hennig (2008): bootstrapping

and noising.

• The factor analysis part is handled using the FactoMineR R

package [functions PCA(),MCA(), and FAMD(), for continuous,

categorical, and mixed data, respectively, the latter function

generalizing the others]. This step is optional in the case where

only continuous variables are in the input.19 To select the

optimal number of components to keep, one recommends

for small data to use the deterministic cross-validation

technique implemented in the missMDA package [function

estim_ncpPCA(), estim_ncpMCA(), estim_ncpFAMD() (Josse

et al., 2012)]. As this method requires high computing time, the

standard “elbow” method in a scree plot is recommended for

large data, using the factoextra R package [function fviz_eig()].

Finally, the Qluster workflow is operationalizable and

implementable from end to end (see in Appendix B a picture

of implementation in the Dataiku20 platform. Available upon

request: contact@quinten-france.com).

This generic workflow, usable inmost situations, can be described

through the following pseudocode (Algorithm 1):

19 It is worth noting that standardization of continuous data is recommended

before using PCA, to not give excessive importance to the variables with the

largest variances.

20 https://www.dataiku.com/

input: X: The input data

packages : FactoMineR, factoextra, FPC,

missMDA

output: Q: A clustering of X and associated

measures

1 if X is continuous only then

2 F = PCA(X) , with F a FactoMineR object

of class PCA

3 else if X is categorical only then

4 F = MCA(X), with F a FactoMineR object

of class MCA

5 else // mixed continuous and categorical

6 F = FAMD(X), with F a FactoMineR object

of class FAMD

7 end

8 Define from F the matrix M of coordinates of

individuals on each dimension

9 if X is “large” then

10 Apply fviz_eig() on F to select Copt , a

sufficient number of components

11 Define the Mopt matrix as M restricted to

Copt components

12 P = pamk(Mopt) , with usepam = FALSE

(CLARA), criterion = “asw”, scaling =

FALSE, and setting at convenience

samples , sampsize , and krange

13 Let K the optimal number of clusters

in P

14 else // X is not “large”

15 if X is continuous only then

16 Fncp = estim_ncpPCA(X) , with large

[ncp.min, ncp.max] range

17 else if X is categorical only then

18 Fncp = estim_ncpMCA(X) , with large

[ncp.min, ncp.max] range

19 else // mixed continuous and categorical

20 Fncp = estim_ncpFAMD(X) , with large

[ncp.min, ncp.max] range

21 end

22 Retrieve the optimal number of dimensions

Copt from Fncp

23 Define the Mopt matrix as M restricted

to Copt components

24 P = pamk(Mopt) , with usepam = TRUE

(PAM), criterion = “asw”, scaling =

FALSE, and setting at convenience krange

25 Let K the optimal number of clusters

in P

26 end

27 S = clusterboot(M opt) , with bootmethod =

c(“boot”, “noise”), krange = K, clustermethod =

“pamkCBI” and the same parameters as in the

previous step. Loop on the noise_level parameter to

test different noise levels

28 Return all useful results in Q

Algorithm 1. The Qluster pseudo-code.
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4. Detailed workflow methodology

4.1. The Cardiovascular disease dataset and
the objective

The Cardiovascular Disease21 dataset includes 70,000 patients

with or without cardiovascular disease and 12 variables (five of them

are continuous).

The following raw variables were used (raw variables’ names are

in italic):

1. Age (days, converted into years) - age

2. Height (cm) - height

3. Weight (kg) - weight

4. Gender (M/F) - gender

5. Systolic blood pressure (SBP) (mmHg) - ap_hi

6. Diastolic blood pressure (DBP) (mmHg) - ap_lo

7. Cholesterol (categories 1: normal, 2: above normal, 3: well above

normal) - cholesterol

8. Glucose (categories 1: normal, 2: above normal, 3: well above

normal) - gluc

9. Smoking (Y/N) - smoke

10. Alcohol intake (Y/N) - alco

11. Physical activity (Y/N) - active

12. Presence or absence of cardiovascular disease (Y/N) - cardio

The objective of this section is to present in detail the application

of the Qluster workflow proposed in Section 3 on the following use

case: to characterize the phenotypes of patients with cardiovascular

disease (a subset of patients with cardio = Y). This represents 34,979

patients (about 50% of the whole dataset).

4.2. Step-by-step application of the Qluster
workflow

The following section details the application of the Qluster

workflow to the cardiovascular dataset to help scientists use it for

their own projects. Additional elements to the ones presented in

Section 2 supporting the present methodology are also provided

when relevant. We first present the preprocessing of the dataset,

in which notably the few continuous variables are converted into

qualitative data, before applying an MCA, which is a data-reduction

technique for exploring the associations among multiple categorical

variables (Greenacre, 1984; Warwick et al., 1989; Murtagh, 2005;

Greenacre and Blasius, 2006; Nishisato, 2019). Then, given the large

size of the database, the CLARA algorithm is applied and optimized.

