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Despite large investment cancer continues to be a major source of mortality

and morbidity throughout the world. Traditional methods of detection and

diagnosis such as biopsy and imaging, tend to be expensive and have risks

of complications. As data becomes more abundant and machine learning

continues advancing, it is natural to ask how they can help solve some of

these problems. In this paper we show that using a person’s personal health

data it is possible to predict their risk for a wide variety of cancers. We dub this

process a “statistical biopsy.” Specifically, we train two neural networks, one

predicting risk for 16 di�erent cancer types in females and the other predicting

risk for 15 di�erent cancer types in males. The networks were trained as binary

classifiers identifying individuals that were diagnosed with the di�erent cancer

types within 5 years of joining the PLOC trial. However, rather than use the

binary output of the classifiers we show that the continuous output can instead

be used as a cancer risk allowing a holistic look at an individual’s cancer

risks. We tested our multi-cancer model on the UK Biobank dataset showing

that for most cancers the predictions generalized well and that looking at

multiple cancer risks at once frompersonal health data is a possibility. While the

statistical biopsy will not be able to replace traditional biopsies for diagnosing

cancers, we hope there can be a shift of paradigm in how statistical models

are used in cancer detection moving to something more powerful and more

personalized than general population screening guidelines.

KEYWORDS

cancer screening, machine learning and AI, neural network, biopsy, data mining,

cancer detection, individualized medicine

Introduction

Cancer is a global public health burden with an estimated 21.7 million new cases

and 13 million cancer deaths annually by 2030 (Ferlay et al., 2019). Despite a huge

amount of money and resources spent on cancer screening, diagnosis, and treatment,

it is estimated that 609,360 people in the United States will die from cancer in 2022
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alone (Siegel et al., 2022). One important factor contributing

to the high mortality is the lack of an efficient tool for cancer

screening, missing the most effective window of opportunity

for detecting cancers at their earliest stages. Another factor is

the lack of individualized risk management for tailored cancer

prevention. Hence, it is critical to develop safe and cost-effective

approaches for cancer screening prior to disease onset with high

sensitivity, specificity, and accessibility.

Tissue biopsy has long been used to diagnose cancer

and often considered the gold standard, but it is limited

by constraints on sampling frequency and incomplete

representation of the organ being biopsied (Bravo et al.,

2001). In addition, the surgical procedure is invasive, time-

intensive, and costly with pain and risk of complications. Liquid

biopsy offers a non-invasive alternative to cancer screening,

but detection and analysis of circulating tumor DNA in a

body fluid specimen present a considerable challenge (Alix-

Panabières and Pantel, 2013; Crowley et al., 2013). Another

challenge for liquid biopsy is how to identify the tumor site

in the body, even after an individual has tested positive (Su,

2019).

Numerous schemas have been developed to improve

clinical decision-making in cancer screening, detection, and

prevention (Kramer, 2004; Holle, 2017).1−3 While cancer

screening usually involves a procedure or body fluid test to

detect cancer at an early stage, cancer prevention aims to

reduce cancer risk and mortality by avoiding carcinogens,

modifying lifestyles, and using chemoprevention (Kramer, 2004;

Holle, 2017). As of now, routine cancer screening is only

recommended for breast, cervical, colorectal, lung, and prostate

cancers (see Footnotes 1–3). Cancer prevention strategies are

only available for breast cancer, colorectal cancer, human

papillomavirus-related cancers (anal, cervical, penile, vaginal,

and vulvar cancers), ovarian cancer, and prostate cancer, as

recommended by the American Cancer Society (ACS), National

Comprehensive Cancer Network (NCCN), and US. Preventive

Services Task Force (USPSTF) (see Footnotes 1–3). While the

benefits of those schemas may include reduced cancer incidence

and cancer mortality, their common limitations include the

requirement of clinical testing, suboptimal positive/negative

predictive values, frequent involvement of invasive procedures,

and over diagnosis and overtreatment (Kramer, 2004; Holle,

2017). Ideally, it would be in the best interest of people to

1 American Cancer Society Prevention and Early Detection Guidelines.

https://www.cancer.org/health-care-professionals/american-cancer-

society-prevention-early-detection-guidelines.html.

2 National Comprehensive Cancer Network Guidelines. https://www.

nccn.org/professionals/physician_gls/default.aspx.

3 United States Preventive Services Task Force Published

Recommendations. https://www.uspreventiveservicestaskforce.org/

BrowseRec/Index.

improve estimates of cancer risk prior to any clinical testing

so that the cost and potential harms associated with invasive

procedures would be limited (Cruz and Wishart, 2006; Ayer

et al., 2010; Kourou et al., 2014; Boursi et al., 2017; Rajkomar

et al., 2019).

