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Three levels at which the user’s
cognition can be represented in
artificial intelligence

Baptist Liefooghe* and Leendert van Maanen

Department of Psychology, Utrecht University, Utrecht, Netherlands

Artificial intelligence (AI) plays an important role in modern society. AI

applications are omnipresent and assist many decisions we make in daily life. A

common and important feature of such AI applications are user models. These

models allow an AI application to adapt to a specific user. Here, we argue

that user models in AI can be optimized by modeling these user models more

closely tomodels of human cognition.We identify three levels at which insights

from human cognition can be—and have been—integrated in user models.

Such integration can be very loose with user models only being inspired

by general knowledge of human cognition or very tight with user models

implementing specific cognitive processes. Using AI-based applications in the

context of education as a case study, we demonstrate that user models that

are more deeply rooted in models of cognition o�er more valid and more

fine-grained adaptations to an individual user. We propose that such user

models can also advance the development of explainable AI.
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Artificial intelligence (AI) has taken an important place in society and offers support

in a variety of domains. Many of these domains require interaction between humans and

AI systems, ranging from simple recommender systems to more sophisticated diagnostic

tools that are driven by machine learning. Whether this interaction is fruitfully adopted

in some cases varies with the degree to which AI adapts to what the user wants, thinks,

believes and likes (Baker et al., 2010; Bosse and Hoogendoorn, 2015; Rabinowitz et al.,

2018; Bonnefon and Rahwan, 2020; Langley et al., 2022; Nguyen and Gonzalez, 2022).

Such adaptation requires the AI system to represent the mental states of the user that are

not directly observable and use these states to predict the behavior of the user (Premack

and Woodruff, 1978).

A key element endowing AI applications with the ability to adapt to a user is the user

model. A user model often consists of a decision-making algorithm that is optimized

to provide suitable interventions at the right time given the observable behavior of one

or more users (Wahlster and Kobsa, 1989). Following this definition, a user model

can be conceptualized as a set of input-output mappings that are learned and can

be conceptualized as a subset of a broader context model, which includes all possible

situational features that may be relevant, such as time of day, previous interactions, or

even seasonal fluctuations (Sporrel et al., 2021; Wang et al., 2021a,b). Hence, human

behavior observed by the AI system is not necessarily related to a representation that

reflects the user’s cognitive state that caused that behavior.
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Whereas, a user model that is implemented as a set of

input-output mappings may be suitable for some applications,

such as recommender systems, the question arises whether

this suffices for all domains, or whether there are instances

where it is necessary to also represent the cognitive state that

underlies user behavior. For instance, it has been argued that the

detection of deception by means of AI in the context of airport

security is intrinsically flawed because the user model does

not appropriately incorporate knowledge of human cognition

(Jupe and Keatley, 2020). That is, although AI-algorithms can

be trained to detect deception in humans on the basis of

facial micro-expressions (Rothwell et al., 2006), psychological

research has demonstrated that facial micro-expressions have

in fact very low validity in predicting deception (DePaulo

et al., 2003). Hence, the relation between behavioral proxy and

cognitive construct may not be valid, making the application

of micro-expressions to detect deception rather tedious. A

similar concern may arise in AI-based recruitment applications

that analyze candidates’ face expressions and speech demeanor

to infer traits such as emotional intelligence and personality

(Sethumadhavan and Phisuthikul, 2019; Hmoud, 2021). Even

for less circumstantial behavior, such as test performance in

an e-learning environment, the question arises whether the

response of a participant (e.g., the number of correctly recalled

items) reflects some relevant cognitive aptitude (e.g., working-

memory capacity) or relates to a spurious factor (e.g., fatigue,

distraction, stress,. . . ).