Finally, the clusters’ stability is assessed and a brief interpretation of

the clusters is provided.

4.2.1. Data preparation
4.2.1.1. Features derivation and selection

First, the Body Mass Index (BMI) variable was created from

both height and weight (Ortega et al., 2016). Then, outliers were

21 On Kaggle: https://www.kaggle.com/sulianova/cardiovascular-disease-

dataset.

detected by defining for each quantitative variable the thresholds

above or below which values are more likely to be inaccurate.

Acceptable values should be in the following ranges: 18 ≤ Age <

120, 10 ≤ BMI < 100, SBP ≤ 400, and DBP ≤ 200 [Ortega et al.,

2016; Mayo Clinic22, French HTA (HAS) recommendations23]. For

simplicity, patients with at least one outlier were removed from

the analysis (sensitivity analyses could be performed). Quantitative

variables were then discretized in order to both create variables with

a clinical sense and enable the use of the MCA algorithm (refer to

Table 2).

An additional binary hypertension variable was created based on

both high_sbp and high_dbp variables that are used as a proxy for

patients with hypertension [hypertension = 1 if high_sbp = 1 and

high_dbp= 1; else hypertension= 0 (Williams et al., 2018)].

Finally, the variables selected to discriminate the patients must

be chosen according to their medical relevance to the context of the

study. To this end, the user must always consider the results he would

obtain if a variable is included or not. In particular, the user has to ask

himself whether active discrimination of the clusters by a variable is

sought: considering the example of the two common variables age

and race, if they are actively included in the clustering step, it will

tend to create groups of young vs. old, Caucasian vs. non-Caucasian

patients. If not, such variables can be kept for passive analysis of

the generated clusters and assess a posteriori possible heterogeneity

on these variables. In this use case, we removed the height, weight,

and systolic and diastolic blood pressure features, as they are used

to create the derived features listed above and are not useful alone

for clustering.

At the end, we obtained a database of 34,134 patients and

11 variables.

4.2.1.2. Dealing with low prevalent features and modalities

Clustering variables with low prevalence are known to be

challenging in data analysis, especially for techniques that are very

sensitive to data and/or anomalous cases [e.g., regression analysis and

factor analysis (Fahrmeir et al., 2013)]. Most common techniques

consist of either gathering rare modalities in groups of higher

frequency or discarding the concerning modalities and/or variables.

Additionally, binary clustering variables with low prevalence in the

study population may be discarded from the analysis or grouped with

other features when appropriate.

An arbitrary threshold of 10% was set to distinguish and

eliminate features with rare modalities from the clustering features.

This is consistent with recommendations before using Multiple

Correspondence Analysis, which over-weighs rare modalities and

multi-modality variables (Le Roux and Rouanet, 2010; Di Franco,

2016). When possible, modalities with <10% of prevalence were

grouped with others based on medical relevance. As a result, both the

Smoking (8.3%with smoke=Yes) and Alcohol intake (5.2%with alco

= Yes) variables were ruled out to cluster data and were only used for

a posteriori clusters description.

22 https://www.mayoclinic.org/diseases-conditions/high-blood-

pressure/diagnosis-treatment/drc-20373417#:%CB%9C:text=Your%20blood

%20pressure%20below%2080%20mm%20Hg

23 Prise en charge des patients adultes atteints d’hypertension arterielle

essentielle - Actualisation 2005. https://www.has-sante.fr/upload/docs/

application/pdf/2011-09/hta_2005-recommandations.pdf.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2022.1055294
https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
https://www.mayoclinic.org/diseases-conditions/high-blood-pressure/diagnosis-treatment/drc-20373417#:%CB%9C:text=Your%20blood%20pressure%20below%2080%20mm%20Hg
https://www.mayoclinic.org/diseases-conditions/high-blood-pressure/diagnosis-treatment/drc-20373417#:%CB%9C:text=Your%20blood%20pressure%20below%2080%20mm%20Hg
https://www.mayoclinic.org/diseases-conditions/high-blood-pressure/diagnosis-treatment/drc-20373417#:%CB%9C:text=Your%20blood%20pressure%20below%2080%20mm%20Hg
https://www.has-sante.fr/upload/docs/application/pdf/2011-09/hta_2005-recommandations.pdf
https://www.has-sante.fr/upload/docs/application/pdf/2011-09/hta_2005-recommandations.pdf
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Esnault et al. 10.3389/frai.2022.1055294

TABLE 2 Description of quantitative feature engineering.