Recently, we have demonstrated that deep neural networks,

trained and validated with the National Health Interview

Survey (NHIS) and/or the Prostate, Lung, Colorectal, and

Ovarian (PLCO) Cancer Screening Trial datasets, can be used

to predict and stratify cancer risks with high discriminatory

power based solely on personal health data (Hart et al., 2018,

2019, 2020; Roffman et al., 2018a,b; Muhammad et al., 2019;

Nartowt et al., 2019a,b; Stark et al., 2019). Compared to the

clinician’s judgment, the strong performance of our models

presents a novel opportunity to perform a “statistical biopsy”

on individuals prior to disease onset (Hart et al., 2020). As

shown in Figure 1, statistical biopsy mines personal health

data from individuals for early cancer detection, analogous

to tissue biopsy evaluating cells from a tissue specimen

and liquid biopsy evaluating circulating tumor DNA from a

fluid sample. What is different is that statistical biopsy seeks

to decipher the invisible correlations and inter-connectivity

between multiple medical conditions and health parameters

via sophisticated statistical modeling. With statistical biopsy,

it is possible to generate a holistic analysis of an individual’s

risk for a variety of cancers simultaneously. Furthermore, if

integrated into a modern electronic medical record (EMR)

system, it offers a cost-effective and safe approach to cancer

screening in real time, informing preventive interventions and

screening decisions.

In order to personalize early cancer detection and

prevention, an accurate risk assessment of a variety of

cancers for each individual is needed. Hence, we begin the

development of a novel cancer risk profiler based on deep

learning of personal health data for better risk stratification

and more precise screening. We hypothesize that the trove

of personal health data, including clinical and demographic

data, family history, socio-behavioral, dietary and lifestyle

data, can be used to train and validate a deep learning model

capable of screening cancer prior to disease onset, with high

sensitivity and specificity and with minimal toxicity and

maximal accessibility.

Materials and methods

Data sets

In this work we use two large medical datasets, one for

training a neural network to predict the appearance of cancer

within 5 years and the other for testing the neural network.

The first is the Prostate, Lung, Colorectal, and Ovarian (PLCO)

trial (Tammemagi et al., 2011) which is used for training. The
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testing set came from the UK Biobank database (UK Biobank,

2022).

PLCO was a randomized controlled trial investigating the

effectiveness of screening methods for prostate, lung, colorectal,

and ovarian cancers. PLCO enrolled 154,897 participants 55–

75 years of age between November 1993 and July 2001 in

the United States. Participants were followed for 13 years,

until they developed cancer, or passed away. We removed

those that did not complete the baseline health survey leaving

149,623 participants. PLCO recorded the appearance of 13

general cancers (biliary, bladder, colorectal, glioma, head and

neck, hematopoietic, liver, lung, melanoma, pancreas, renal,

thyroid, and upper GI cancers), 3 female specific cancers

(breast, endometrial, and ovarian), and 2 male specific cancers

(male breast and prostate). In addition to these cancers,

we use 116 general features, 20 female specific features,

and 12 male specific features. We split the data into a

set for females to predict 16 cancer types and set for

males to predict 15 cancer types. See Table 1 for a list of

features and their statistics and Table 2 for the number of

cancer cases.

UK Biobank is a large-scale biomedical database

trying to accelerate medical and public health research

by gathering and maintaining a staggering amount of

information. They enrolled half a million participants from

2006 to 2010. Many types of follow-up and additions are

frequently made. Everything from repeating the baseline

health evaluation to imaging and sequencing. Information

is pulled from death and cancer registries and hospital

admissions and primary care data. From this data base we have

229,263 male participants and 273,375 female participants.

The UK Biobank data is more detailed than the PLCO

data, so we map it onto the PLCO features we used in

training.

For both datasets we normalized all the inputs, situating

them within the range 0–1. Categorical inputs were handled

using one-hot encoding. For the cancer diagnoses we considered

diagnoses <5 years after baseline evaluation to be positive and

FIGURE 1

Tissue biopsy, liquid biopsy, and statistical biopsy (A) tissue biopsy is used to characterize tissues and diagnose cancer by evaluating the cells

from a tissue specimen. However, it is an invasive, time intensive, and costly procedure, which inflicts pain and risk on patients. (B) Liquid biopsy

has been recently developed to evaluate circulating tumor DNA from a body fluid sample to screen for cancer. It o�ers a noninvasive alternative

to cancer screening, but detection and analysis of circulating tumor DNA in a body fluid specimen remains a challenging task for medical

researchers and practitioners. (C) Statistical biopsy is a new approach proposed by our group that mines personal health data for early cancer

detection with sophisticated statistical modeling. The basic idea is that a trove of personal health data can be used to train and validate deep

learning models to generate a holistic profile of one’s risks for a variety of cancers simultaneously prior to disease onset. Panel (A) adapted from

the PreOp website (https://preop.com/wp-content/uploads/2021/08/333_surgery.jpg).
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TABLE 1 Feature distributions and missingness.