The previous examples thus indicate that in some

applications user models need to represent user behavior as

well as the mental states underlying that behavior. However,

inferring a particular mental state on the basis of a particular

observable behavior is often invalid. This is a general problem

in cognitive sciences (Borsboom et al., 2004; Poldrack, 2006; De

Houwer, 2011; IJzerman et al., 2020) that may contaminate the

validity of AI applications as well. The solution to this problem

we propose is based on the work of Oberauer and Lewandowsky

(2019). These authors distinguish between two types of research

in cognitive sciences: discovery-oriented research and theory-

testing research. In discovery-oriented research, cognitive

models define a search space for the discovery of (behavioral)

proxies, but do not entail strong hypotheses by which they can

be tested and falsified through the use of these proxies. Theory-

testing research relies on cognitive models that do strongly

imply such hypotheses and the relation between cognition and

behavior is often explicated by formalizing cognitive processes.

In the current perspective paper, we argue that implementing

user models on the basis of theory-testing research with formal

models of human cognition offers a greater insurance that the

correct inferences are made by AI applications about a user.

We identify three levels of integration between cognitive

theory and user models, ranging from very loose (based on

only anecdotal knowledge of cognitive processes) to very tight

(implementing the hypothesized cognitive processes in the user

model). An overview of these levels is presented in Figure 1.

In the next section we elaborate on these levels of integration

by considering user models in AI-based applications that assist

instruction in educational contexts. We demonstrate that user

models that are more strongly integrated with formal models of

human cognition, offer greater insurance that AI makes more

valid and more fine-grained adaptations to an individual user.

Three levels of Integration

At the loosest level of integration, the user model is mainly

inspired by discovery-oriented research and does not involve

any formal specification of human cognition and how it leads

to a specific behavior. For instance, it is a generally accepted

fact that human short-term memory is limited in capacity

(Cowan, 2001). This knowledge could inspire the elaboration of

a user model without any explicit specification of the cognitive

machinery underlying this capacity limitation. In other words,

only general or anecdotal knowledge is used. Hence, we refer

to this level as the anecdotal level of integration. The second

level of integration, the computational level, involves usermodels

that consider the computations that are hypothesized to be

executed by the users, but ignore the specification of the

mental processes giving rise to those computations (Marr, 1982).

Building upon our previous example, the user model thus

now represents specific short-term memory capacity limits of

a user, but does not identify the cognitive processes giving rise

to these limitations. The tightest integration can be found at

the algorithmic level, where a formal specification of mental

processes that lead to mental computations is taken into account

(Marr, 1982). Within our example, the mental processes leading

to a particular short-term memory capacity, such as rehearsal

processes, are thus now also formalized in the user model.

We further illustrate these levels in the domain of education

in which AI-based applications are used to instruct and learn

factual knowledge such as word pairs when learning a foreign

language, or a list of all European capitals (Pavlik, 2007; Van Rijn

et al., 2009; Sense et al., 2015, 2016, 2018). These applications are

inspired by the classic flashcardmethod [e.g., Pimsleur Language

Programs; Leitner (1972) system] in which to-be-learned facts

are written out on a deck of cards that are presented one by one.

Typically, a question is written on one side of the card, with the

answer on the other side. If the learner answers correctly, then

the card is put aside, but if the learner answers incorrectly, the

card is placed at the bottom of the deck for repetition. When all

cards are put aside, the deck is picked up again and the procedure

is repeated (Leitner, 1972).

User models of computerized versions of the flashcard

method [e.g., SuperMemo, (Wozniak and Gorzelanczyk, 1994)]

keep track of users’ performance (e.g., errors) so that retention

can be improved in three ways. First, by increasing the frequency

by which facts are repeated. Consequently, learners display
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FIGURE 1

User models in Human-AI interaction can represent the user to di�erent degrees depending on how strongly they are integrated with models

from cognitive sciences. At the anecdotal level the user model is inspired from general knowledge of human cognition and does not represent

the cognitive state of the user. At the computational level, computations of the user are represented. At the algorithmic level, the user model

also incorporates the cognitive processes of the user.

a learning curve or repetition effect, which indicates that

performance improves with practice and learning (Ebbinghaus,

1885; Newell and Rosenbloom, 1981; Anderson et al., 1999).