Name Description Modalities Accepted value range

Age Age age ≤ 55; age > 55 [18, 120]

BMI BMI Underweight: < 18.5 kg/m2 ;

Normal: between 18.5 and 24.9 kg/m2 ;

Overweight: between 25.0 and 29.9 kg/m2 ;

Obese: ≥ 30.0 kg/m2

[10, 100]

high_sbp High systolic blood pressure 1: SBP > 130 mmHg;

0: SBP ≤ 130 mmHg

≤400

high_dbp High diastolic blood pressure 1: DBP > 80 mmHg;

0: DBP≤ 80 mmHg

≤200

Moreover, some modalities were aggregated for the two

following variables:

• Glucose (gluc): modalities 2 (above normal, 8.8%) and 3

(well-above normal, 9.5%) were grouped into one modality 2

(above normal).

• BMI (BMI): modalities “underweight” (0.5%) and “normal”

were grouped into one modality “underweight & normal”.

At the end, the dataset used to perform MCA contains a total

number of nine categorical variables (age, BMI, high_sbp, high_dbp,

hypertension, gluc, gender, cholesterol, and physical activity).

4.2.2. Perform multiple correspondence analysis
As with other methods for factor analysis (e.g., PCA and

CA), MCA was combined with cluster analysis to capture data

heterogeneity, through clusters of observations in the population that

show distinctive patterns (Buuren and Heiser, 1989; Hwang et al.,

2006; Mitsuhiro and Hiroshi, 2015; van de Velden et al., 2017; Testa

et al., 2021).

The number of MCA components to be used was

decided using the standard scree plot by identifying

the “elbow” of the curve [method widely used with

PCA (Cattell, 1996)] while constraining eigenvalues

to be strictly above a threshold of 0.11 equivalent of

Kaiser’s rule in PCA (i.e., 1/C with C the number of

categorical variables).

Based on the scree plot (refer to Figure 4), three dimensions

were chosen, the third marking a clear elbow in the curve (related

eigenvalue: 0.12; related percentage of variance explained: 9.8%).

Moreover, and for interpretation purposes, eigenvalues were

corrected using the Benzecri correction24 to consider that the binary

coding scheme used in MCA creates artificial factors and, therefore,

reduces the inertia explained (Greenacre, 1984). The top three

components gather 99.9% of inertia after correcting with the Benzecri

method (more details in Appendix D).

24 One may prefer the Greenacre adjustment to Benzecri correction, which

tends to be less optimistic than the Benzecri correction. Please note that both

methods are not currently implemented in the proposed R packages and must

therefore be implemented by data scientists if desired. R code for Benzecri

correction is provided in Appendix C.

4.2.3. Clustering of the data
4.2.3.1. Parameters specification

The CLARA algorithm was used through the pamk() function

in the FPC R package (version 2.2-5), a reliable package for flexible

procedures for clustering, and with the following main parameters:

• Distance measure: dissimilarity matrix was computed using the

Manhattan distance. The latter is more robust and less sensitive

to outliers than the standard Euclidean distance (Jin and Jiawei,

2010).

• Number K of clusters: From 3–11,

- The number of clusters was optimized on the Average

Silhouette Width (ASW) quality measure, which is an

internal validity metric reflecting the compactness and

separation of the clusters. The ASW is based on the

Silhouettes Width that was calculated for all patients in the

best sample, i.e., the one used to obtain cluster medoids and

generate clusters (Rousseeuw, 1987).

- The range of clusters to be tested was determined to

enable the identification of phenotypically similar subgroups

while not generating an excessive number of subgroups

for interpretation.

• The number of samples and sample size: 100 samples of 5%

study population size (1,706 patients).

- Experiments have shown that five samples of size 40

+ 2C (with C the number of variables in input) give

satisfactory results (Kaufman and Rousseeuw, 1990).

However, increasing these numbers is recommended (if

feasible), to limit sampling biases and favor converging

toward the best solution. Equally, the higher the sample

size is, the higher it is representative of the entire dataset.

We, therefore, recommend pretesting on his material up to

what parameter values the computation times are acceptable

considering the size of the input dataset and the other steps

of the workflow (including the clusters stability evaluation

step, the most time consuming).

Other parameters include the non-scaling of the input data to not

modify the observation space obtained fromMCA.

4.2.3.2. Results

The optimal ASWwas obtained for a pool of three clusters (ASW:

0.42, refer to Figure 5).
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FIGURE 4

Scree plot of variance explained by dimension from an MCA (in red, the eigenvalue of 0.11).

FIGURE 5

Average Silhouette Width for each set of clusters (K = 3–11).

Homogeneity and separability of clusters were further studied by

analyzing the Silhouettes Width of patients in the best sample used

to generate the clusters’ medoids, using the fviz silhouette() function

in the factoextra R package. As a reminder, the Silhouette Width

characterizes both the cohesion of the cluster and its separation from

the other clusters: a positive (respectively, negative) Silhouette Width

for a patient is in favor of a correct (respectively, incorrect) affiliation

to its own cluster.

