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More than 5 million patients have admitted annually to intensive care units (ICUs) in the

United States. The leading causes of mortality are cardiovascular failures, multi-organ

failures, and sepsis. Data-driven techniques have been used in the analysis of patient

data to predict adverse events, such as ICU mortality and ICU readmission. These

models often make use of temporal or static features from a single ICU database to

make predictions on subsequent adverse events. To explore the potential of domain

adaptation, we propose a method of data analysis using gradient boosting and

convolutional autoencoder (CAE) to predict significant adverse events in the ICU, such as

ICUmortality and ICU readmission. We demonstrate our results from a retrospective data

analysis using patient records from a publicly available database called Multi-parameter

Intelligent Monitoring in Intensive Care-II (MIMIC-II) and a local database from Children’s

Healthcare of Atlanta (CHOA). We demonstrate that after adopting novel data imputation

on patient ICU data, gradient boosting is effective in both the mortality prediction task

and the ICU readmission prediction task. In addition, we use gradient boosting to identify

top-ranking temporal and non-temporal features in both prediction tasks. We discuss

the relationship between these features and the specific prediction task. Lastly, we

indicate that CAE might not be effective in feature extraction on one dataset, but domain

adaptation with CAE feature extraction across two datasets shows promising results.

Keywords: intensive care units, clinical decision support, mortality prediction, gradient boosting, convolutional

autoencoder, domain adaptation (DA)

INTRODUCTION

Each year, over 5 million patients have admitted to ICUs in the United States (Vranas
et al., 2018), with an average mortality between 8 and 10% (Wu et al., 2002). The leading
causes of mortality are cardiovascular collapses (Benjamin et al., 2017), multi-organ failures
(Marshall et al., 1995), and sepsis (Kissoon et al., 2016). Studies have shown that prolonged
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hospital stays lead to increased life-threatening outcomes, which
are associated with adverse events and other risks in the
ICU environment (Celi et al., 2011; Hunziker et al., 2012),
such as severe infection (Fagon et al., 1994; Ribas et al.,
2011), cardiac arrest (Nemati et al., 2011), extended invasive
ventilation (Fagon et al., 1993; de Rooij et al., 2006), mortality
within 1 year (Mandelbaum et al., 2011; Celi et al., 2012),
ICU/hospital readmissions (Fialho et al., 2012), acute kidney
injury (Mandelbaum et al., 2011; Celi et al., 2012), and
hypotension (Lee and Mark, 2010; Hug et al., 2011; Lee et al.,
2012). Studies also report that these complications will also
lead to a significant increase in the costs incurred (Wheeler
et al., 2011; Kwon et al., 2012; Hutchinson et al., 2013). Hence,
accurate prediction of adverse patient endpoints would allow for
improved resource allocation.

Research on the analysis of patient data to predict adverse
events, such as ICU mortality and ICU readmission, has mainly
used probabilistic models. Logistic regression (Celi et al., 2012;
Fuchs et al., 2012; Lee et al., 2012; Venugopalan et al., 2017),
Cox regression (Fuchs et al., 2012), and artificial neural networks
(Wong and Young, 1998; Lee and Mark, 2010; Celi et al., 2012)
are the most common models used in the analysis of healthcare
data (Goldstein et al., 2017). However, these models suffer from
inherent issues, particularly, their basis on using a snapshot of the
data available to make longitudinal predictions. Patient data itself
are temporal in nature; hence, a temporal analysis of these data
should be performed for a more appropriate health prediction.

The temporal models commonly seen in the literature include
models, such as sequence analysis (Wang et al., 2008; Batal et al.,
2011; Tao et al., 2012; Casanova et al., 2015; Syed and Das,
2015), association rule mining (Bellazzi et al., 2011; Casanova
et al., 2015; Yang and Yang, 2015), temporal Cox regression
(Warner et al., 2013; Cai et al., 2015; McCoy et al., 2015),
and clustering (Toddenroth et al., 2014; Choi et al., 2017).
Sequence analysis and association rule mining-based studies
require extensive user input for identifying specific features
whose patterns of correlation can be studied with respect to the
target variable. In addition, they are not amenable for discerning
relationships and patterns contributing to adverse events, from
a large number of features. Regression- (Singh et al., 2015)
and clustering-based (Doshi-Velez et al., 2014) studies use the
information within a specific time interval for analysis. These
studies do not account for the differing length of available data
for different patients. Cox regression also does not account for
the dependency between the consecutive time points. Graphical
methods by Liu et al. use Gaussian Processes (GPs) for time-
series analysis (Liu et al., 2013). Their assumption is that the
data are piecewise linear and use only the GP coefficients for
classification. Such models make the assumptions that ICU data
can be approximated using piecewise GPs. Stiglic et al. (2013)
used past recordings for a single patient to make predictions
about a future time instant using the least absolute shrinkage
and selection operator (LASSO) regression. The parameters of
these models are trained for each individual patient and do not
make use of the information, which can be learned from large
databases consisting of multiple patients. Such models not only
require the user to train the model for each patient but also tend