Second, by spacing out the presentation of facts evenly in time,

which also improves retention [i.e., spacing effect, (Ebbinghaus,

1885; Pavlik and Anderson, 2005)]. Third, by repeatedly testing

subjects, which improves recall [i.e., testing effect; (Roediger and

Karpicke, 2006a,b)]. These user models have been developed

with different levels of integration and vary in the degree to

which they can adapt to the user.

At the anecdotal level, the user model registers learning

performance and adapts the frequency of repetitions, spacing

and number of tests. However, the user model in itself

does not include a representation of the mental state of

the user or the cognitive processes that are mediating the

user’s performance. The application thus only adapts to

the user’s performance on the basis of general principles

(repetition effect, spacing effect, and testing effect).

Because user performance is directly used as input for this

adaptation it is furthermore difficult to control whether this

performance reflects the cognitive construct of interest or some

uncontrolled mediator (e.g., fatigue) and if the adaption is

thus valid.

At the computational level of integration, a representation

is made of the user’s ability, which underlies the performance

of that user, while they execute the task [e.g., (Zhang et al.,

2016)]. User models at the computational level can be situated

in the Fechnerian tradition of mathematical modeling, which

aims to discover functional relationships between observable

and metaphysical quantities. To this end, behavioral measures

are mapped onto psychological concepts via mathematical

principles. From this perspective, the user model defines

psychological concepts mathematically and behavior is

interpreted in light of these concepts. Such an approach

is related to cognitive psychometrics [e.g., (Riefer et al.,

2002)].

Recent applications in fact learning, which employ user

models that are situated at the computational level of integration

[e.g., LanguageGarden, (Klinkenberg et al., 2011)] are based

on item-response theory [IRT; (Rasch, 1960)]. The idea behind

IRT is that the probability that a person has retained a fact

(and will answer correctly when tested) is a combination of the

difficulty of that fact and the learning ability of the individual. A

user model based on IRT simultaneously updates the estimated

difficulty of the facts and the estimated ability of the learners

by comparing the probability of retaining a fact with the actual

outcome on a given test (Klinkenberg et al., 2011; Pelánek,

2016; Pelánek et al., 2017). These estimates are then used

to select the next to-be-presented fact. Such a specification

ensures that individual learners are presented with facts that

are within their reach, but also that facts are repeated in

a spaced schedule. This follows because when an individual

correctly recalls a fact, both the individual’s ability and the item’s

difficulty are re-estimated, such that the difference between

ability and difficulty increases. The adaptations made by the

application are thus now based on an explicit representation
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of the user’s cognitive computations that are hypothesized to

underlie the observed psychological effects of repetition, spacing

and testing.

However, a parameter in a computational model in

itself does not guarantee that it reflects a particular feature

of cognition and always needs to be validated empirically

(Heathcote et al., 2015). Greater validity can be obtained with

user models that integrate cognition at the algorithmic level

aim to represent the cognitive processes of the user, rather

than only the outcome or computations of these processes. To

this end, these user models are based on formal models that

describe specific cognitive processes [e.g., (van Maanen and

Marewski, 2009; Van Maanen et al., 2010)]. An example of an

influential formal model that has been used in the domain of fact

learning is the ACT-R theory of declarative memory (Anderson

and Schooler, 1991a; Pavlik and Anderson, 2005). This theory

proposes that memory traces of declarative facts reflect the

probability of requiring to recall these facts in the immediate

future1. This probability or activation is computed on the basis

of previous encounters with declarative facts. In particular, the

activation is considered to be the highest immediately after a

successful recall moment or immediately after a study moment.

Following these recall and/or test moments, activation decays

with a particular forgetting rate that is specific to the difficulty of

the item that is learned and the learning ability of the user. The

sum of activation to all encounters of a specific fact determines

the probability of needing that fact in the immediate future, as

well as a probability of recall of that fact (Anderson and Milson,

1989; Anderson and Schooler, 1991b). This cognitive model

of declarative memory has been shown to predict response

times and accuracy scores in numerous experiments, including

standard memory paradigms (Anderson et al., 1999; Pavlik

and Anderson, 2005; Schneider and Anderson, 2012), but also

extending to more complex cognitive behavior that involves

retrieval of information from memory (Van Rij et al., 2010;

Schneider and Anderson, 2011; Banks, 2013).