Figure 6 shows a high level of intra-cluster cohesion and inter-

clusters separability as only few patients (in clusters 2 and 3)

have negative Silhouettes. Clusterwise Silhouette Widths are also

all positive (ASW of 0.42, 0.47, and 0.30, for clusters 1, 2, and 3,

respectively).

4.2.4. Cluster stability assessment
4.2.4.1. Parameters specification

In order to evaluate clustering robustness, the clustering was

performed several times on a cohort that was randomly modified.

This allows generating under perturbations new versions of the

original clusters and, thus, to evaluate the stability of the clusters

to them. The stability of the clusters is all the higher as the

new versions of the clusters generated under perturbations are

similar to the original clusters. The data perturbation step was

performed using two approaches that may provide complementary

information based on the results in Hennig (2007): bootstrap and

noise methods.

• Bootstrap approach:

- This approach consists in performing the clustering as

described in Section 4.2.3 on B = 50 bootstrapped data [i.e.,

random sampling with replacement (Efron, 1979; Efron and

Tibshirani, 1994)], using the clusterboot() function in the FPC

R package (version 2.2-5).

- The Jaccard similarity metric is used to compute, for

each cluster, the proximity between the clusters of

patients obtained from the bootstrapped sample and

the original clusters. It is given by the number of

patients in common between the new cluster and the

original cluster divided by the total number of distinct

patients considered (i.e., present in either the new or the

original cluster).

- For each cluster, the following results are provided:

� the mean of the Jaccard similarity statistic.

� the number of times the cluster was “dissolved”,

defined as a Jaccard similarity value ≤ 0.5. This value

indicates instability.

� the number of times the cluster was “recovered”,

defined as a Jaccard similarity value ≥ 0.75. This value

indicates stability. There is some theoretical justification

to consider a Jaccard similarity value smaller or equal

to 0.5 as an indication of a “dissolved cluster”, refer

to Hennig (2008). Between 0.6 and 0.75, clusters may

be considered as indicating patterns in the data, but

which points exactly should belong to these clusters is

highly doubtful.
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FIGURE 6

Silhouette Width for each patient within each of the three clusters (the red line corresponds to the Average Silhouette Width).

• Noise approach:

- This approach consists in performing the clustering as

described in Section 4.2.3 on B = 50 noisy data and for

different values of noise, using the clusterboot() function in

the FPC R package.

� Level of noise values: from 1 to 10%

- The number of times each cluster was “dissolved” and

“recovered” is provided, as well as the mean of the Jaccard

similarity statistic, according to the noise values.

4.2.4.2. Results

Clusters are all the more stable as the Jaccard similarity statistics

and the number of recovered clusters are high, and the number of

dissolved clusters is low.

The results of the data perturbation step are shown below:

• For the bootstrap approach, clusters 1, 2 and 3 all have

a Jaccard similarity statistic of 100% over 50 iterations.

The three clusters were recovered for 100% of bootstrapped

iterations, which characterizes very high stability to resampling

with replacement.

• For the noise approach, clusters 1, 2, and 3 at worst (for

2% noise) Jaccard similarity statistics of 100%, 98%, and

96%, respectively, over 50 iterations. The three clusters were

recovered for 100% of iterations regardless of the level of noise

(from 1 to 10%), which characterizes very high stability to noise.

Regardless of the method used, the results seem to be very robust

and can certainly be explained by the large size of the database and

the small number of clusters retained in the context of synthetic data.

Clusters stability may be more variable in real cases.

It is worth noting that the clusterboot() function can also

provide useful results and plots of clusters’ stability (histogram

of Jaccard similarity statistics by cluster, summary information

for each cluster, etc.), but we did not provide them in this

article since the obtained Jaccard similarity metrics were all

around 100%.

4.2.5. Clusters interpretation
Descriptive statistics (proportions and lift values) were computed

from variables included or not in the clustering step. Cluster 1 [n =

12,272 (36.0%)] groups patients who all have high values of diastolic

and systolic blood pressure, and consequently hypertension. These

patients are slightly more than the average with well-above normal

cholesterol values (18.5% vs. 17.7%) and above normal glucose values

(20.0% vs. 18.3%). On the contrary, patients from clusters 2 and

3 [n = 15,477 (45.3%) and n = 6,385 (18.7%), respectively] are

between 81% and 87% to have normal values of diastolic and systolic

blood pressures, and none have hypertension. In contrast with cluster

2, patients from cluster 3 are many more with well-above normal

cholesterol values (26.6% vs. 8.5%) and above normal glucose values

(57.3% vs. 0.8%).

Patients from clusters 1 and 2 are overall younger than cluster 3

(age≤ 55: 54.7% and 51.8% vs. 65.9%). Patients from clusters 1 and 3

are overall more obese than cluster 2 (41.4% and 44.5% vs. 21.8%).

