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The identification and characterization of signal regions in Nuclear Magnetic

Resonance (NMR) spectra is a challenging but crucial phase in the analysis

and determination of complex chemical compounds. Here, we present a

novel supervised deep learning approach to perform automatic detection and

classification of multiplets in 1H NMR spectra. Our deep neural network was

trained on a large number of synthetic spectra, with complete control over the

features represented in the samples. We show that our model can detect signal

regions e�ectively andminimize classification errors between di�erent types of

resonance patterns. We demonstrate that the network generalizes remarkably

well on real experimental 1H NMR spectra.

KEYWORDS
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1. Introduction

Since its discovery, Nuclear Magnetic Resonance (NMR) spectroscopy has become

an effective and reliable tool for investigating complex molecular compounds, using the

interaction of nuclear spins, an intrinsic property of atoms, with the magnetic field.

An NMR spectrum contains different kinds of resonances as a function of frequency,

including isolated peaks, referred to as singlets, double peaks, referred to as doublets, up

to composite sets of multiple peaks, generally referred to asmultiplets (Keeler, 2002). The

frequency coordinates of the multiplet (chemical shift), together with the integration of

the multiplet profile, the resonance pattern and the distance between consecutive peaks

within the same multiplet (coupling constant), serve as a molecular fingerprint. These

features provide knowledge about the abundances of the atoms, their local chemical

environments within the molecule and their connectivity and stereochemistry.

The traditional field in which NMR spectroscopy is extensively employed is organic

chemistry, where it is used for the structure elucidation of new natural compounds and

reaction products (Jackmann and Sternhell, 1969). Yet, NMR spectroscopy is widespread

in numerous scientific fields, combining both qualitative and quantitative approaches.

The information extracted from chemical shifts, coupling constants and peak integration

is used for the study of the dynamics and compartmentation of metabolic pathways in
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GRAPHICAL ABSTRACT

We present a novel supervised deep learning approach to perform automatic detection and classification of multiplets in 1H Nuclear Magnetic

Resonance (NMR) spectra.

system biochemistry (Fan and Lane, 2016), for the diagnosis

of tumors, hematomas, and other pathologies (e.g., multiple

sclerosis) in medicine (Zia et al., 2019), for characterization

of humic substances and analysis of contaminants in

environmental sciences (Cardoza et al., 2004), and for the

evaluation of soil components, plant tissues and complex food

compounds in agriculture (Mazzei and Piccolo, 2017) and food

chemistry (Cao et al., 2021).

Nevertheless, there is a major drawback. The process

of retrieving information from the spectra is often very

demanding, time-consuming and susceptible to errors. It

requires the involvement of expert spectroscopists to perform

manual annotation of the spectra, chemical shift and coupling

constants extraction, and structure elucidation. Moreover, the

evaluation and interpretation of the NMR spectra are not

always straightforward and unambiguous, due to the presence

of spectral artifacts and overlapping resonances. Therefore,

introducing automation in the NMR analysis could accelerate

and facilitate the process while increasing the robustness and

reproducibility of the results.

One of the tasks that can considerably benefit from the

introduction of automation is the annotation of the signal

regions for their coupling constants patterns. Early automated

approaches were based on local symmetry properties (Boentges

et al., 1989), maximum entropy techniques (Delsuc and Levy,

1988; Seddon et al., 1996; Stoven et al., 1997), multiplets

deconvolution (Jeannerat and Bodenhausen, 1999) and pattern

recognition (Golotvin and Chertkov, 1997). Hoye proposed

a recursive algorithm (Hoye et al., 1994; Hoye and Zhao,

2002) to deduce the splitting tree of a multiplet which has

successively been supplemented with symmetry and amplitude

constraints (Golotvin et al., 2002; Cobas et al., 2005). These

approaches have the limitation that they are meant to be applied

to one resonance at a time and need prior information on the

expected number of peaks involved. Griffiths (2000) introduced

an automatic procedure to aggregate individual peaks into

multiplets over the entire spectrum. Nonetheless, the model

relies on the knowledge of the exact position of the peaks,

which hinders the complete automation of the task. Even if

classical methodologies are still employed (Jeannerat and Cobas,

2021), the attention has recently shifted toward Deep Learning

for its unique power to reach human-level performance and

above on image classification, speech recognition, and natural

language processing (LeCun et al., 2015; Baraniuk et al.,

2020). The potentiality of deep learning has been employed

to perform different stages of the NMR analysis (Chen et al.,

2020; Cobas, 2020), from reconstruction and denoising of the

signal to the interpretation of the spectra, including chemical

shift prediction (Jonas et al., 2022), automated peak picking

and spectral deconvolution (Paruzzo et al., 2019; Li et al., 2021;

