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Purpose:Pathologic complete response (pCR) is a critical factor in determining

whether patients with rectal cancer (RC) should have surgery after neoadjuvant

chemoradiotherapy (nCRT). Currently, a pathologist’s histological analysis of

surgical specimens is necessary for a reliable assessment of pCR. Machine

learning (ML) algorithms have the potential to be a non-invasive way for

identifying appropriate candidates for non-operative therapy. However, these

ML models’ interpretability remains challenging. We propose using explainable

boosting machine (EBM) to predict the pCR of RC patients following nCRT.

Methods: A total of 296 features were extracted, including clinical parameters

(CPs), dose-volume histogram (DVH) parameters from gross tumor volume

(GTV) and organs-at-risk, and radiomics (R) and dosiomics (D) features from

GTV. R and D features were subcategorized into shape (S), first-order (L1),

second-order (L2), and higher-order (L3) local texture features. Multi-view

analysis was employed to determine the best set of input feature categories.

Boruta was used to select all-relevant features for each input dataset. ML

models were trained on 180 cases from our institution, with 37 cases

from RTOG 0822 clinical trial serving as the independent dataset for model

validation. The performance of EBM in predicting pCR on the test dataset was

evaluated using ROC AUC and compared with that of three state-of-the-art

black-box models: extreme gradient boosting (XGB), random forest (RF) and

support vector machine (SVM). The predictions of all black-box models were

interpreted using Shapley additive explanations.

Results: The best input feature categories were CP+DVH+S+R_L1+R_L2 for

all models, fromwhich Boruta-selected features enabled the EBM, XGB, RF, and

SVM models to attain the AUCs of 0.820, 0.828, 0.828, and 0.774, respectively.

Although EBM did not achieve the best performance, it provided the best
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capability for identifying critical turning points in response scores at distinct

feature values, revealing that the bladder with maximum dose >50Gy, and

the tumor with maximum2DDiameterColumn >80mm, elongation <0.55,

leastAxisLength >50mm and lower variance of CT intensities were associated

with unfavorable outcomes.

Conclusions: EBM has the potential to enhance the physician’s ability to

evaluate an ML-based prediction of pCR and has implications for selecting

patients for a “watchful waiting” strategy to RC therapy.

KEYWORDS

interpretable machine learning, radiomics, dosiomics, multi-view input data analysis,

rectal cancer, pathologic complete response, clinical image processing

Introduction

More than 40,000 patients in the United States are

diagnosed with rectal cancer (RC) annually, with 70% of them

in advanced stages. Preoperative neoadjuvant chemoradiation

therapy (nCRT) can reduce local recurrence rates and is

considered standard treatment for locally advanced rectal cancer

(LARC) with subsequent total mesorectal excision. Several

recent studies and clinical trials have demonstrated that patients

with a pathological complete response (pCR) after nCRT have

the best tumor control and survival rates and can benefit from

“watch-and-wait” approaches (Maas et al., 2010; Colorectal

Cancer: Statistics, 2012). This organ-preservation strategy can

protect patients from the morbidity, mortality, and functional

disorders caused by radical surgery (Habr-Gama et al., 2019; El

Sissy et al., 2020; Fernandez et al., 2020; São Julião et al., 2020;

Sun et al., 2020). Therefore, identifying crucial predictors of pCR

is essential for assisting clinicians in selecting the most effective

treatment for individual patients.

Radiomics (R), an emerging field of translational research,

aims to extract quantitative image features, which can be

categorized as shape, first-order, texture, and filter-based

features. A number of studies have shown that R features

can distinguish between tumor stages (Ganeshan et al., 2010;

Dong et al., 2013), are associated with cancer genetics, and

are helpful for outcome prediction (Liu et al., 2017; He et al.,

2018; Wang et al., 2019). Dosiomics (D) has been proposed as a

method to extract spatial attributes from a 3D dose distribution

in contrast to conventional point-wise dose-volume histogram

(DVH) parameters, and it can add value for a more thorough

assessment of dose toxicity (Rossi et al., 2018; Liang et al., 2019;

Lee et al., 2020).