To summarize, among patients with cardiovascular disease,

cluster 1 gathers patients with hypertension, cluster 2 gathers patients

healthier (although about the same age as cluster 1), and cluster

3 gathers slightly older patients with cholesterol and high levels of

glucose (although no hypertension). Interestingly, the description

of cluster 1 is consistent with a poorer lifestyle (lift values of 1.21

and 1.28 for Smoke and Alcohol, respectively) although this did not

actively participate in clustering. Refer to Table 3 for more details.

5. Discussion

In this section, we will first discuss some limitations of the

Qluster workflow and possible enhancements, then discuss choices

of parameters and the practical use of this workflow.
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TABLE 3 Prevalence and lift values of each modality and by cluster.

Modalities Prevalence (% of patients) Lift values

C1 C2 C3 Cohort

n = 12,272 n = 15,477 n = 6,385 n = 34,134 C1 C2 C3

(36.0%) (45.3%) (18.7%) (100%)

Female 62.1 64.2 71.4 64.8 0.96 0.99 1.10

Male 37.9 35.8 28.6 35.2 1.08 1.02 0.81

Cholesterol normal 60.6 90.7 16.5 66.0 0.92 1.37 0.25

Cholesterol above normal 20.8 8.5 26.6 16.3 1.28 0.52 1.63

Cholesterol well-above normal 18.5 0.7 56.9 17.7 1.05 0.04 3.22

Glucose normal 80.0 99.2 42.7 81.7 0.98 1.21 0.52

Glucose above normal 20.0 0.8 57.3 18.3 1.10 0.04 3.13

Physical activity 81.0 76.8 79.6 78.8 1.03 0.97 1.01

Age ≤ 55 45.3 48.2 34.1 44.5 1.02 1.08 0.77

Age > 55 54.7 51.8 65.9 55.5 0.99 0.93 1.19

BMI obese 41.4 21.8 44.5 33.1 1.25 0.66 1.34

BMI overweight 36.5 37.3 36.1 36.8 0.99 1.01 0.98

BMI normal or underweight 22.1 40.9 19.5 30.1 0.73 1.36 0.65

High Systolic blood pressure 100.0 14.3 18.5 45.9 2.18 0.31 0.40

High Diastolic blood pressure 100.0 12.9 16.8 44.9 2.23 0.29 0.37

Hypertension 100.0 0 0 36.0 2.78 0 0

Smoke 10.1 7.2 7.6 8.3 1.21 0.87 0.91

Alcohol 6.6 3.8 5.7 5.2 1.28 0.74 1.09

C1, C2, and C3 stand for Cluster 1, Cluster 2, and Cluster 3, respectively. Light blue: ≤ 0.5; blue: ≤ 1.0; yellow: ≤ 1.5; and green: >1.5. Lift is defined as % in the cluster vs. in the cohort.

5.1. Limitations and proposition for
enhancing this workflow

5.1.1. When large data are too large
As often in data mining, one limit concerns the size of the data.

It is clear that for massive data, where the number of rows is very

high, specific algorithms such as grid-based methods or canopy pre-

clustering algorithms (McCallum et al., 2000) are needed for the

algorithms to scale up.

More specifically, in such cases, factor analysis may be impossible

to calculate, as it requires making matrix calculations and inverting

matrix of size n ∗ p (n individuals, p binary variables). Please note

that in the case of categorical variables, one may prefer to use

the anglo-saxon MCA method that applies the CA algorithm on

a Burt table (p ∗ p) instead of the complete disjunctive table (n
∗ p), which is more efficient in computing time and, thus, more

appropriate for large data [also implemented in the MCA() function

in FactoMineR (Greenacre, 2007)]. Equally, in the case of very large

data, the CLARA algorithm may be too time-consuming to compute

as we still need to maintain enough samples and observations per

sample for representativeness. For all these reasons, one suggests

simply to analyze a random sample of the original dataset that

is likely to be very representative of the latter while allowing the

use of the Qluster workflow. Please also note that PCA() and

FAMD() are known to take more time for computation thanMCA().

One also suggests (when possible) to convert data into one type

(continuous only or categorical only) in a data preparation step.

Indeed, the upstream scaling of mixed data can be challenging, and

the computation times by FAMD are more important. Alternatives

may consist of not using the proposed workflow but algorithms

that go fast on (very) large data such as Mini Batch K-means used

on continuous variables or one-hot-encoded categorical variables.

However, in addition to relying solely on Euclidean distance, these

strategies may not allow for the prior use of factor analysis due to

the size of the data, nor for the stability of clusters to be easily and

properly assessed.