Schmid et al., 2022), to the fully automated structure verification

(Klukowski et al., 2022).

However, to the best of our knowledge, a deep learning based

algorithm, able to recognize resonance patterns of multiplets

over the entire one-dimensional spectrum without human

intervention and without any prior information on the structure

of the molecule, is still missing.

Here we introduce a supervised deep learning model that

performs automated detection and classification of signal

regions in one-dimensional NMR spectra. The network’s

architecture includes a combination of one-dimensional

convolutional layers, Long Short Term Memory layers and

fully connected layers, which has proven to be effective in

sequences and signal analysis (Sainath et al., 2015; Mutegeki

and Han, 2020; Xu et al., 2020; Tasdelen and Sen, 2021; Ozkok

and Celik, 2022). Similarly to a manual annotation procedure,

the output is a point-by-point prediction of a label value

that corresponds to a given resonance pattern. The network

is trained and quantitatively tested on synthetic spectra and

on 10 experimental spectra of small molecules, yielding a
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FIGURE 1

From automatic prediction to analysis. (A) Diagram of network’s architecture. CONV1D is a one-dimensional convolutional layer, BIDIR LSTM is

a bidirectional LSTM layer, DENSE is a time-distributed fully connected layer and SOFTMAX is the softmax output. Here, the type of each layer

with its kernel size, in the case of convolutional layers, and number of units, in the case of fully connected and LSTM layers are given (see also

Supplementary material). The network produces the prediction of a label whose height represents the multiplet class. (B) Signal classification.

True Positives (TP), False Positives (FP), True Negatives (TN) and False Negatives (FN) definition for a given multiplet class based on the confusion

matrix entries. (C) Signal detection: Intersection Over Union (IOU) definition in a 1D framework.

highly accurate and robust method for the characterization of

non-overlapping resonances in 1H NMR spectra.

2. Method

We implemented a supervised deep learning algorithm to

detect and localize signal regions in 1H NMR spectra and

classify them with respect to their resonance patterns into seven

multiplet classes: singlets, doublets, triplets, quartets, quintets,

sextets and septets. 1H NMR spectra are generally characterized

by the presence of resonances partially or totally overlaying

other resonances. These so-called overlapping multiplets were

excluded from the present analysis. The prediction was based

on the shape of the resonances only, without any prior

information on the molecule giving rise to the spectrum and its

structure.

2.1. Training set

The model was trained with 100,000 synthetic segments of

one-dimensional NMR spectra. Generating the input data from

scratch has various advantages. Deep learning algorithms are

known to require a large number of samples to be trained on, and

artificial production ensures a virtually unlimited availability

of samples. The labeling of the spectra can be carried out

automatically when creating the spectra. This overcomes the

difficulties of finding an extensive dataset annotated by NMR

experts with a costless, fast and robust procedure. Moreover,

generating the samples guarantees total control over the features

represented, making it possible to tailor the training set toward

the demands of the task.

The segments of the spectra were all simulated with 1,024

points over a range of 0.512 ppm with a base frequency of

400 MHz. The number of signal regions included in a single

spectrum segment decays exponentially. The resonance patterns

to be included in each spectrum were sampled randomly

between seven multiplet classes: singlets, doublets, triplets,

quartets, quintets, sextets and septets. In NMR theory, the

peaks have a Lorentzian profile (Keeler, 2002). However, due

to imperfect experimental conditions, the peak profile results

in a convolution of the Lorentzian lineshape with a Gaussian

lineshape, the Voigt profile, which can be reproduced with the

following Pseudo-Voigt approximation (Kielkopf, 1973):

V(ω−ω0; γ , σ ) ≡ lsG(ω−ω0; σ )+ (1− ls)L(ω−ω0; γ ) (1)
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Where ω0 is the maximum position, G is the Gaussian

lineshape and σ is its variance, while L is the Lorentzian

lineshape and γ is its Half Width at Half Maximum (HWHM).