Feature Female Male

Train Test Train Test

Binary % Yes (% missing) % Yes (% missing)

Ever had arthritis 45.82 (0.00) 2.62 (0.00) 29.97 (0.67) 3.80 (0.00)

Ever had chronic bronchitis 5.94 (0.00) 1.10 (76.49) 3.64 (0.68) 1.17 (75.35)

Ever had colon co-morbidity 1.70 (0.00) 1.32 (0.00) 1.17 (1.02) 1.14 (0.00)

Ever had diabetes 6.42 (0.00) 1.03 (0.59) 9.07 (0.63) 3.83 (0.43)

Ever had diverticulitis or diverticulosis 8.32 (0.00) 7.51 (0.00) 5.38 (0.78) 7.01 (0.00)

Ever had emphysema 2.05 (0.00) 0.40 (76.49) 3.05 (0.65) 0.22 (75.35)

Ever had gall bladder stones or inflammation 15.90 (0.00) 2.94 (0.00) 6.99 (0.73) 5.54 (0.00)

Ever had coronary heart disease or a heart attack 4.84 (0.00) 11.62 (0.00) 13.46 (0.64) 4.10 (0.00)

Ever had high blood pressure 33.97 (0.00) 26.16 (0.00) 34.38 (0.59) 19.39 (0.00)

Ever had liver co-morbidity 3.37 (0.00) 0.65 (0.00) 4.09 (0.77) 0.37 (0.00)

Ever had osteoporosis 9.64 (0.00) 0.62 (0.00) 0.82 (0.75) 1.93 (0.00)

Ever had colorectal polyps 5.54 (0.00) 6.08 (0.00) 8.12 (0.75) 4.04 (0.00)

Ever had a stroke 2.14 (0.00) 0.72 (0.00) 2.75 (0.63) 0.37 (0.00)

Ever smoked regularly 44.34 (0.00) 65.30 (0.58) 63.52 (0.03) 55.20 (0.52)

Current smoker 9.71 (0.00) 12.56 (0.60) 11.71 (0.03) 8.96 (0.53)

Family history of biliary cancer 0.34 (0.00) – (100.00) 0.20 (4.50) – (100.00)

Family history of bladder cancer 2.18 (0.00) – (100.00) 1.51 (4.48) – (100.00)

Family history of breast cancer 14.56 (0.00) 12.55 (23.42) – (100.00) 12.97 (16.78)

Family history of colorectal cancer 11.33 (0.00) 14.14 (23.10) 9.29 (4.31) 12.57 (16.87)

Family history of endometrial cancer 2.89 (0.00) – (100.00) – (100.00) – (100.00)

Family history of glioma cancer 2.01 (0.00) – (100.00) 1.74 (4.46) – (100.00)

Family history of head and neck cancer 1.42 (0.00) – (100.00) 1.09 (4.48) – (100.00)

Family history of hematopoietic cancer 6.67 (0.00) – (100.00) 5.35 (4.40) – (100.00)

Family history of liver cancer 2.04 (0.00) – (100.00) 2.19 (4.44) – (100.00)

Family history of lung cancer 11.71 (0.00) 15.14 (22.51) 9.85 (4.28) 14.69 (16.34)

Family history of male breast cancer – (100.00) – (100.00) 21.01 (2.47) – (100.00)

Family history of melanoma cancer 1.40 (0.00) – (100.00) 0.80 (4.49) – (100.00)

Family history of ovarian cancer 3.93 (0.00) – (100.00) – (100.00) – (100.00)

Family history of pancreas cancer 3.06 (0.00) – (100.00) 2.18 (4.47) – (100.00)

Family history of prostate cancer – (100.00) – (100.00) 7.40 (2.53) 9.65 (17.15)

Family history of renal cancer 1.79 (0.00) – (100.00) 1.25 (4.48) – (100.00)

Family history of thyroid cancer 0.70 (0.00) – (100.00) 0.35 (4.50) – (100.00)

Family history of upper GI cancer 4.51 (0.00) – (100.00) 4.63 (4.41) – (100.00)

Ever had enlarged prostate 21.80 (0.18) 0.00 (0.00)

Ever had inflamed prostate 8.45 (16.54) 0.00 (0.00)

Ever had a prostate biopsy 4.98 (2.90) 0.00 (0.00)

Ever had a prostatectomy 0.31 (3.21) – (100.0)

(Continued)
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TABLE 1 (Continued)

Feature Female Male

Train Test Train Test

Ever had a prostate resection 2.98 (3.16) 0.00 (0.00)

Ever had a vasectomy 27.28 (0.35) 0.00 (0.00)

Had ovaries removed 16.57 (0.00)

Had tubes tied 21.49 (0.00) 0.00 (0.00)

Ever take birth control pills 54.22 (0.00) – (100.00)

Currently using female hormones 49.33 (0.00) 0.00 (0.00)

Ever take female hormones 66.37 (0.00) – (100.00)

Ever been pregnant 92.49 (0.00) – (100.00)

Ever dealt with infertility 14.51 (0.00) 0.00 (0.00)

Ever had benign or fibrocystic breast disease 28.45 (0.00) 0.01 (0.00)

Ever had benign ovarian tumor/cyst 12.80 (0.00) 0.00 (0.00)

Ever had endometriosis 8.39 (0.00) 0.00 (0.00)

Ever had Uterine fibroid tumors 22.48 (0.00) 0.00 (0.00)