Conversely, when the number of columns is greater than the

number of rows (p > n), the dimension reduction step via factor

analysis methods makes even more sense to easily manage the

high dimensionality of the data. However, in the most extreme

cases where p >> n, standard factor methods may fail to yield

consistent estimators of the loading vectors. In addition, the results

may be difficult to interpret. In such situations, standardizedmethods

may be a solution to improve the robustness, consistency, and

interpretability of results (e.g., penalized PCA, Lee et al., 2012). It is

also recommended that a relevant subset of the variables be selected

prior to analysis (when possible).

5.1.2. Generalizability of this workflow to missing
data

Missing values management is not covered in this workflow,

and it is, therefore, assumed that no missing values are present

in the dataset. Indeed, both factor methods (PCA, MCA, FAMD)

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2022.1055294
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Esnault et al. 10.3389/frai.2022.1055294

and proposed clustering methods (PAM, CLARA,. . . ) require data

without missing values. However, this workflow can be easily

generalized to missing data, using the same missMDA package as

for performing the selection of the optimal number of dimensions

in factor analysis, in order to impute in a first step missing values

using factor methods. The latter are state-of-the-art methods for

handling missing values [e.g., function imputePCA(), imputeMCA(),

and imputeFAMD() for simple imputations (Audigier et al., 2013)]

and can, thus, easily be integrated and/or used in an automated

workflow to handle missing data. In addition, this R package makes

it possible to perform multiple imputations [MIPCA(), MIMCA(),

and MIFAMD()] for assessing incertitudes from imputed values and

increasing confidence in results (Josse and Husson, 2011). In this

sense, the Qluster workflow can be easily modified to reach the

state of the art in missing data management (refer to Appendix E

for an example of the Qluster workflow adapted for handling

missing values).

5.1.3. Discussion on using factor analysis as a first
step

Factor analysis allows the transformation of structured data of

all kinds into continuous data, while dealing with large, collinear,

noisy, and high-dimensional data. It also facilitates clustering by

aggregating groups of homogeneous information within dimensions.

Nevertheless, it cannot be guaranteed that the results will be “better”

or “as good” with factor analysis in the clustering process. Similarly,

the choice of factor analysis in this workflow comes with drawbacks

that include the following items:

• The packages used cannot handle the ordinal nature of the

variables. The lattermust be treated as categorical or continuous.

• The observations× components matrix is continuous, although

some raw variables could be categorical. This prevents the

user from favoring (when relevant) positive co-occurrence over

negative co-occurrence via the Jaccard similarity coefficient.

Alternatives may consist of data dimension reduction using

feature selection methods, or manually, by grouping, transforming,

and/or deleting variables based on clinical expertise.

5.1.4. Discussion on using a single K-medoid
algorithm

In order to provide a simple, yet generic and robust workflow

for the practical use of the same methodology in many applications,

we have made a careful selection of both algorithms and software

packages. In particular, the decision to use the PAM/CLARA

algorithm is based on many aspects such as the fact that it is:

• one of the best known, studied, and used algorithms by the

community, for general purposes,

• suitable for continuous variables (i.e., the most mature in

the literature).

• meant for the most frequent use case of clustering (i.e.,

hard partitioning),

• suitable for the Manhattan distance, a less sensitive to outliers

distance, unlike its counterpart on the Euclidean distance (K-

means),

• deterministic, due to its internal medoid initialization

procedure, unlike the basic K-means algorithm that may lead to

inconsistent or non-reproducible clusters,

• requiring few parameters to set up [e.g., conversely to BIRCH

and DBSCAN, refer to Fahad et al. (2014)],

• very well-implemented within a recognized reference R package

(the FPC package) facilitating its use within a complete and

robust clustering approach,

• usable within the same R function [pamk()] regardless of the

volume of data.

Yet, it is clear that other algorithms than the ones chosen could

be routinely used, including those contained in the FPC R package

to facilitate its integration within the workflow (e.g., DBSCAN and

HAC). In particular, it is known that with non-flat geometry and/or

uneven cluster size, DBSCAN is more appropriate than K-means and

PAM. Equally, if the final goal is to obtain a hierarchy rather than

a unique hard partition, the user may prefer an algorithm such as

HAC, which can easily be used with the proposed packages in this

workflow. However, the presence of additional parameters to tune or

the lack of compatibility with massive data would make the workflow

more complex. It is also important to note that this workflow is not

intended to replacemore in-depth work by data scientists to findwhat

is optimal for a specific case study. More experienced data scientists

can use the generic Qluster workflow for a first look at the data

but are encouraged to adapt the general principles of this workflow

to their case study (e.g., finding the most suitable algorithm). Such

adaptations would be out-of-scope of this workflow in the sense of

the initial objectives: genericity of applications while maintaining

the simplicity of implementation and reliability/robustness of

the methodology.