Gaussian and Lorentzian lineshapes were generated with the

same HWHM, so that γ ≡ σ
√

2 log (2). The parameter γ

was sampled between 0.5 and 7 Hz, while the parameter ls was

sampled between 0, which corresponds to the Lorentzian limit,

and 1, which corresponds to the Gaussian limit. The amplitude

of the multiplets was sampled to reproduce the high dynamic

range usually found in experimental spectra. The ratio of the

distance between consecutive peaks in a multiplet, which for

the resonance patterns considered corresponds to the coupling

constant J, and the Full Width at Half Maximum (FWHM)

of the peaks 2γ , was varied between 0.5 and 18 to achieve

different levels of signal resolution. In this context a multiplet

with a higher resolution has well separated peaks. To make the

synthetic spectra as similar as possible to their experimental

counterpart, different kinds of effects and distortions were

introduced. A given amount of Gaussian noise was added to

the samples so as to have a signal to noise ratio between 101/2

and 105/2. Moreover, small phase and baseline distortions were

introduced (see Supplementary material), in order to make the

algorithm’s prediction more robust over experimental input

spectra which show residual phase and baseline distortions after

correction. Finally, to mimic the rooftop effect (Keeler, 2002)

due to strong coupling interactions, we slightly altered the

theoretically expected amplitude ratios of the peaks.

Once themultiplets were generated, the spectra were labeled,

assigning to each point the value of the class it belongs to. The

multiplet label set is a subset of the Natural numbers C ≡

{0, 1, 2, 3, 4, 5, 6, 7} ⊂ N. The numbers from 1 to 7 were used for

singlets to septets classes, while the baseline points were marked

with the number 0.

2.2. Network architecture

The network implemented for the detection and

classification of multiplets was characterized by an architecture

similar to the one used by Schmid et al. (2022) for the spectral

deconvolution task. The NMR spectrum was first sent to an

Inception-like module (Szegedy et al., 2015) composed of

four 1D convolutional layers of 16 filters with kernel sizes of

4, 16, 64, and 256 (see Figure 1). Each layer was followed by

an Exponential Linear Unit (ELU) activation function. The

range covered by a signal region varies with the line width and

the number of peaks included in that region (e.g., a singlet is

usually less extended than a septet). Including an Inception-like

module assures the possibility of reaching higher levels of

complexity, extracting features at different length scales while

reducing computational expense and mitigating overfitting

on the training set. After a time-distributed fully connected

layer, the spectrum passed through a Bi-directional Long

Short Term Memory (LSTM) layer. Bi-directionality means

that information flows in both directions across the repeating

modules of the layer. This component was decisive in our

case to ensure that the prediction of each spectrum point was

determined by the features appearing on both of its sides and

that the positioning of the multiplets along the frequency axis

did not affect the classification.

The successive layers were four time-distributed dense layers

with decreasing number of nodes, from 512 to the number of

classes, followed by a Rectified Linear Unit (ReLU) activation

function. In the end, a softmax output produced for each point

in the spectrum the probability of belonging to every multiplet

class considered.

During training, the network’s architecture received a series

of synthetic input samples x with their corresponding labels

y. All the 1, 225, 606 trainable weights θ were updated at each

learning epoch in order to minimize the Categorical Cross-

Entropy loss function. The network was trained for 33 epochs

on a HP Z2 Tower G5 Workstation with Intel(R) Core(TM) i7-

10700 CPU and CometLake-S GT2 [UHD Graphics 630] GPU.

To track the training process we split this set into two subgroups.

The first subgroup was composed of 75, 000 segments meant

for the training, the second subgroup was composed of 25, 000

segments meant for validation. At the end of the training

phase, the network had learnt a complex function of the inputs

8θ (x) and, considering the most probable multiplet class over

all classes l, was able to output the label prediction vector

ŷ = maxl Softmax(l). When running the model over entire

experimental spectra, the network’s input was resized in order to

match the number of spectral points. To improve the prediction,

the experimental spectra were resampled so as to obtain the same

number of points per Hz as in the training set.