Several recent studies have demonstrated that machine

learning (ML) models that incorporate R and D features are

highly effective in predicting radiotherapy (RT) outcomes (He

et al., 2018; Giraud et al., 2019; Chen et al., 2022). However,

these approaches frequently lack sufficient interpretability,

which limits their use in clinical decision-making. In this

study, we implemented an ML glass-box model called the

explainable boosting machine (EBM) to predict pCR and attain

interpretability while still providing optimal performance. The

EBM, which is a tree-based, cyclic gradient boosting generalized

additive model designed to provide both intelligibility and high

accuracy, has been used to find significant and unexpected

impacts in healthcare data (Lou et al., 2013; Caruana et al., 2015;

Lundberg and Lee, 2017).

Due to the high dimension of R and D features, the

over-fitting problem may arise with a relatively small training

dataset, which may have an impact on both the feature selection

procedure and the prediction performance. To date, most R

studies have used a single-view concatenated input, which just

aggregates all available features, and thus have typically shown

limited or suboptimal model performance (Lao et al., 2017;

Wang et al., 2019). Recently, Lee et al. showed that the use of

a multi-view R and D analysis strategy can significantly improve

the performance of predicting acute-phase weight loss in lung

cancer patients undergoing radiotherapy (Lee et al., 2020). In

this strategy, R and D features are subcategorized into shape (S),

first-order (L1), second-order (L2), and higher-order (L3) local

texture features. Multi-view input feature sets are constructed

using all possible subcategory combinations. We postulate that

the multi-view R and D analytics can help us find the optimal

set of features for predicting radiotherapy outcomes in RC

while improving the predictability and interpretability of an

ML model.

In this study, we evaluated the performance of the EBM

model in predicting pCR of patients with LARC treated with

nCRT in comparison to several state-of-the-art black-box ML

models based on multi-view input data analysis with clinical

parameters (CPs), DVH parameters, R and D features. In

addition to the interpretation performed using the EBM model,

the outputs of all the black-box ML models were interpreted

using Shapley additive explanation (SHAP) values, allowing for

comparison of the interpretation of the various ML models.
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Materials and methods

Dataset

This study utilized two independent datasets and was

approved by the institutional review board (No. 831721)

at the University of Pennsylvania. Patients diagnosed with

RC and who received preoperative chemoradiation therapy

at the University of Pennsylvania between 2008 and 2016

were included as a training cohort. An independent testing

cohort included patients with LARC who were registered

in a multi-institutional clinical trial, RTOG 0822 (a phase

II evaluation of preoperative chemoradiotherapy utilizing

intensity-modulated radiation therapy in combination with

capecitabine and oxaliplatin for patients with LARC). Patients

enrolled in the RTOG 0822 were treated between 2008 and

2009 and followed up until 2015. We enrolled a total of

180 patients from our institution and 37 patients from the

RTOG 0822 clinical trial. Patients in both cohorts received

nCRT followed by surgical resection. The patient’s pCR status

was confirmed by histopathologic analysis of the surgical

specimens obtained. Patients whose information was missed

were excluded. The DICOM files of eligible patients were

collected and uploaded to MIM (MIM Software Inc., Cleveland,

OH, USA) for initial review. These DICOM files included pre-

treatment CT images, radiotherapy plan, RT structure, and RT

dose. Gross tumor volume (GTV) was manually delineated,

and experienced radiologists evaluated its appropriateness and

corrected it if necessary.

Pathologic complete response

To determine the patient’s pCR status, we evaluated the

pathologist-reported tumor stage based on specimens obtained

during the surgery, i.e., the total mesorectal excision. The

pCR was defined as complete tumor regression with no viable

cancer cells in both primary tumors and regional lymph nodes

found upon histologic examination of the surgical specimen by

a pathologist.