Categorical % in Category % in Category

Race

White 88.55 93.97 88.37 94.18

Black 5.68 1.65 4.56 1.96

Hispanic 1.60 0.00 2.17 0.00

Asian 3.37 2.72 4.07 2.22

Pacific Islander 0.49 0.00 0.62 0.00

American Indian 0.27 0.00 0.25 0.00

Missing 0.04 1.66 0.06 1.64

Education level

<8 years 0.72 0.00 1.25 0.00

8–11 years 5.82 0.00 7.00 0.00

12 years 27.47 23.85 18.25 28.55

Non-college training 12.85 4.48 12.25 5.76

Some college 23.15 19.28 20.41 16.24

College graduate 15.02 33.56 18.83 31.02

Postgraduate 14.71 0.0 21.73 0.00

Missing 0.26 18.8 0.29 18.44

Marriage status

Married or cohabitating 68.71 76.73 82.51 69.47

Widowed 13.85 0.00 3.60 0.00

Divorced 12.91 0.00 9.05 0.00

Separated 0.92 0.00 1.11 0.00

Never married 3.39 0.00 3.43 0.00

Missing 0.23 23.27 0.29 30.53

(Continued)
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TABLE 1 (Continued)

Feature Female Male

Train Test Train Test

Occupation

Homemaker 22.23 0.54 0.08 4.62

Working 35.18 60.23 44.00 54.59

Unemployed 0.96 2.35 1.16 1.06

Retired 36.58 31.22 49.59 35.00

Extended sick leave 0.20 0.00 0.17 0.00

Disabled 2.08 4.09 2.42 2.73

Other 2.24 0.89 2.09 0.94

Missing 0.52 1.08 0.49 1.06

Continuous Mean (SD); % missing Mean (SD); % missing

Age at enrollment 62.5 (5.4); 0.0 56.7 (8.2); 0.0 62.7 (5.3); 0.0 56.3 (8.0); 0.0

BMI at enrollment 27.1 (5.5); 0.0 27.8 (4.2); 0.0 27.5 (4.2); 1.6 27.1 (5.2); 0.5

Weight at age 20 124 (18.1); 0.0 – (–); 100.0 160 (24.3); 1.3 – (–); 100.0

Years since quitting smoking 25.0 (13.3); 0.0 24.6 (14.2); 1.0 16.9 (13.5); 1.0 25.3 (17.8); 46.0

Pack years smoked 13.3 (22.4); 0.0 26.1 (20.9); 1.0 25.2 (31.5); 2.3 20.2 (15.5); 51.4

Monthly aspirin use 9.8 (16.5); 0.0 0.0 (0.0); 0.0 12.2 (16.7); 0.3 0.0 (0.0); 0.0

Monthly ibuprofen use 7.5 (17.4); 0.0 0.0 (0.0); 0.0 4.9 (14.3); 0.5 0.0 (0.0); 0.0

Youngest relative with biliary cancer 68.1 (5.4); 0.0 – (–); 100.0 68.4 (12.2); 0.0 – (–); 100.0

Youngest relative with bladder cancer 67.7 (6.3); 0.0 – (–); 100.0 67.9 (11.9); 1.9 – (–); 100.0

Youngest relative with breast cancer 58.4 (8.0); 0.0 – (–); 100.0 – (–); 0.0 – (–); 100.0

Youngest relative with colorectal cancer 66.2 (6.8); 0.0 – (–); 100.0 65.7 (12.7); 2.1 – (–); 100.0

Youngest relative with endometrial cancer 56.0 (7.2); 0.0 – (–); 100.0 – (–); 0.0 – (–); 100.0

Youngest relative with glioma cancer 54.9 (8.3); 0.0 – (–); 100.0 55.0 (17.8); 1.3 – (–); 100.0

Youngest relative with head and neck cancer 60.7 (5.6); 0.0 – (–); 100.0 61.4 (13.0); 2.6 – (–); 100.0

Youngest relative with hematopoietic cancer 57.0 (10.1); 0.0 – (–); 100.0 56.1 (20.0); 1.9 – (–); 100.0

Youngest relative with liver cancer 64.2 (6.6); 0.0 – (–); 100.0 65.3 (12.5); 1.6 – (–); 100.0

Youngest relative with lung cancer 65.0 (6.1); 0.0 – (–); 100.0 63.9 (11.5); 1.7 – (–); 100.0

Youngest relative with male breast cancer – (–); 0.0 – (–); 100.0 58.8 (15.6); 2.4 – (–); 100.0

Youngest relative with melanoma cancer 55.9 (8.9); 0.0 – (–); 100.0 56.8 (17.3); 1.2 – (–); 100.0

Youngest relative with ovarian cancer 57.9 (8.1); 0.0 – (–); 100.0 – (–); 0.0 – (–); 100.0

Youngest relative with pancreas cancer 68.9 (5.7); 0.0 – (–); 100.0 67.9 (11.9); 1.0 – (–); 100.0

Youngest relative with prostate cancer – (–); 0.0 – (–); 100.0 70.3 (9.8); 2.5 – (–); 100.0

Youngest relative with renal cancer 63.1 (6.7); 0.0 – (–); 100.0 62.5 (14.9); 2.4 – (–); 100.0