2.3. Evaluation metrics for classification

Since the network produces a prediction point-by-point,

the most straightforward approach to evaluating the network’s

performance was to check if each point in the spectra was

correctly classified within the different multiplet classes. We

refer to this approach as the point-wise approach. However, a

considerable concern is that of assessing the prediction, not just

on the individual points, but on the multiplet as a whole. We

refer to this second approach as the object-wise approach.

2.3.1. Point-wise approach

We calculated the confusion matrix for the multi-class

classification problem of discriminating among various types

of multiplets (Padilla et al., 2020). A confusion matrix is a

square cross table C where the columns represent the predicted

classes and the rows represent the actual classes. Each element

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2022.1116416
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Fischetti et al. 10.3389/frai.2022.1116416

FIGURE 2

Color coded prediction of 1H NMR Spectra: (top) segment of a

synthetic spectrum; (bottom) segment of an experimental

spectrum from the testing set of 10 small molecules.

of the matrix Cij contains the number of points belonging

to class i, which are predicted by the network within class

j. From the confusion matrix, four performance indicators

can be defined, True Positives (TP), False Positives (FP),

False Negatives (FN) and True Negatives (TN), as displayed

in Figure 1. These indicators help to interpret the specific

nature of the errors the network produces, pointing out the

sources of confusion for the classification algorithm. For each

multiplet class, we measured (Hossin and Sulaiman, 2015)

accuracy (A), which is the fraction of properly classified points

in the spectra, precision (P), which is the rate of correct

predictions in a given class over all the predictions in that

class, recall (R), which is the rate of correct predictions among

all ground truths in a given class, and F1 score, which is

the harmonic average of precision and recall. An efficient

classifier should maximize both precision and recall, that is

minimize false positives and false negatives at the same time.

Therefore, the F1 score is a reliable indicator of the network’s

performance because it represents a midpoint between precision

and recall.

2.3.2. Object-wise approach

To evaluate the classification model on whole signal regions,

we computed the precision-recall curve, adapting the method in

Padilla et al. (2020) to our one-dimensional case. We defined a

label prediction L as the connected set of points marked with

a given label l, L ≡ {i ∈ spectrum points | ŷi = l}, and

surrounded either by baseline points or points marked by other

labels. We defined the confidence of each label prediction as the

average of the softmax output of the points belonging to that

label prediction:

Confidence(L) =
1

npoints

npoints
∑

i∈L

Softmaxi(l). (2)

All predicted labels, except for the baseline label, were

ranked with their confidence in decreasing order. For each

prediction, the Intersection Over Union (IOU) metrics was

computed. As the name says, IOU is the ratio of the intersection

between the area of the predicted label and the area of the

ground truth label, over the union of those areas. In our one-

dimensional case where the ground truth vector is y and the

predicted vector is ŷ, the IOU becomes:

IOU =
ŷ ∩ y

ŷ ∪ y
. (3)

Going down the ranked list of label predictions, each

prediction was considered a true positive if its IOU was above

a threshold t, which is usually set to 0.50 or 0.75. Otherwise, it

was considered a false positive. Then, for each prediction in the

list, we computed precision as a function of increasing recall,

obtaining a precision-recall curve. Precision was measured as

the ratio between the true positives encountered so far in the

list over all the predictions encountered so far, while recall was

measured as the ratio between the true positives encountered so

far in the list over the total number of predictions.

The Area Under the Curve (AUC) of the precision-recall

curve, often referred to as Average Precision (AP), was measured

with an interpolation procedure over the points n of the curve:

AP =
∑

n

(Rn+1 − Rn)Pinterp(Rn+1) (4)

with

Pinterp(Rn+1) = max
R̃≥Rn+1

P(R̃), (5)

where P and R denote, respectively, the precision and

recall values.