Dose-volume histogram (DVH)
parameters

The RTOG 0822 protocol compliance criteria imposed a

total of 14 dose constraint points on four structures: D98%[Gy],

D10%[Gy], D5%[Gy], and Dmax[Gy] for the planning target

volume (PTV); D180cc[Gy], D100cc[Gy], D65cc[Gy], and

Dmax[Gy] for the small bowel; D40%[Gy], D25%[Gy], and

Dmax[Gy] for the femoral heads, and D40%[Gy], D15%[Gy],

and Dmax[Gy] for the bladder. To avoid inconsistencies in

the target definition, GTV was used instead of PTV for some

patients treated with procedures and prescription doses other

than the RTOG 0822 criteria. In addition to the dose-volume

points for organs-at-risk (OARs) required by the RTOG 0822

protocol, we added extra points ranging from D5%[Gy] to

D95%[Gy], in 5% steps to the GTV, femoral heads, and bladder,

and from D10cc[Gy] to D180cc[Gy], in 10cc steps for the

small bowel. The DVH metrics were obtained from the DVH

reviewer via the MIM for each patient, and a MATLAB-based

dose/volume point statistics (DPS) tool was used to extract the

DVH parameters at the designated dose-volume points (Gong

et al., 2016).

Radiomics (R) and dosiomics (D) features

To investigate the spatial distribution of gray values in an

image, R and D features on CT images and a 3D dose map

were extracted from the GTV, respectively. A total of 107 R

features from the pre-treatment CT images and 93 D features

from the 3D dose map were extracted using an open-source

Python library called Pyradiomics (ver. 3.0) (van Griethuysen

et al., 2017). The extracted R and D features were summarized

in Supplementary Table 1. The air bubble in GTV was removed

from the original CT images for computing R and D features

by excluding CT values below −200. The 3D dose map was

produced by resampling dose grids with b-spline interpolation

to have the same spatial resolution as its corresponding CT

images. The R and D features included 3D shape (14 features for

R only), first-order statistics (18 features), and texture features

computed from gray level co-occurrence matrix (GLCM, 24

features), gray level dependence matrix (GLDM, 14 features),

gray level run lengthmatrix (GLRLM, 16 features), gray level size

zone matrix (GLSZM, 16 features), and neighboring gray tone

difference matrix (NGTDM, 5 features). Only original images

without any filtering were used to extract both R and D features

for the sake of intuitive model interpretation. These R and D

features were extracted from the region of the images enclosed

by a 3D bounding box that was cropped around the GTV with

voxel padding (10 voxels). Bin widths were set to 25 HU and 25

cGy for the discretization of R and D features, respectively.

Multi-view input feature sets

The R and D texture features were classified into three

categories: L1 (first-order statistics), L2 (second-order local

texture statistics: GLCM andGLDM), and L3 (higher-order local

texture statistics: GLRLM, GLSZM, and NGTDM), depending

on the number of pixels defining the local feature. The L1

statistics describe the properties of individual pixel values,

whereas the L2 and L3 statistics estimate the properties of two

or more-pixel values co-occurring at particular locations. Multi-

view input feature sets were constructed concatenating all CPs
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and DVH parameters with each of all possible combinations of

the R andD subcategories (n= 64).We defined one of themulti-

view input feature sets as the single-view input that concatenated

all the features, i.e., CP+DVH+Rall+Dall, where Rall and

Dall denote S+R_L1+R_L2+R_L3 and D_L1+D_L2+D_L3,

respectively. For the sake of simplicity in the multi-view input

data analysis, 3D shape features from the S category weremerged

with the L1 category of R features rather than being used as a

separate feature category.

Feature selection

For each training set of multi-view and single-view input

features, Boruta algorithm was used to remove any redundant

features and screen for highly associated features with patient

outcomes. The Boruta functions as a wrapper algorithm for the

random forest (RF). This algorithm generates shuffled copies

(shadow features) of all input features before training the RF

classifier with the extended dataset. The Z-score of each feature

in the extended dataset is then calculated. The Z-score measures

the number of standard deviations a data point is from the

population mean. During each iteration, features with a higher

Z-score than their shadow features are marked as essential;

otherwise, they are removed from the features. The iteration

ends when all input features are confirmed and rejected, or

when the user preset runs are reached. The Boruta algorithm

was implemented using Python package Boruta (ver. 0.3) (Kursa

and Rudnicki, 2010) with a maximum iteration of 1,000 and a

significance level of p < 0.05.