Youngest relative with thyroid cancer 43.4 (8.3); 0.0 – (–); 100.0 49.2 (18.6); 2.9 – (–); 100.0

Youngest relative with upper GI cancer 64.3 (6.7); 0.0 – (–); 100.0 63.6 (13.8); 2.0 – (–); 100.0

Number of relatives with biliary cancer 1.0 (0.2); 0.0 – (–); 100.0 1.0 (0.1); 0.0 – (–); 100.0

Number of relatives with bladder cancer 1.0 (0.2); 0.0 – (–); 100.0 1.0 (0.2); 0.0 – (–); 100.0

Number of relatives with breast cancer 1.1 (0.3); 0.0 1.0 (0.0); 0.0 – (–); 0.0 1.0 (0.0); 0.0

(Continued)
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TABLE 1 (Continued)

Feature Female Male

Train Test Train Test

Number of relatives with colorectal cancer 1.1 (0.3); 0.0 1.0 (0.0); 0.0 1.1 (0.3); 0.0 1.0 (0.0); 0.0

Number of relatives with endometrial cancer 1.0 (0.2); 0.0 – (–); 100.0 – (–); 0.0 – (–); 100.0

Number of relatives with glioma cancer 1.0 (0.2); 0.0 – (–); 100.0 1.0 (0.2); 0.0 – (–); 100.0

Number of relatives with head and neck cancer 1.0 (0.2); 0.0 – (–); 100.0 1.0 (0.2); 0.0 – (–); 100.0

Number of relatives with hematopoietic cancer 1.1 (0.3); 0.0 – (–); 100.0 1.1 (0.2); 0.0 – (–); 100.0

Number of relatives with liver cancer 1.0 (0.2); 0.0 – (–); 100.0 1.0 (0.2); 0.0 – (–); 100.0

Number of relatives with lung cancer 1.1 (0.4); 0.0 1.0 (0.0); 0.0 1.1 (0.3); 0.0 1.0 (0.0); 0.0

Number of relatives with male breast cancer – (–); 0.0 – (–); 100.0 1.0 (0.1); 0.0 – (–); 100.0

Number of relatives with melanoma cancer 1.0 (0.2); 0.0 – (–); 100.0 1.0 (0.2); 0.0 – (–); 100.0

Number of relatives with ovarian cancer 1.0 (0.2); 0.0 – (–); 100.0 – (–); 0.0 – (–); 100.0

Number of relatives with pancreas cancer 1.0 (0.2); 0.0 – (–); 100.0 1.0 (0.2); 0.0 – (–); 100.0

Number of relatives with prostate cancer – (–); 0.0 – (–); 100.0 1.1 (0.3); 0.0 1.0 (0.0); 0.0

Number of relatives with renal cancer 1.0 (0.2); 0.0 – (–); 100.0 1.0 (0.1); 0.0 – (–); 100.0

Number of relatives with thyroid cancer 1.0 (0.2); 0.0 – (–); 100.0 1.0 (0.2); 0.0 – (–); 100.0

Number of relatives with upper GI cancer 1.0 (0.2); 0.0 – (–); 100.0 1.1 (0.3); 0.0 – (–); 100.0

Age when prostate became enlarged 52.6 (9.3); 0.5 56.8 (10.2); 0.0

Age when prostate became inflamed 45.0 (13.2); 0.6 – (–); 0.0

How many times you get up at night to urinate 1.3 (0.9); 0.2 – (–); 100.0

Age at which you started urinating at night 50.5 (10.5); 58.5 – (–); 0.0

Age at first prostate surgery 54.9 (7.9); 7.4 54.5 (6.9); 0.0

Age at vasectomy 29.0 (3.5); 0.5 – (–); 0.0

Age at hysterectomy 41.5 (4.6); 0.0 – (–); 100.0

Age started birth control 24.8 (6.4); 0.0 – (–); 100.0

Number of years taking female hormones 6.8 (3.0); 0.0 – (–); 100.0

Age at birth of first child 21.0 (4.5); 0.0 – (–); 100.0

Number of live births 3.1 (1.3); 0.0 – (–); 100.0

Number of miscarriages 0.5 (0.7); 0.0 – (–); 100.0

Number of still births 0.1 (0.3); 0.0 – (–); 100.0

Number of tubal/ectopic pregnancies 0.0 (0.2); 0.0 – (–); 100.0

Age at first menstrual period 12.2 (1.6); 0.0 – (–); 100.0

all others to be negative. We handled missing data through k-

nearest neighbor imputation with k = 5. Imputation was done

separately on PLCO and UK Biobank so that there was no

information passed between them, except in the case of a feature

completely missing from UK Biobank, in which case we set it to

the mean value from the PLCO dataset (Figure 2).

The data was read in and processed in Python with the

Pandas library, version 1.5.1. The Pandas data frames were

converted to 2d Numpy arrays (version 1.23.4) before being

passed to the training software.