In the domain of fact learning, the ACT-R theory of

declarative memory has been applied in RuggedLearning (Van

Rijn et al., 2009; Sense et al., 2015, 2016, 2018). This system

uses the activation values of all facts for a particular user to

determine which fact has a probability of recall that will drop

1 The ACT-R theory of declarative memory is based on a rational

analysis of memory (Anderson and Milson, 1989; Anderson and Schooler,

1991b; Oaksford and Chater, 1994). Rational analyses of cognition

are typically considered computational models, as they relate the

computations of a cognitive system to environmental demands, such as

the probability that facts are required. The ACT-R theory of declarative

retrieval specifies potential algorithms that provide such computations.

Thus, a rational analysis of memory not only provides estimates of

cognitive computations or outcomes such as IRT, but also determines

explicit assumptions about the cognitive processes that give rise to these

parameters.

below a particular threshold in the immediate future. This fact

is then selected for the subsequent test. The activation value

of that fact is also used to predict a response time of the test.

The deviation from the response time is used to calibrate the

parameters of the model to best predict the observed recall and

response times (Van Rijn et al., 2009). The user model thus

now represents assumptions of cognitive processes and adapts

the task parameters accordingly. As a result, the user model

predicts the effects of repetition, spacing and testing based on

the presumed cognitive processes of an individual.

Discussion

We have illustrated that user models and cognitive models

can be integrated at three different levels. Whereas, each level

has specific characteristics that can help in the design of a

user model, we emphasize that the boundaries between each

level are not strict and intermediate levels of integration can be

conceived. When considering the different levels of integration

in the domain of fact learning, user models designed at the

algorithmic and computational level offer greater insurance that

the behavior of a user is related to the correct mental states

underlying that behavior. The reason for this is that these user

models are grounded in formal models of human cognition

in which the pathway by which a mental construct leads to

a particular behavior is explicated. Accordingly, these models

are safer to use in the context of AI applications in which the

reverse inference is made, namely from observable behavior to

mental construct.

An additional advantage of usermodels at the computational

and algorithmic level is that they offer new avenues for

developing explainable AI. Explainable AI refers to AI systems

that attempt to provide insight in their decision-making steps

to human operators (Gunning et al., 2019; Babic et al., 2021).

Not only does explainable AI serve to improve human-AI

interaction, but it also helps to make decisions made by AI-

algorithms more transparent in society (Ritter et al., 2017),

which has recently been identified as one of the main challenges

in the future of AI (Schwartz et al., 2022). In recent years it

has been advocated that social sciences plays an important role

in improving explainable AI. On the one hand, social sciences

have offered insights about what constitutes a good explanation

(Miller et al., 2017). On the other hand, social sciences and more

specifically experimental cognitive psychology has developed

research methods that can help unravel the decision processes

that are fulfilled by deep neural networks (Taylor and Taylor,

2021a). Here, we argue that explanations offered by an AI system

are incorrect when the relation between observable behavior

and underlying associated construct is wrong. For instance, if

an AI application targets an invalid behavioral proxy, e.g., facial

expression as in indicator of threat, then this also invalidates also

the explanation provided by that system for the decision it made.
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We propose that by using computational or algorithmic

user models, AI decision-making can be understood by

examining the cognitive models that explicate the reasoning

steps taken by the AI system. For example, the aforementioned

RuggedLearning application estimates a rate of forgetting

parameter for each individual user. This parameter informs

the decision to adapt the sequence of factual information that

needs to be learned. Because the forgetting parameter reflects

a relevant cognitive process (that is, memory persistence),

it helps to formulate a transparent explanation for the

changes made by the AI system. That is, the instruction

system provides more learning opportunities, not because

general principles of cognition were implemented in the

user model (anecdotal level), but because we can identify a

parameter value that represents a cognitive process (algorithmic

level). Specifically, RuggedLearning provides more learning

opportunities when the rate of forgetting parameter is

low, because the individual has more difficulty retaining

the facts.