Classifiers

Features selected by the Boruta were used to train

classification models for pCR prediction. Four classifiers were

used in this study, including the EBM and three black-box ML

algorithms: extreme gradient boosting (XGB), RF, and support

vector machine (SVM) with a radial basis function kernel.

The EBM is a glass-box model with direct interpretability and

high prediction performance comparable to state-of-the-art ML

methods. In this study, the EBMmodels were constructed using

Python package interpret (ver. 0.2.6), developed by Microsoft

(Nori et al., 2019). The XGB is a widely employed and very

effectiveMLmethod that belongs to boosting ensemble learning,

which provides a parallel tree boosting and is highly efficient,

flexible, and portable. Python package xgboost (ver. 1.5.2) was

used to build our XGB models (Chen and Guestrin, 2016). The

RF is a decision tree that extends the bagging and ensemble

learning method. The RF algorithm generates many decision

trees with each of them using bagging and feature randomness.

The RF is simple to use and provides a higher level of prediction

accuracy in many tasks. The RF models were built based on

RandomForestClassifier (Breiman, 2001) from Python package

sklearn (ver. 0.24.2). The SVM is a supervised ML algorithm

that aims to find a hyperplane with the optimal boundary to

separate different categories of samples. Support vector machine

provides good generalization ability and is commonly applied

in solving small-sample, non-linear, and high-dimensional space

recognition. To build the SVM models, we used the support

vector classification module (Suykens and Vandewalle, 1999)

from the Python library sklearn (ver. 0.24.2).

Performance evaluation

Before training the models, the training data were

standardized to have zero mean and unit variance and the

test data were scaled with these statistics of the training data.

In addition, the synthetic minority oversampling technique

(SMOTE) was used to address a problem introduced by class

imbalance. The SMOTE is an oversampling technique where

the synthetic samples are generated for the minority class

(Chawla et al., 2002). This approach uses interpolation between

the positive instances that are close to one another to create

new instances, hence addressing the overfitting issue caused by

random oversampling. Hyperparameters were optimized using

five-fold cross-validation (CV) in grid search for all of the ML

models investigated. The five-fold CV is performed with four

folds for training and the remaining fold for validation, which is

repeated until every fold is used for validation. The final step in

training is to average all CV performances in order to represent

the performance for each possible combination of candidate

hyperparameters as discrete grid points and choose the optimal

set of hyperparameters that can yield the best performance.

The performance of all ML models trained for predicting pCR

was evaluated in the external test dataset using the area under

the receiver operating characteristic curve (ROC AUC) and the

harmonic mean of precision and recall (F1 score). The DeLong

test was used to compare the ROC curves for each model

generated from its optimized multi-view input feature set with

that generated from the single-view input feature set (DeLong

et al., 1988).

Model interpretation

Shapley additive explanations, a game theoretic approach,

were used to interpret the output of the black-box ML models

(Lundberg and Lee, 2017). Overall feature importance was

calculated in the training dataset using the mean absolute values

of the EBM scores and the mean absolute SHAP values for

the black-box ML models. To visualize how each ML model

uses a specific feature in the classification task, EBM shape

and SHAP-based partial dependence functions were plotted for

each feature. The EBM shape function is the gradient-boosted
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FIGURE 1

Interpretable ML pipeline for pCR prediction. The entire procedure consists of eight distinct phases: data collection and cleaning, feature

extraction, multi-view input feature categorization, feature selection, data resampling, model building, performance evaluation, and model

interpretation. In the data cleaning session, cases with missing data and incomplete treatment (treatment interruptions) are removed from the

cohort.

ensembles of trees where each tree deals with a single feature,

while the SHAP-based partial dependence function represents

the marginal effect of a single feature on the outcomes predicted

by a black-boxMLmodel. In this study, SHAP was implemented

in the Python package shap (ver. 0.39.0). Figure 1 displays our

interpretable ML pipeline, which includes the above-mentioned

multi-view input, feature selection, model building, and model

interpretation phases.