to over-fit the data. In addition, these models do not tell the
clinicians if the patients are improving over time. Yu et al. (2011)
generates individual survival curves by using a series of logistic
regression models to calculate the hazard at each time instance.
This approach is not only very computationally intensive but also
does not account for the variation in the duration of ICU data.

Transfer learning has been widely used in different clinical
decision support systems, especially onmedical image processing
tasks (Han et al., 2018; Lee et al., 2018; Cheplygina et al., 2019;
Choudhary et al., 2020). The goal of transfer learning is to use
an external dataset to improve classification or segmentation
results on the local dataset. There are two major concepts
related to transfer learning: domain and task. Medical images
are considered from different domains if they are generated
by different scanners or follow different scanning protocols.
Therefore, datasets collected from multiple sites or providers are
considered from different domains. Task refers to the specific
machine-learning task, such as disease classification (Chen et al.,
2017; Hussein et al., 2017; Li et al., 2018), lesion detection (Hwang
and Kim, 2016; Elmahdy et al., 2017; Murthy et al., 2017), and
tumor segmentation (Kandemir, 2015; Huynh et al., 2016).

One category of transfer learning is “same domain, different
tasks.” Studies in this category would use the same dataset for
multiple tasks. A common strategy is feature transfer for multi-
task learning that proposedmodels aim to learn common features
across different tasks. Joint learning on task-independent features
can effectively mitigate the overfitting problem by regularizing
the classifiers and/or increasing sample size. Another category
of transfer learning is “different domains, same task.” Imaging
data collected from different domains assumably have different
sample data distribution; hence, domain adaptation is needed.
The objective of domain adaptation is to transfer the knowledge
across different domains by learning domain-invariant features
transformation. Image-to-image domain transformation (Isola
et al., 2018) achieves pixel-level mapping between source and
target images using generative models, such as generative
adversarial networks (GAN) (Goodfellow et al., 2014). Another
approach is latent feature space transformation that learns
the domain-invariant features representation by transforming
source and target domain images into the shared latent space.
Latent feature space transformation has three subcategories of
methods: reconstruction-based (autoencoder) (Bousmalis et al.,
2016; Ghifary et al., 2016), divergence minimization (divergence
metric) (Damodaran et al., 2018; Kang et al., 2019; Rozantsev
et al., 2019), and adversarial learning (discriminator) (Lafarge
et al., 2017).

Despite its success in image processing (Han et al., 2018;
Lee et al., 2018; Choudhary et al., 2020), transfer learning has a
limited impact on ICU data for predicting mortality risk and ICU
readmission. Gupta et al. (2020) proposed multi-task transfer
learning using recurrent neural network (RNN) on Multi-
parameter Intelligent Monitoring in Intensive Care (MIMIC)-III
data to identify phenotypes and predict in-hospital mortality. The
proposed RNN is pretrained on predicting phenotypes, before
transferring the learned knowledge on the mortality prediction
task. Although the author demonstrated the effectiveness of
multi-task transfer learning, there are two shortcomings of the
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TABLE 1 | Summary of Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) and Children’s Healthcare of Atlanta (CHOA) data.

Data and features MIMIC II CHOA Data type

Sample size 40,416 patient records 5,739 patient records

Demographics Gender, age, height, weight, ethnicity, comorbidity DOB, gender, age, height, weight,

ethnicity, religion, date of death, co

morbidity with other diseases

Non-temporal

Lab data Urea, albumin, bilirubin, creatinine, sodium,

potassium, calcium

Urea, albumin, bilirubin, creatinine,

sodium, potassium, calcium

Temporal

Chart data Heart rate, blood pressure, NBP, CVP, SaO2, arterial

PH, arterial PaCO2, arterial PaO2

Temporal

Microbiology Types of microbes, amount of microbes,

dilution

Non-temporal

Medication data Medication and IV administered, dosage,

duration time, concentrations and rate of

administration, composition of IV imposed

Non-temporal

work: (1) the proposed RNN model is close to a vanilla model.
The complicated RNN models, such as gated recurrent units
(GRUs) or long short-term memory (LSTM), could be used
to improve the pipeline. (2) There is no preprocessing on the
MIMIC-III data, as the author directly worked on the benchmark
data. Another way to do transfer learning is to train the model
on two datasets to improve prediction performance. Desautels
et al. (2017) concatenated MIMIC-III data (external dataset)
with UK ICU data (internal dataset) for joint training before
evaluating the model on the internal testing set. Multi-source
transfer learning is novel on ICU adverse outcome prediction, but
the proposedmodel suffers from very low specificity (0.5917) and
poor f1-score (0.1321).