Neural network

Using the PLCO dataset we train two different neural

networks, one to take in the female data and predict the risk

for 16 different cancers and another to take in the male data

and predict the risk for 15 different cancers. The networks

were trained as binary classifiers, with the positive class being

those that developed cancer within 5 years of enrolling in the

study. Each network has 2 hidden layers with 120 nodes in the

first layer and 80 in the second. This network architecture was
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chosen because it was previously used with good results in a

master’s thesis that used the PLCO dataset to predict cancer risk

(Yan, 2020). For both the female and male models the biases

are initialized to 0 and weights are initialized with a glorot

normal initializer. We used the ReLu activation function and

the Adam optimizer with a learning rate of 0.01. To avoid the

exploding gradient problem, we use gradient clipping. For the

loss function we use binary cross-entropy. We train with batch

sizes of 1,024 for 10 epochs. The prediction for each cancer

coming from the output layer was put through a logistic function

to scale it to the interval 0–1. We think of these values as the

probability of developing cancer and later will multiply them by

100 and use them as the percent risk of developing cancer. The

training and predictions were done with TensorFlow 2 viaKeras,

version 2.11.0.

For each cancer the neural network returns a number in the

range of 0–1. Traditionally a threshold value of 0.5 is selected

so that values ≥0.5 are considered positive and values below

0.5 are considered negative. However, in the data we are using

there are more people without cancer than with cancer. This

data imbalance can lead to bias in the predictions, but this

can be addressed by avoiding the default threshold value. We

empirically set the threshold (for each cancer) to maximize the

Youden index. The Youden index is the difference between the

true positive rate and the false positive rate. Maximizing this

index picks the threshold value where the ROC curve begins to

bend. We maximize the Youden index using the training data

and then apply the results thresholds to the testing data (Duda

et al., 2001; Bishop, 2006; Mitchell, 2006).

Results

Fitting the neural network to predict cancer incidence within

5 years for all 17 cancer types is quite successful. Looking at the

ROC for the PLCO data (dotted lines in Figure 3) the classifier

is near perfect for every cancer. This is further confirmed by

looking at various metrics of effectiveness. On this training data

no cancer has an AUC below 0.98, informedness below 0.85, or

diagnostic odds ratio below 270 (see Table 3).

We tested the model’s generalizability on the UK Biobank

data. Figure 3 (solid lines) shows that for most cancers the

generalization is very good. The cancers that did not generalize

well, biliary, male breast, liver, and pancreas, are those with the

fewest cases in the training set and tend to have few cases in

the test set as well (see Table 2). Also, the difference in the ROC

curves tend to be larger for the model predicting cancer in males

than for the one predicting cancer in females, indicating that the

model for females generalized better than the model for males.

Also, the male model did not generalize as well as the female

model. However, the model this performs very well in terms

of AUC and diagnostic odds ratio, with all but 3 cancers have

TABLE 2 Count of cancer cases in the data sets.

Cancer Female Male

Train Test Train Test

Biliary 20 77 10 53

Bladder 89 276 387 781

Breast 1,912 4,525 13 31

Colorectal 429 1,034 681 1,352

Endometrial 352 614 – –

Glioma 42 452 60 459

Head and Neck 63 264 171 681

Hematopoietic 351 651 482 849

Liver 8 1,082 60 1,050

Lung 526 949 806 838

Melanoma 195 599 289 575

Ovarian 225 514 – –

Pancreas 89 208 134 202

Prostate – – 3,749 3,365

Renal 98 229 155 407

Thyroid 47 118 31 46

Upper GI 30 160 164 338

diagnostic odds ratio above 10 with most of them still in the

hundreds or thousands.

In addition to simply training the neural network to predict

future cancer incidence. We take the raw output of the model

(always in the range of 0–1) as a risk indicator. Multiplying

this risk by 100, we can treat it as a risk score and look at

individual’s risks across all cancers. In Figure 4A we see an

example of such an analysis for a male from the UK Biobank

dataset. It shows that he has high risk for colorectal and prostate

cancer, but essentially no risks for the other cancers. While

in Figure 4B we ran the same analysis for a female from the

UK Biobank dataset and find that she has moderate risk for

most cancers.

Discussions

In this work we introduce the idea of a statistical

biopsy, which mines personal health data from individuals for

early cancer detection, analogous to tissue biopsy evaluating

cells from a tissue specimen and liquid biopsy evaluating

circulating tumor DNA from a fluid sample. Taking advantage

of two rich datasets, PLCO and UK Biobank, we were

able to train two neural networks (one for men and

one for women) to predict cancer risk for 17 different
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FIGURE 2

Flow process for data preparation and model training.

cancers. This model was trained on the cancer focused

PLCO dataset and then tested on the much larger UK

Biobank dataset.

Testing with the UK Biobank dataset helps to show the

model’s generalizability and give us confidence that we are

not overfitting the PLCO data, especially given the large

number of features that we are using. Also given that the

UK Biobank data comes from a different population, does

not record all data in the same way, and is missing some of

the features we used in our model, high performance on this

dataset shows that the model has a high degree of robustness.