Results

Patient characteristics

Table 1 lists the clinical data and patient demographics for

each cohort. Following pre-screening, we included 180 patients

in our training cohort, of whom 42 (23.3%) achieved pCR, and

37 patients in the test cohort, of whom 6 (16.2%) obtained

pCR. Each patient had 11 CPs collected: gender, race, ethnicity,

age, clinical stage (AJCC 7th edition), treatment modality, RT

prescription dose, surgical procedure, time from preoperative

therapy to surgery, adjuvant chemotherapy, and pCR. There

was no statistical difference in gender, race, prescription dose,

surgery procedure, and pCR status between the two cohorts.

Except for pCR, all CPs were used to train the classifiers.

Model performance

The performance of the top 10 multi-view and single-

view inputs for the EBM, XGB, RF, and SVM classifiers

is detailed in Supplementary Tables 2–5, respectively. Table 2

summarizes the performance of only the best multi-view and

single-view inputs for the EBM, RF, SVM, and XGB classifiers

in pCR prediction, the RF classifier yielded the highest testing

performance [Matthews correlation coefficient= 0.403, F1 score

= 0.5, accuracy = 0.838, and AUC = 0.828 (95% CI 0.694–

0.941)] and was closely followed by the EBM classifier [Matthews

correlation coefficient = 0.356, F1 score = 0.471, accuracy =

0.757, and AUC = 0.820 (95% CI 0.680–0.929)]. The XGB

classifier showed the lowest Matthews correlation coefficient of

0.303 and F1 score of 0.429, and the SVM classifier provided

the lowest test accuracy of 0.676 and AUC of 0.774 (95%

CI 0.621–0.906) in comparison to other models. The training

performances of all models were comparable between the single-

view and optimized multi-view input feature sets, while the
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TABLE 1 Clinical and demographic characteristics of enrolled patients.

Cohort Training Testing p-Value

Number of patients 180 37

Clinical diagnosis

Gender 0.62

Male 110 (61.1%) 21 (56.8%)

Female 70 (38.9%) 16 (43.2%)

Race

White 141 (78.3%) 34 (91.9%) 0.11

Black 25 (13.9%) 3 (8.1%)

Other 14 (7.8%) 0 (0%141)

Age <0.0001

Mean± SD 62.7± 11.8 53.8± 10.2

Ethnic <0.01

Hispanic or Latino 4 (2.2%) 4 (10.8%)

Not Hispanic or Latino 175 (97.2%) 31 (83.8%)

Unknown 1 (0.6%) 2 (5.4%)

Clinical T stage 0.03

I 0 (0%) 0 (0%)

II 26 (14.4%) 0 (0%)

III 140 (77.8%) 32 (86.5%)

IV 14 (7.8%) 5 (13.5)

Clinical N stage 0.11

0 50 (27.8%) 16 (43.2%)

I 115 (63.9%) 16 (43.2%)

II 14 (7.8%) 5 (13.5%)

III 1 (0.5%) 0 (0%)

Clinical M stage 0.13

0 166 (92.2%) 37 (100.0%)

I 14 (7.8%) 0 (0%)

Treatment

Prescription dose 0.37

Standard (50.4Gy) 150 (83.3%) 33 (89.2%)

Non-standard 30 (16.7%) 4 (10.8%)

Treatment modality <0.01

Photon 144 (80%) 37 (100.0%)

Proton 36 (20%) 0 (0%)

Surgery procedure 0.11

LAR 117 (65%) 16 (43.2%)

APR 57 (31.7%) 9 (24.3%)

Other 6 (3.3%) 12 (32.4%)

Neoadjuvant chemotherapy <0.0001

5FU 84 (46.7%) 0 (0%)

Capecitabine 61 (33.9%) 0 (0%)

5-FU and oxaliplatin 31 (17.2%) 0 (0%)