In this study, we propose a retrospective study of adult
populations to discover factors indicative of adverse events,
such as ICU mortality and 30-day ICU readmissions, using a
gradient boosting algorithm for classification and convolutional
autoencoder (CAE) for domain adaptation. We apply CAE as
domain adaptation for learning domain-invariant latent feature
representation from two ICU datasets. We aim to improve model
classification performance on our internal dataset after learning
from the external dataset.

We summarize our major contribution in several folds:

• We demonstrate that gradient boosting is effective in both
the mortality prediction task and the ICU readmission
prediction task.

• We use gradient boosting to identify top-ranking temporal
and non-temporal features in both the mortality prediction
task and the ICU readmission prediction task. We discuss
the relatedness of these features with their corresponding
prediction task.

• We indicate that CAE might not be effective in feature
extraction on one dataset, but domain adaptation with CAE
feature extraction across two datasets shows promising results.

We structure the remainder of this article as follows. First, a
short description of our data source is followed by a detailed
description of the preprocessing and data mining approaches
in Section Materials and Methods. Experiments are described in

Section Experiments. Results and discussion are presented in
Section Results and Discussion. Finally, the conclusion and
future directions are summarized in Section Conclusion.

MATERIALS AND METHODS

In this study, we performed the classification of ICU patients
into high risk and low risk for adverse events using random
forest, gradient boosting, and CAE. We demonstrated our results
using a retrospective data analysis of adult ICU data from
the MIMIC-II database and local ICU data from Children’s
Healthcare of Atlanta (CHOA). We used different machine-
learning models to determine patient’s factors, which contribute
to adverse consequences, such as ICU mortality and 30-day
ICU readmission. These endpoints are particularly interesting
since they provide the basis for the long-term prediction of
adverse events.

Data and Preprocessing
MIMIC Data
Multi-parameter Intelligent Monitoring in Intensive Care-II
is a public ICU data repository containing over 40,000 ICU
stay (32,331 adults and, 8,085 neonatal) records (Saeed et al.,
2011). We performed retrospective data analysis using adult
patient data (>16 years). Each ICU stay record consists of
the patient’s demographic information, diagnosis, chart events,
medication intake events, microbiology events, etc. (example
features in Table 1). Each patient record consists of features
which are either static (does not change over the entire duration
of the patient’s ICU stay) or temporal (changing in time).
From the total of over 13,000 features, we ranked the features
by the frequency of measurement. Using the top 2,000 most
frequent features, we picked 87 features on the basis of clinician
judgment (we used only 84 features for ICU readmission to avoid
information leakage). The included features that covered clinical
measurements, lab results administrative data, comorbidities,
and other diagnostic procedures.

For this analysis, the data from each feature were binned into
binning intervals of 6 h. After binning the data into intervals
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of 6 h, data had 87 ± 21% of missing data. The missing
data were divided into multiple types of missing data known
in the statistical literature as “missing completely at random
(MCAR),” “missing at random (MAR),” and “missing not at
random (MNAR).” Then each type was imputed differently
using the techniques described in a previous paper on data
imputations (Venugopalan et al., 2019). MNAR data were
imputed using Student’s t-copulas and MAR data were imputed
using expectation maximization (EM) after clustering.

We then proceeded to perform feature selection and
classification on the patient data sequences for identifying
patients at risk for adverse events, such as mortality in the ICU
and 30-day ICU readmission. In this dataset, there were 2,334
patient records with mortality during the ICU stay and 29,997
patient records of successful discharge from the ICU. Similarly,
7,787 patients’ records had ICU readmission within 30 days and
24,544 patients did not relapse into the ICU within 30 days.

CHOA Data
The other dataset is fromCHOA containing 5,739 patient records
spanning an 11-month period. The visits spanned pediatric
ICU, neonatal ICU, and cardiac ICU. As shown in Table 1,
each ICU stay record consists of the patient’s demographic
information (e.g., gender and age of admission), diagnosis [e.g.,
International Classification of Diseases (ICD-9) codes], birth-
related events (e.g., birth weight, head circumference, gestation
weeks), microbiology events (e.g., microbes in blood or serum),
chart events (e.g., heart rate), medication intake events, and
clinical records (e.g., pulse oximetry) collected from bedside
monitors, averaged over each minute.