Obtaining a good result for the object-wise statistics not

only ensures that a large fraction of spectral points is correctly

classified, as can already be demonstrated through point-

wise statistics, but it also ensures that the prediction is not

fragmented. A fragmented prediction occurs when different

sets of spectral points belonging to the same signal region are
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classified within different multiplet classes. This is a common

issue for algorithms that produce a point-by-point output.When

inside a signal region there are multiple class predictions, each

connected set is considered as an individual label prediction with

a modest intersection with the ground truth region, leading to a

decline in the performance.

3. Results

3.1. Synthetic spectra

We run the classification model over 10,000 segments of

synthetic spectra generated independently from the training set.

An example of the classification over a synthetically produced

segment is displayed in Figure 2. The performance of the

prediction for each multiplet class is reported in the confusion

matrix in Figure 3. The entries of the matrix were normalized

along the rows, that is over the total number of ground truth

points in each class. The true positive rates on the diagonal of the

matrix are all above 99%. Even if with a very low rate, the most

frequent errors involve the baseline class: either baseline points

are predicted as signal points or signal points are predicted as

baseline points. After a visual inspection, it was apparent that

these errors happen at the borders of a signal region and can be

explained with a slightly different positioning, of the order of a

few points, of the predicted label with respect to the ground truth

one. However, these positioning inaccuracies of the predicted

labels are negligible compared to a serious misinterpretation

of a noise region for signal. Considering the error rates of the

multiplet classes, it appears that as the number of peaks in

the multiplet class increases the error rate decreases, with the

highest error rate, of the order of 1.5%, belonging to the singlets

class. This behavior can be interpreted considering the presence

of a slight class imbalance. In a point-by-point classification

algorithm, this issue exists despite the adoption of a synthetic

training set. When generating the training set, the pattern of

the resonances is chosen randomly so that there will be on

average the same number of resonances for each multiplet class.

However, the extension of multiplets varies with the number

of peaks so that resonances with more peaks spread over a

larger number of spectral points. Therefore, during training, the

network is presented with more points belonging to multiplets

with a higher number of peaks. This behavior should be

considered attentively. However, the excellent results achieved

even in the case of singlets assure the proper functioning of the

classification algorithm.

From the confusion matrix, we measured accuracy,

precision, recall and F1 score. The results for each multiplet

class together with an average over all the classes are reported

in Table 1. Accuracy is always above 99% and precision, recall

and F1 score do not fall below 98.5%. Precision and recall

values do not diverge significantly across the multiplet classes,

with a difference of 0.21% on average. Therefore, the model is

able to successfully minimize false positives and false negatives

at the same time. This can be confirmed by analyzing the

precision-recall curves (see Figure 3). An optimal classification

algorithm would yield a precision of 1.0 for all values of recall.

Our model is approaching this limit. The choice of the IOU

threshold whereby a label prediction was identified as a true

positive or a false positive is arbitrary and, indeed, each value

of the IOU threshold defines a different AP metric. In the

present work, we reported for each class the AP metric and

the average over all classes (mAP) for two threshold values,

50% and 75% (see Table 1). Increasing the IOU threshold

increases the probability that a label prediction is a false positive

and deteriorates the overall performance metrics. On average,

passing from a threshold of 50% to a threshold of 75% decreases

the AP metrics by only 0.47%. Also in the contest of the object-

wise approach, it is shown that the multiplet class for which the

classification efficiency declines faster when increasing the IOU

threshold is that of singlets.

3.2. Experimental spectra

When training a deep neural network with a set of

synthetic data, a robust generalization toward real data, that

is experimental 1H NMR spectra, becomes a crucial and non-

trivial objective to meet. Supervised learning models generally

assume that the input samples in the training set are drawn

from the same probability distribution as the samples that

will be fed into the network during testing: Ptrain(y|x) =

Ptest(y|x), where x is the input sample vector, and y is the label

vector. However, when applying the classification algorithm

over experimental spectra, their distribution could deviate, even

significantly, from that of the synthetic spectra in the training

set: Ptrain(y|x) 6= Ptest(y|x). When the hypothesis of having

no change between training and testing samples distribution

fails, we are dealing with a distribution shift (Quiñonero-Candela

et al., 2009) which may cause a deterioration of the prediction’s

accuracy. Recent deep learning applications toward spectral

denoising (Lee and Kim, 2019), spectral reconstruction of Non-

Uniformely Sampled (NUS) datasets (Hansen, 2019; Qu et al.,

2020), peak picking and spectral deconvolution (Li et al., 2021;

Schmid et al., 2022) have proven that it is feasible to obtain

outstanding results on NMR experimental data with networks

trained on synthetic data.