Capecitabine and Oxaliplatin 4 (2.2%) 37 (100.0%)

Interval from preoperative therapy to surgery (Days) <0.0001

Mean± SD 62.7± 11.8 53.8± 10.2

pCR 0.34

Yes 42 (23.3%) 6 (16.2%)

No 138 (76.7%) 31 (83.8%)

The Student’s t-test was used to compare the continuous variables between the training and testing cohorts, whereas the Chi-square test or Fisher exact test was implemented for categorical

variables. LAR, low anterior resection; APR, abdominal perineal resection.
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TABLE 2 Comparison of performances in pCR prediction for four di�erent models built with features selected from Boruta using the best

multi-view input (CP+DVH+S+R_L1+R_L2), and the single-view input concatenated with full features (CP+DVH+Rall+Dall).

Input feature set Model Dataset Sensitivity Specificity Matthews F1 score Accuracy AUC 95% (CI)

Best Multi-view EBM Training 0.841 0.667 0.515 0.773 0.754 0.762 (0.760, 0.764)

Testing 0.667 0.774 0.356 0.471 0.757 0.820 (0.680, 0.929)

RF Training 1 0.993 0.993 0.996 0.996 0.821 (0.820, 0.823)

Testing 0.5 0.903 0.403 0.5 0.838 0.828* (0.694, 0.941)

SVM Training 0.913 0.645 0.579 0.805 0.779 0.725 (0.707, 0.742)

Testing 0.833 0.645 0.356 0.455 0.676 0.774* (0.621, 0.906)

XGB Training 0.986 0.935 0.921 0.961 0.96 0.820 (0.819, 0.821)

Testing 0.5 0.839 0.303 0.429 0.784 0.828* (0.694, 0.941)

Single-view EBM Training 0.877 0.754 0.635 0.826 0.815 0.772 (0.770, 0.774)

Testing 0.333 0.774 0.092 0.267 0.703 0.624 (0.401, 0.817)

RF Training 1 1 1 1 1 0.858 (0.856, 0.861)

Testing 0 0.903 −0.131 N/A 0.757 0.575 (0.381, 0.758)

SVM Training 0.957 0.775 0.744 0.877 0.866 0.795 (0.776, 0.813)

Testing 0.5 0.774 0.228 0.375 0.73 0.522 (0.274, 0.788)

XGB Training 1 1 1 1 1 0.814 (0.810, 0.819)

Testing 0 0.839 −0.174 N/A 0.703 0.484 (0.305, 0.657)

The sensitivity, specificity, Matthews correlation coefficient, F1 score, accuracy, and AUC values for both training and testing are reported. The DeLong test are employed for comparing

the testing AUCs for each model between the best multi-view input and the single-view input. The asterisks (*) indicate a statistically significant difference in testing AUC between the best

multi-view input and the single-view input.

testing performance was significantly higher when using the

optimized multi-view input feature set.

Selected features

Boruta selected five features from the optimized

multi-view input feature set (CP+DVH+S+R_L1+R_L2):

GTV_elongation (the square root of the ratio between

the two largest principal components, where 1 indicates a

circular tumor and 0 indicates a maximally elongated tumor),

GTV_maximum2DDiameterColumn (the largest pairwise

Euclidean distance between tumor surface mesh vertices

in the row-slice plane), GTV_R_variance (the mean of the

squared distances of each intensity value from the mean value,

where a larger value is associated with higher heterogeneity of

the tumor), bladder_Dmax (the maximum dose received by

bladder), and GTV_leastAxisLength (the smallest axis length on

the ROI-enclosed ellipsoid).

For single-view input, Boruta returned nine features

including GTV_elongation,

GTV_maximum2DDiameterColumn, GTV_R_variance,

GTV_leastAxisLength,

GTV_R_gldm_SmallDependenceLowGrayLevelEmphasis,

GTV_R_glszm_GrayLevelNonUniformity,

GTV_D_glrlm_LongRunEmphasis,

GTV_D_glszm_SizeZoneNonUniformity,

and GTV_D_ngtdm_Complexity.