Furthermore, the UK Biobank dataset is representative of

the noisy and messy data that a physician would have

access to via electronic medical records as opposed to much

cleaner data gathered in a clinical trial, giving confidence

that this idea can work in practice. While testing on this

second dataset that comes from a different population adds

a lot of confidence in the generalization of the model, it

is important to note that both the training set and test set

come from primarily Caucasian populations living in wealthy

countries. Validating on additional datasets coming from other

countries is important, especially depending on where this

model is used.

Despite all this there were places where the model did not

perform well. On cancers such as biliary, liver, and male breast

cancer the model did not generalize at all and for two of these

would do better if its predictions were reversed. Furthermore,

on almost every cancer the male model generalized worst then

the female model. This is particularly surprising since there are

more missing female only features in the test set then in there

are missing male only features. We need to further test the

importance of this female/male only features andwhere there are

other features that should be included. In addition to exploring

feature importance, we are also working on quantifying the

uncertainty in our prediction from these missing features and

a way for the model to not only give a prediction but indicate

which feature to learn to most improve the prediction. Also,

while the diagnostic odds ratio is high for almost all the cancers,

they need to be compared against tested screening guidelines

(whether recommended or not) to see if our statistical biopsy

is actually an improvement over traditional methods.

Lastly, while the stochastic nature of the development

of cancer means a statistical biopsy could never completely

replace a liquid or tissue biopsy, like the screening guidelines

(see Footnote 1–3) it could point those traditional biopsies

to individuals who would get the most benefit from them.

Furthermore, it is possible to generate a holistic analysis of an

individual’s risk for a variety of cancers simultaneously, having

the benefit of a liquid biopsy’s general screening but retaining

the specificity of a tissue biopsy (i.e., identifying which cancers

one is at high risk for). Furthermore, if integrated into a modern

electronic medical record (EMR) system, it offers a cost-effective

and safe approach to cancer screening in real time, informing

preventive interventions and screening decisions.

This model will form the backbone of a user-facing mobile

health platform that will not only let individuals evaluate their
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FIGURE 3

ROC curves for the neural networks trained on PLCO data and tested on UK Biobank data to predict 17 di�erent cancers.

cancer risk in real time, but also see the effect of certain

preventative measures or lifestyle changes on those risks.

In the short term we hope that this mobile health platform

will not only help individuals in early cancer detection, but also

continue improving itself as it builds up a large and diverse

longitudinal data set shared by the consented individuals.

Ultimately, we envision a model like this will be

integrated into EMR systems, where every time an individual

visits their doctor, has a test done, etc. it can update

its predictions. It would assist physicians and patients,

prompting conversations about cancer prevention and

screenings as needed. In addition, as the model matures

with more data, it could also provide information on what

tests or diagnostics would provide the most information

on cancer risk as well as the timing and spacing of

such diagnostics.

While there are still many hurdles to overcome, at the

scientific, social, and legal levels, there is already a good

start toward this vision of statistical biopsies. Keeping active

discussions on all three levels in the community is necessary

for stakeholders to make steady progress toward the vision of

statistical biopsy.

Conclusion

We trained two neural networks to predict the risk of

16 types of cancers in females and 15 types in males and

validated it against a second dataset that came from a different

population. We showed this model could be used to look

holistically at an individual’s cancer risks. We introduced the

term “statistical biopsy” to help change the paradigm around

these types of models. With the large amounts of data available

and powerful computers and algorithms it is time we move

beyond guidelines for general population screening to more
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TABLE 3 Metrics of performance.

Cuto� Positive
predictive value

Negative
predictive value

AUC of ROC Matthews correlation
coe�cient

Informed-ness Diagnostic
odds ratio

Biliary

Female

Train 0.263 0.6129 1.0000 0.9933 0.7630 0.9498 120,276

Test 0.0004 0.9998 0.6341 0.0061 0.1804 7

Male

Train 0.028 0.3448 1.0000 0.9999 0.5871 0.9997 Inf

Test Nan 1.0000 0.1339 Nan 0.0000 0.0000

Bladder

Female

Train 0.002 0.2145 1.0000 0.9995 0.4621 0.9957 Inf

Test 0.1047 0.9999 0.9658 0.3113 0.9264 1,727

Male

Train 0.002 0.1414 0.9997 0.9911 0.3609 0.9229 691

Test 0.0139 0.9984 0.7727 0.0750 0.4569 12

Breast

Female

Train 0.025 0.4344 0.9997 0.9883 0.6443 0.9563 2,942

Test 0.0391 0.9996 0.9815 0.1498 0.5788 319

Male

Train 0.001 0.0044 1.000 0.9950 0.0653 0.9605 Inf

Test 0.0000 0.9999 0.3992 −0.0018 −0.0242 0

Colorectal

Female

Train 0.003 0.2396 0.9997 0.9860 0.4734 0.9362 1,211

Test 0.0062 1.0000 0.9979 0.0496 0.3948 Inf

Male

Train 0.006 0.2273 0.9989 0.9640 0.4415 0.8616 295

Test 0.441 0.9999 0.9887 0.1938 0.8546 463
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TABLE 3 (Continued)