Of course, we acknowledge that user models not only

require the formal representation of cognitive traits such as

the user’s learning ability. Also more social traits of the user,

such as attitudes, likes and dislikes are important. Hence, user

models will need to find inspiration in a broad range of (social)

cognitive models that formalize personality traits and attitudes

[e.g., (Broekens et al., 2013; Moutoussis et al., 2014; Bosse,

2017; Dalege et al., 2018)] in addition to cognitive processes.

For instance, a formal theory specifying how particular facial

expressions relate to their corresponding mental state would

advance the intelligent detection of deception on the basis

of facial expressions (Rothwell et al., 2006), validating the

decisions made by the AI application (DePaulo et al., 2003)

and increasing trust in the system (Ishowo-Oloko et al., 2019).

In addition, even if the development of cognitive models

leads to a greater scrutiny in the interpretation of behavioral

proxies, it remains possible that, over time, a computational

or algorithmic model of human cognition proves wrong or

incomplete. Consequently, a tight integration with a particular

theory of cognitive processing might eventually yield incorrect

or suboptimal decisions by the AI system [cf. alternative models

in the fact learning domain (Khajah et al., 2014; Lindsey

et al., 2014)]. Similarly, algorithmic and even computational

models may not be readily available, forcing developers to

adopt the anecdotal level until tighter levels of integration

become available.

Cognitive theories and models may become invalid over

time and are often restricted to a specific domain (e.g., attention,

language,. . . ) (Newell, 1973). Accordingly, it could be argued

that user models will benefit more by only representing the

dynamics of user behavior by means of functional models that

formalize the relation between context and behavior without

calling upon mediating cognitive processes (Chiesa, 1992).

Skinners’ conceptualization of teaching machines (Skinner,

1961) offers an early example of how user models can be

devised on the basis of the experimental analysis of behavior

and formal models are also available in that domain (Mazur,

2006). As pointed out in the Introduction, many user models are

functional in nature and useful in a variety of AI applications.

However, we believe that such models have difficulties to

guarantee that an AI application makes valid inferences

about user behavior as they do no consider the cognitive

processes underlying that behavior. Furthermore, it has been

questioned whether it is computationally possible for AI to

make complex inferences about a user, when only observable

behavior is available (Armstrong and Mindermann, 2018) and

using (formal) models of human cognition may be helpful to

mitigate this problem (Hélie and Pizlo, 2022; Langley et al.,

2022).

The current perspective can be considered in view of

recent developments to endow AI with a Theory of Mind

(Premack and Woodruff, 1978) [ToM, e.g., Baker et al., 2010;

Cuzzolin et al., 2020; Nguyen and Gonzalez, 2022; for a

review see, Langley et al. (2022)]. Whereas a review of these

developments is beyond the scope of the present endeavor,

we believe that the levels of integration we propose can be

helpful when researchers in AI seek inspiration in cognitive

(neuro)sciences to develop Machine ToM. Advances in research

on ToM are sometimes based on discovery-oriented research

(e.g., Wang et al., 2017), which is may be tedious when making

inferences about cognition on the basis of behavior (Oberauer

and Lewandowsky, 2019). Developing AI models on the basis

of such research will result in an anecdotal level of integration

between AI and cognitive sciences. As such, researchers in AI

may rather use formal of models of human cognition as a

basis for their developments [see Nguyen and Gonzalez (2022)

for an example]. In general, our framework can thus help in

searching for and critically interpreting research in cognitive

(neuro)sciences, which has been under heavy debate (Nosek

et al., 2015; IJzerman et al., 2020).

To conclude, previous work already highlighted the

importance of cognitive psychology (Taylor and Taylor, 2021b)

and cognitive neurosciences (Hassabis et al., 2017) in further

advancing insights in AI. Typically, these disciplines are

considered to be useful in disentangling the so-called black box

of artificial cognition by providing research approaches that

were developed for the study of human cognition. In the present

endeavor we join this position by demonstrating that cognitive

models not only help to understand what was engineered, but

can also contribute to the engineering itself.
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