Feature importance

Figures 2A–D show the overall importance of the

five selected features used to build the EBM, XGB, RF,

and SVM models, respectively. GTV_elongation was

generally found to be the most important feature along

with GTV_maximum2DDiameterColumn, followed by

bladder_Dmax and GTV_leastAxisLength. The EBM and RF

models ranked GTV_R_variance as the third most important

feature, whilst the XGB and SVM models ranked it as the most

and least important feature, respectively.

Model interpretation

Figures 3–7 illustrate the contributions of five selected

features to the predictions made by each model, respectively.

The horizontal axis represents the actual value of the features,

while the vertical axis represents the response score. A higher

response score indicates a greater contribution to the positive

class (pCR), whereas a lower response score indicates a lower

likelihood of achieving the pCR. The shadow bar chart is the

histogram of the features, which shows the distribution of

feature values.

GTV_elongation (Figure 3): When the value of elongation

reached between 0.4 and 0.6, the response scores of all models

showed a significant increase, indicating that patients with

tumors presenting regular circles are more likely to achieve
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FIGURE 2

Overall importance of five features selected using Boruta from the best multi-view input. (A) EBM, (B) XGB, (C) RF, and (D) SVM.

FIGURE 3

Response score plots for GTV_elongation. (A) EBM shape function and SHAP partial dependence functions for the (B) XGB, (C) RF, and (D) SVM

models.
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FIGURE 4

Response score plot for GTV_maximum2DDiameterColumn. (A) EBM shape function and SHAP partial dependence functions for the (B) XGB,

(C) RF, and (D) SVM models.

pCR. Only the SVM model showed that increased elongation

(>0.8) led to a decrease in the probability that tumors would be

eradicated by nCRT.

GTV_maximum2DDiameterColumn (Figure 4): The

probability of achieving pCR decreased sharply in the EBM,

RF, and XGB models if the tumor’s maximal diameter

on a longitudinal section was higher than 80mm, but

it did so when tumors were smaller in the SVM model

as well.

GTV_R_variance (Figure 5): The EBM, XGB, and RF

models suggested that tumors with smaller variance in CT

intensities weremore resistant to nCRT, whereas the SVMmodel

showed the opposite trend.

Bladder_Dmax (Figure 6): The trend on Bladder

Dmax was generally consistent across all models, with

patients having a lower chance of achieving pCR when the

maximum dose received by the bladder was higher than

50 Gy.

GTV_leastAxisLength (Figure 7): In the EBM, RF, and

SVM models, tumors with longer leastAxisLength values

showed higher resistance to nCRT. The XGB and RF models

exhibited divergent trends, indicating that there is still a

risk when the leastAxisLength of GTV is short. The overall

trend of response scores in the EBM shape and SHAP-based

partial dependence functions for each feature was roughly

consistent across different models, indicating that patients with

larger tumor sizes, more elongated tumor shapes, and lower

variance of CT intensities were less likely to achieve pCR

after nCRT.

The results of a case study can be found in the

Supplementary material. Supplementary Figure 1 shows a radar

chart that compares the values of five selected features between

a pCR patient and a non-pCR patient from the testing cohort.

Supplementary Figures 2, 3 illustrate the local explanation plots

of the EBM and RF models for these patients, which both

demonstrate reasonable prediction outcomes.
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FIGURE 5

Response score plots for GTV_R_variance. (A) EBM shape function and SHAP partial dependence functions for the (B) XGB, (C) RF, and (D) SVM

models.

Discussion

A large number of studies and clinical trials have shown that

pCR is significantly related to local control, distant metastasis,

and disease-free survival. This has also promoted the organ

preservation program as a very attractive alternative. Therefore,

predicting the risk of an individual in advance using non-

invasive methods is essential for clinicians to prescribe a

personalized treatment plan. Although some recent radiomics

research has reported relatively satisfactory model performance

in pCR prediction, the use of radiomics-based ML models

in clinical settings is still questionable due to their limited

interpretability (Nie et al., 2016; Cui et al., 2019; Li et al., 2019).