Equally, the user may want to benchmark several clustering

algorithms as suggested by Hennig (2020). The comparison of

methods solutions can be based on information measures (e.g.,

entropy and mutual information), internal validity measures (e.g.,

silhouette, refer to Section 2.4.), set-matching (i.e., mapping each

cluster from the first clustering to the most similar cluster in the

second clustering and computing recall, precision or any other

measure), and pair counting [including dedicated visualization tools,

refer to Achtert et al. (2012)]. Some of these strategies are directly

implemented in the clusterbenchstats() function from the FPC R

package or in the clValid() function of the clValid R package.

However, as our goal is to propose a simple-to-use workflow,

this complexification—which would also greatly impact computing

times and memory capacities—is left to the user’s discretion.

Moreover, multiplying the algorithms and the combination of

parameters forces one to rely more heavily on a purely statistical

criterion (e.g., ASW) to select the “best” clustering of the data,

although this may not reflect the best partitioning in a clinical

sense. Indeed, ASW remains a criterion characterizing the average

separability over all the clusters, and its optimum may miss (the

set of) results that are clinically relevant and/or useful for the

desired objective.25 If the data scientist wants to compare different

25 Similarly, the user may want to compare several methods for selecting the

optimal number of clusters, including other directmethods (e.g., elbowmethod

on the total within-cluster sum of square) or methods based on statistical

testing (e.g., gap statistic).
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algorithms, we recommend instead to fully explore the results of

a well-chosen first algorithm, before challenging it with others,

in order to be less dependent on the sole selection criterion

of the ASW. This article, thus, takes the opposite view of the

auto-ML literature by first advocating a full investigation of a

parsimonious workflow made of well-chosen algorithms, rather

than directly covering a wide range of algorithmic possibilities.

On this topic, readers may be interested in recent areas of

research around meta-clustering (Caruana et al., 2006) and ensemble

clustering methods (Greene et al., 2004; Alqurashi and Wang,

2019). The first aims to produce several partitioning results so

that the user can select those that are most useful. The second is

intended to combine the clustering of several methods to propose a

consensual result.

5.1.5. Discussion on the clusters’ stability
assessment step

The bootstrapping and noise methods were chosen in the

workflow because they are both available in the same function

clusterboot() from the same package as for pamk(), and for their

complementarity as recommended by Hennig (2007). Nevertheless,

other methods may also be used as sensitivity analyses, including

those proposed in the same FPC package. Furthermore, although

this step allows for the clusters to be assessed, data scientists should

keep in mind that stability is not the only important validity

criterion—clusters obtained by very inflexible clustering methods

may be stable but also not valid, as discussed in Hennig (2008).

Finally, although several choices were made to try to manage outliers

as best as possible, such as using a K-medoid algorithm and the

Manhattan distance, the Qluster workflow does not fully address

the issues related to outliers and extreme values. One solution may

be to define threshold values to manually detect extreme values

as a pre-processing step (as in the case study in Section 4), or

to use more sophisticated statistical methods such as Yang et al.

(2021).

5.1.6. Discussion on the clusters’ interpretation
Clusters’ description is not covered in the Qluster

workflow. However, many methods exist to interpret

clusters (refer to Section 2.3). Data scientists can easily

generalize Qluster to the description of clusters by using the

functions already present in the FPC package in order not

to make the workflow too complex, such as plotcluster() and

cluster.varstats() following methodologies recommended by Hennig

(2004).

5.1.7. Discussion on the types of data that are
supported by the Qluster workflow

Although general, the Qluster workflow does not cover all types

of data and it is clear that for medical imaging data, omics data,

or data in the form of signals, dedicated approaches must be

considered. Nevertheless, most tabular data can be processed using

the Qluster workflow. In this respect, although the Qluster workflow

was specifically designed in the context of healthcare data analysis, it

can easily be applied in other fields.

5.2. Discussion and recommendation on the
practical use of the workflow

5.2.1. Use of cluster stability as a criterion to be
optimized

Cluster stability assessment could be considered as a criterion

to be optimized, by iterating on this step in order to make

this property an integral part of the clustering process itself. For

example, stability measures could be used to select the optimal

number of clusters, assuming that the clustering results are more

stable with the correct number of clusters (Fränti and Rezaei,

2020).

However, attention should be paid to the fact that the bootstrap

and noise methods are more computationally expensive than simple

methods such as deleting the variables one by one (methods

used on biological measurements and proposed in the clValid R

package). Also, it may not be obvious to optimize the clustering

on clusters’ stability if the two proposed methods do not give

similar results. For example, compared to the noise method, the

bootstrap method is more likely to produce stable results as

the size of the dataset increases in the case of PAM, and as

the percentage of sample representativeness increases in the case

of CLARA.