To evaluate the generalization properties of our classification

model, we run it on a testing set composed of experimental
1H NMR spectra of 10 small molecules, that is organic

compounds with a low molecular weight (≤ 1, 000 daltons).

Each experimental spectrum contains either 32, 768 or 65, 536

points (see Supplementary Table S3). To display the prediction

of the labels, we associated each multiplet class with a color and
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FIGURE 3

Evaluation of performance. (A) Point-wise approach: Confusion matrix of the performance on synthetic spectra. (B) Object-wise approach:

Precision-recall curves for each multiplet class (baseline class excluded) at threshold 75%. (C) Point-wise approach: Confusion matrix of the

performance on the 10 1H NMR spectra of the testing set.

shaded the signal region with the color corresponding to the

predicted class (see Figure 2).

The experimental testing set was annotated by NMR experts,

who labeled each peak with its features: position in ppm,

amplitude, line width, line shape, and the multiplet class it

belongs to.

To evaluate the classification performance of the model over

the experimental set quantitatively, we built a confusion matrix

(see Figure 3), considering each annotated peak and checking if

its position fell into a spectral region marked with the label of

the correct multiplet class. All the doublets, sextets and septets

appearing in the testing set were properly classified and the true

positive rates for the other classes were always above 80%.

4. Discussion

In this paper, we have presented a supervised deep learning

network able to mimic the work of an expert spectroscopist

who annotates one-dimensional NMR spectra produced by

small molecules to retrieve information on their structure.

One-dimensional NMR spectra have the most straightforward
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TABLE 1 Point-wise approach: Accuracy, precision, recall and F1 score metrics are reported for all the multiplet classes; the last row shows the

average performance over the classes.

A(%) P(%) R(%) F1(%) AP50(%) AP75(%)

Class 0 99.8 99.9 99.9 99.9 — —

Class 1 99.9 98.6 98.5 98.6 100 98.9

Class 2 99.9 99.0 98.8 98.9 100 99.5

Class 3 99.9 99.0 99.3 99.1 100 99.5

Class 4 99.9 99.3 99.4 99.3 100 99.8

Class 5 99.9 99.6 99.1 99.4 99.8 99.4

Class 6 99.9 99.1 99.5 99.3 100 99.5

Class 7 100 99.7 99.6 99.7 99.8 99.7

Average 99.9 99.3 99.3 99.3 100 99.5

Object-wise approach: The Area Under the Curve (AUC) of precision-recall curves, the Average Precision (AP), at threshold 50% and 75% is reported for all multiplet classes (baseline

class excluded); the last row shows the mean Average Precision (mAP).

measurement design among the NMR experiments. Compared

to advanced multi-dimensional techniques, which have

acquisition times ranging from a few hours to days, one-

dimensional spectra can be collected in a few minutes, leading

to a drastic reduction in experimental costs. All these reasons

make one-dimensional experiments the preferable methodology

for the rapid evaluation of chemical compounds. Unfortunately,

one-dimensional spectra are also the least informative measure.

For example, the analysis of cross-peaks in two-dimensional

NMR spectra, where each point has two frequency coordinates,

easily leads to the identification of pairs of spins that couple to

one another, significantly facilitating the structure elucidation

process (Klukowski et al., 2022). In 1H NMR spectra, on the

other hand, this same information can only be retrieved by

evaluating at the same time the chemical shift and the pattern

of the resonances. Considering these limitations, all classical

approaches to the automation of one-dimensional NMR analysis

are usually performed on individual multiplets (Golotvin et al.,

2002; Cobas et al., 2005; Jeannerat and Cobas, 2021), which

implies a previous knowledge of the precise location of the

signal regions, and needs additional information on the number

or positions of the peaks (Griffiths, 2000). Our algorithm

detects and classifies multiplets over the entire spectrum

simultaneously. This leads to a significant improvement since

the network produces a multiplet prediction considering a

larger portion of the spectrum than just the single signal region

and extracting information also from neighboring resonances.