In our study, we carefully constructed our feature selection

pipeline to eliminate feature redundancy, and an independent

multi-institutional test dataset was used to demonstrate

generalizability in the model’s performance. Furthermore, this

study demonstrated that EBM generates an accurate and reliable

model for pCR prediction and interpretation.

The EBM model itself provided transparency regarding

predictions, and the EBM shape function informed the response

score for each feature. In particular, detecting significant turning

points in the response score for each feature was made easier

by the monotonicity of the EBM shape function. By contrast,

the black-box models (XGB, RF, and SVM) could not be

fully transparent by the post-hoc explanations using SHAP,

because uncertainty existed around how much the local linear

approximation of the black-box model (extrapolated on a global

scale using SHAP) actually revealed about the original model.

This lack of knowledge turned SHAP into a black box with

similar complexity as the black box model, when SHAP tried to

approximate the behavior of the black-box model by extracting

relationships between the feature values and the predictions.

In this study, we demonstrated the value of R and D features

in predicting pCR in patients with RC treated with nCRT. In

particular, selected R features showed a trend of relatively high

feature importance, and the response score function also clearly

reflected their strong association with the outcome. Our findings
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FIGURE 6

Response score plots for bladder_Dmax. (A) EBM shape function and SHAP partial dependence functions for the (B) XGB, (C) RF, and (D) SVM

models.

indicated that patients with less elongation in tumor shape,

smaller tumors in longitudinal dimension, higher variance in

intratumoral CT intensity values, and lower maximum dose to

the bladder were at lower risk and could benefit from the watch-

and-wait strategy for improved quality of life (Diaz et al., 2012;

Jamal-Hanjani et al., 2015; Frame et al., 2017; Dagogo-Jack and

Shaw, 2018). The EBM provided a reliable interpretation of the

clinical importance of such features.

We also looked into EBM models with multi-view feature

inputs. Hundreds of features from the medical image and dose

map can be included in R and D features as needed, which

could result in a larger number of features being used than the

number of patients included in the study and may cause the

overfitting issue. Our results demonstrated that the multi-view

input data analysis improves feature selection outcomes and

performance when compared to single-view concatenated input;

however, more research is needed to determine whether our

findings consistently will work with alternative feature selection

strategies while optimizing the multi-view input data (Kursa and

Rudnicki, 2010; De Jay et al., 2013).

Despite the encouraging results, several limitations to

this study should also be noted. First, our sample size was

relatively small in both training and test cohorts. This made

feature selection challenging, and thus we reduced the Z-score

threshold for shadow features in Boruta. Second, there were

insufficient positive cases with considerable class imbalance

in the independent multicenter test dataset, which hindered

the model’s prediction performance. Third, in comparison to

other models, the SVM model showed an inconsistent trend

for R features. The SVM may incorrectly classify the data when

constructing the decision boundary due to a lack of adequate

positive data, which would lower the model’s accuracy. Fourth,

although we attempted to optimize the input feature set using

multi-view data analysis, we did not take into account the

relationships between the various feature categories. A further

adjustment of the degree of association between different feature
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FIGURE 7

Response score plots for GTV_leastAxisLength. (A) EBM shape function and SHAP partial dependence functions for the (B) XGB, (C) RF, and (D)

SVM models.

categories using a data integration technique may allow for the

finding of a more optimal input feature set (Lee et al., 2021).

Finally, some recent studies have proved the benefits of MRI

scans for collecting advanced textural characteristics and for

outcome prediction (Aker et al., 2019; Crimì et al., 2020; Chen

et al., 2021). We utilized only pre-treatment CT images due to

the limitations of the dataset. We intend to add other image

modalities to our data in the future to enhance the performance

of the model.

Conclusion

Tumor shape, size, and heterogeneity, as well as radiation

dose to the bladder, may be crucial determinants of pCR. The

EBM has the potential to enhance both pCR prediction and

model interpretability, which can aid in RT decision-making.

Our findings have implications for selecting patients for a

“watchful waiting” approach in LARC management.
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