Cuto� Positive
predictive value

Negative
predictive value

AUC of ROC Matthews correlation
coe�cient

Informed-ness Diagnostic
odds ratio

Endometrial

Female

Train 0.003 0.2892 0.9999 0.9954 0.5292 0.9689 4,445

Test 0.0724 0.9999 0.9911 0.2589 0.9266 775

Glioma

Female

Train 0.284 0.4082 1.0000 0.9959 0.6232 0.9516 26,203

Test 0.0686 0.9984 0.9732 0.0416 0.0259 40

Male

Train 0.009 0.3333 1.0000 0.9972 0.5672 0.9651 18,427

Test 0.5401 0.9987 0.8773 0.4275 0.3393 893

Head and Neck

Female

Train 0.001 0.0432 1.0000 0.9858 0.2026 0.9505 1,745

Test 0.0287 0.9999 0.9660 0.1615 0.9112 536

Male

Train 0.003 0.0839 0.9999 0.9948 0.2816 0.9461 1,380

Test 0.3362 0.9996 0.8963 0.5395 0.8668 1,291

Hematopoietic

Female

Train 0.005 0.1424 0.9999 0.9945 0.3683 0.9527 1,845

Test 0.0024 0.9981 0.9339 0.0029 0.0162 187

Male

Train 0.011 0.2616 0.9996 0.9864 0.4897 0.9183 851

Test 0.4614 0.9997 0.9558 0.6461 0.9054 2,555
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TABLE 3 (Continued)

Cuto� Positive
predictive value

Negative
predictive value

AUC of ROC Matthews correlation
coe�cient

Informed-ness Diagnostic
odds ratio

Liver

Female

Train 0.043 0.3200 1.0000 0.9999 0.5656 0.9998 Inf

Test 0.5537 0.9981 0.9208 0.5321 0.5131 642

Male

Train 0.291 0.4836 1.0000 0.9989 0.6893 0.9825 68,978

Test 0.0000 0.9954 0.4788 −0.0001 −0.0001 218

Lung

Female

Train 0.004 0.2603 0.9998 0.9902 0.4972 0.9504 1,692

Test 0.0625 1.0000 0.9981 0.2434 0.9471 Inf

Male

Train 0.007 0.2978 0.9995 0.9878 0.5255 0.9292 856

Test 0.0644 0.9991 0.8314 0.2125 0.7114 78

Melanoma

Female

Train 0.002 0.2345 0.9999 0.9887 0.4695 0.9407 2,340

Test 0.0023 0.9991 0.9648 0.0061 0.0271 1,231

Male

Train 0.013 0.3305 0.9997 0.9818 0.5522 0.9234 1,824

Test 0.7500 0.9975 0.9543 0.1249 0.0209 4,874

Ovarian

Female

Train 0.001 0.0733 0.9997 0.9681 0.2511 0.8641 270

Test 0.0022 1.0000 0.9989 0.0174 0.1383 Inf

Pancreas

Female

Train 0.003 0.2733 1.0000 0.9992 0.5190 0.9857 28,626

(Continued)
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TABLE 3 (Continued)

Cuto� Positive
predictive value

Negative
predictive value

AUC of ROC Matthews correlation
coe�cient

Informed-ness Diagnostic
odds ratio

Test 0.0658 0.9998 0.9372 0.2262 0.7797 429

Male

Train 0.002 0.0627 0.9999 0.9953 0.2430 0.2430 1,262

Test 0.3000 0.9991 0.5980 0.0665 0.0148 314

Prostate

Male

Train 0.040 0.4559 0.9992 0.9812 0.6478 0.9223 1,137

Test 0.3226 1.0000 0.9923 0.5589 0.9685 Inf

Renal

Female

Train 0.011 0.3862 1.0000 0.9957 0.6112 0.9674 15,944

Test 0.2194 0.9998 0.9170 0.4027 0.7401 1,302

Male

Train 0.005 0.1014 0.9999 0.9921 0.3059 0.9243 938

Test 0.4878 0.9995 0.8460 0.5978 0.7333 2,001

Thyroid

Female

Train 0.314 0.4423 1.0000 0.9977 0.6577 0.9780 60,262

Test 0.5674 0.9999 0.9877 0.6967 0.8556 20,820

Male

Train 0.001 0.0465 1.0000 0.9982 0.2112 0.9594 3,621

Test 0.0002 0.9999 0.8714 0.0048 0.1508 33

Upper GI

Female

Train 0.120 0.3011 1.0000 0.9845 0.5298 0.9325 16,371

Test 0.6000 0.9996 0.9078 0.3871 0.2499 3,503

Male

Train 0.001 0.1629 0.9998 0.9329 0.3875 0.9222 1,314

Test 0.6238 0.9988 0.6655 0.3405 0.1862 1,345
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FIGURE 4

Radar plots of cancer risk for a single patient. (A) A male participant from the UK Biobank data that has high risk for two cancers. (B) A female

participant from the UK Biobank data that has moderate risk for many cancers. Information such as this could help individuals and their primary

care providers make decisions on screening and preventative measures.

powerful and personalizedmethods akin to the liquid and tissues

biopsies currently used in the medical field.
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