5.2.2. What if the results are not satisfying?
The question of the ultimate relevance of clusters is not addressed

in this workflow. It should be noted that the absence of results

may be a result in itself, as it may characterize a population that

cannot be described in terms of several homogeneous subgroups

(either because such subgroups do not exist or because the variables

used do not allow us to find them). Nevertheless, it is clear that,

as in the Data Mining process, we can consider looping back on

this workflow by changing certain parameters if the results are not

satisfactory or if an important criterion of the clustering was not

taken into account at the beginning (e.g., the maximum number of

clusters). More generally, the data scientist is encouraged to keep

in mind that the final objective of clustering is often the clinical

relevance and usefulness of the results generated. In this sense and

as mentioned in Section 5.1, it is not forbidden to relax a purely

statistical criterion, such as the ASW (whose optimummaymiss some

relevant subgroups as it is an indicator of the overall separability)

to better represent the diversity of the population studied, or to

favor the generation of hypotheses in the case where the statistical

optimum only gives broad results not enough specific for the

initial objective.

In the same vein, negative silhouette values are viewed too

pejoratively in the cluster validity analysis (interpreted as clustering

failure). In fact, negative silhouettes characterize patients who,

on average, are closer to patients from another cluster than to

patients from their own cluster. Therefore, patients with a negative

Silhouette may be informative of potential relationships between

clusters and should, therefore, be considered as potential additional

information about disease history and phenotypic complexity, such

as one cluster that is the natural evolution of another. Hence, it is

recommended that an analysis of patients with negative Silhouettes

be included in the workflow to better assess whether they are a

reflection of “bad” clustering or the key to better understanding

the disease.
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5.2.3. What if the optimum number of clusters is
the minimum of range K?

In the case where the optimal number of clusters is the minimum

of the range of K (as in our example in Section 4), we recommend (if

appropriate) that data scientists test for lower values of K to challenge

the obtained optimum. Similarly, if the optimum is obtained for K =

2, data scientists should test whether the dataset should be split into

two clusters, using the Duda–Hart test that tests the null hypothesis of

homogeneity in the whole dataset. This can be done using the same

pamk() function by setting up the minimum of K to 1, or directly

using the dudahart2() function (also in the FPC R package). In any

case, if the primary objective is to provide fine-grained knowledge of

the study population, it will still be possible to provide results with

the optimal K that was initially obtained, keeping in mind that the

levels of inter-cluster separability and intra-cluster homogeneity are

not really higher than those that would be obtained with a smaller

number of clusters.

5.2.4. Using this workflow routinely
The Qluster workflow can be easily automated for data scientists

and organizations that need a routine way to cluster clinical

data. Indeed, data scientists may create a main function for

applying this workflow, including by setting the nature of data

(categorical/continuous/mixed), the volume (normal/large), and

parameters related to each called function. It is worth mentioning,

however, that the quality of the input data and the structure of

the groups to be found are factors that may not allow the present

workflow to identify relevant results every time. In this case, the

data scientist can refer to the indications given above or, if necessary,

consider an approach more adapted to his data.

6. Conclusion

In this article, we propose Qluster, a practical workflow for data

scientists because of its genericity of application (e.g., usable on

small or big data, on continuous, categorical, or mixed variables,

and database of high-dimensionality or not) while maintaining the

simplicity of implementation and use (e.g., need for few packages

and algorithms, few parameters to tune, . . . ), and the robustness

and reliability of the methodology (e.g., evaluation of the stability

of clusters, use of proven algorithms and robust packages, and

management of noisy or multicollinear data). It, therefore, does

not rely on any innovative approach per se but rather on a careful

selection and combination of state-of-the-art clustering methods for

practical purposes and robustness.

Data clustering is a difficult task for many data scientists who

are faced with a large literature and a large number of algorithms

and implementations. We believe that Qluster can (1) improve

the quality of analyses carried out as part of such studies (refer

to Qluster’s criteria for robustness and reliability), promote and

ease clustering studies (refer to Qluster’s criteria for genericity

and simplicity of use), and increase the skills of some of the

statisticians/data scientists involved (refer to the literature review

provided and the general principles of Qluster). This workflow

can also be used by more experienced data scientists for initial

explorations of the data before designing more in-depth analyses.

Finally, this workflow can be fully operationalized, using either

scripted tools or a Data Science platform supporting the use of R

packages. As an illustrative example, we made an implementation

on the Dataiku platform of the Qluster workflow to process

a Kaggle dataset (refer to Appendix B). This implementation is

usable on the free edition and is made available on request

(email: contact@quinten-france.com).
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APPENDIX A

Description of algorithms in selected libraries on some of the criteria defining

genericity, ease of implementation and use, and robustness.

APPENDIX B

Example of an implementation of the Qluster workflow on the

Dataiku platform.

APPENDIX C

R Code to implement Benzecri correction from MCA eigenvalues.

APPENDIX D

Eigenvalues and variances explained with and without Benzecri correction.

APPENDIX E

Example of the Qluster workflow adapted for handling missing values.
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