Essentially, the network performs a visual inspection of

the spectrum, extracting features at different length scales

through the application of convolutional layers of diverse kernel

sizes. Then, the LSTM layer learns the correlations along the

frequency axis and the fully connected layers map the extracted

features into a more separable space, to help the classification.

The problem of locating and identifying resonance patterns

in NMR spectra may be compared to image recognition and

object detection tasks. Conceivably, the same function can be

exploited by one-dimensional adaptations of popular object

detection network’s architectures (He et al., 2016; Redmon et al.,

2016; Ren et al., 2017). However, the effective combination of

convolutional, LSTM and fully connected layers has already

proven to be especially suitable to analyze and classify one-

dimensional data, such as sequences and signals collected

through diverse measurements, extracting features and then

correlating them over the data points (Sainath et al., 2015;

Mutegeki and Han, 2020; Xu et al., 2020; Tasdelen and Sen, 2021;

Ozkok and Celik, 2022). Moreover, this kind of architecture

allows keeping the number of layers reduced compared to

object-detection architectures, achieving robust results at a lower

computational cost.

When predicting the multiplet class point-by-point along

the spectrum, a common issue that can be encountered is a

fragmented classification over the signal region, especially when

facing uncertain cases. This can be easily overcome by applying

a majority filter as a post-processing step.

The generation of the training set was a key aspect of

the realization of our model. Synthetic production of spectra

assured a virtually unlimited availability of samples with a high

level of diversity, paired with an automatic, costless and robust

labeling procedure. As we pointed out in the Results section,

when using a point-wise inducer class imbalance cannot be

eradicated completely even with a synthetic tailored training

set, because multiplet classes with a higher number of peaks

spread over a larger set of spectral points. Considering the

excellent results achieved in all multiplet classes, the presence of

a slight class imbalance did not hinder the overall classification

performance. Nonetheless, the different amounts of points

for different classes should be taken into account carefully at

implementation time, adding patterns of underrepresented

classes or pruning patterns of overrepresented ones

if needed.
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Besides, multiplets generated synthetically should closely

mirror the shapes and resonance patterns encountered in real

experimental spectra, to mitigate the effect of distribution shift

on the generalization performance. In this respect, complex

resonance patterns not represented in the training set cannot be

recognized and classified properly at the present stage. A future

study should include multiplet classes characterized by several

coupling splittings. Encountering these kinds of resonances in
1H NMR spectra is becoming more and more frequent with

the increasing measurement resolution reached by the new

benchtop spectrometers.

Even with a higher resolution, one-dimensional spectra

are usually marked by an extensive presence of resonances

laying over other resonances: the so-called overlapping

multiplets. Hence, the motivation for restricting the usage

of one-dimensional NMR spectra to the analysis of small

molecules. Macromolecules, such as proteins, including a much

larger number of atoms, will produce excessively convoluted

overlapping resonances which might lead to absolutely

inconclusive results for the analysis.

Attempting to classify overlapping peaks is a challenging

task for a neural network: the signal of several resonances

can add up in countless fashions, making it difficult to define

specific features for such a class. One possibility could be to

build the overlapping class with every resonance that cannot fit

into any other multiplet class. We plan to investigate this in a

forthcoming work.

5. Conclusion

In conclusion, the proposed deep learning framework has

demonstrated the ability to effectively detect and classify signal

regions in 1H NMR spectra. The network has produced

outstanding results when applied to synthetic spectra, reaching

an average of 99.9% for accuracy metrics and 99.3% for

precision, recall and F1 score. Moreover, the learning algorithm

has proven to be capable of generalizing remarkably well on

real experimental 1H NMR spectra. Providing scientists with

an efficient and reliable tool to discriminate the various classes

of resonances in one-dimensional spectra, without the need of

turning to more sophisticated and expensive techniques, holds

the promise of speeding up the workflow of production and

analysis of chemical compounds while introducing a higher level

of consistency among experimental results.
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