The data columns are binary, categorical, and quantitative
from which we extracted features (9,071 non-temporal and 2,500
time-series features). To be more specific, we used categorical
data, such as the disease codes and procedure codes, into the
number of times each disease or condition was presented or the
procedure performed. This gives us 9,071 non-temporal features
that consist of demographics, microbiology, diagnosis codes, and
medication data. In this dataset, since the temporal information
for microbiology, medication, and pathology was not available,
we treated them as non-temporal data and performed aggregates
over the duration of the stay. The temporal data we used
were from the various lab tests performed. Lab test data had
a median sampling interval of 2.05 h, from which we extracted
2,500 features. After removing features with >80% missing data,
we were left with 1,882 lab features, which we binned into 2 h
binning intervals. In addition, this dataset had an issue where
the tests or values were not recorded for very long-time intervals
(≈several days) in the middle. This could be due to the fact that
the patients were no longer in the ICU. We treated these type of
data as multiple time-series for each patient visit and did not use
themissing period for binning. This gave us a total of 8,489 series.
Since non-temporal data have <1% data missing, no features
were removed.

The features extracted in the previous step were either
quantitative real numbers or binary. The range of quantitative
features had an order of magnitude variation (e.g., respiration
rate varied from 10 to 30 breaths per min, blood pressure varied
from 90 to 150 mmHg, and blood calcium varied between 8 and

11 mg/dl). To address this issue, we normalized all the features
between the ranges 1 and 2. We also converted the binary values
into 1 or 2.

Classifiers
Four classifiers are introduced in this section. Gradient boosting
and random forest are ensemble models of decision trees.We will
also briefly describe the linear regression classifier and support
vector machine.

Random Forest
A random forest classifier is an ensemble of decision trees
that take the advantage of a large number of uncorrelated
trees. Each decision tree in the random forest makes a class
prediction and the random forest model takes the votes of the
majority. The core theory behind random forest is that a large
crowd of decision trees would outperform individual trees. To
ensure model generalizability, random forest enables feature
randomness that when splitting a node, the model considers
all possible features and selects the one leading to the largest
separation between left node observations and right node ones.
In this work, we used the online package Sklearn1 to apply the
random forest classifier. We used Gini impurity as the criterion
to measure the quality of split. To mitigate the overfitting issue,
themaximum tree depth was used; it was also the hyperparameter
that we tuned in an experiment using grid search.

Gradient Boosting
Boosting is to convert weaker learners into stronger learners.
Typically, a weaker learner is a decision tree that classifies the
data with a poor performance. Each new tree in boosting is a
fit to a modified copy of the original dataset. Boosting can be
explained as a numerical optimization problem that the objective
is to minimize the loss function defined in the model by using a
gradient descent procedure when adding new weak learners.

Gradient boosting (Friedman, 2001) is a stage-wised additive
model. It trains many models in a sequential and gradual way.
When a new weak learner is added, existing weak learners
remain unchanged in the model. Gradient boosting allows the
optimization of arbitrary loss functions that are differentiable. In
this work, we used the online package Sklearn to apply gradient
boosting classifier on ICU data. We used deviance as the loss
function, and Friedman mean squared error (Friedman, 1997) to
measure the quality of tree split. To mitigate overfitting issue, the
maximum tree depth is used; it was also the hyperparameter that
we tuned in an experiment using grid search.

Linear Regression
A Linear regression classifier of Ordinary Least Squares fits
a linear model that aims to minimize the residual sum of
squares between the prediction (linear approximation) and
the ground truth observations. The mathematical formula is:

min
w

∣

∣

∣

∣Xw− y
∣

∣

∣

∣

2

2
.

Where X is the input data matrix, w is the weight matrix, and y
is the predicted vector. Amajor limitation of the linear regression

1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

GradientBoostingClassifier.html
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FIGURE 1 | Structure of proposed convolutional autoencoder.

classifier is that it is sensitive to class imbalance. We have used
linear regression as a baseline model in this work.

Support Vector Machine
Support vector machine is a kernelized method for classification
and outlier detection. It is effective for high-dimensional feature
data. In this project, we have used the Radial Basis Function
(RBF) kernel for our SVM classifier.

CAE and Domain Adaptation
As the MIMIC dataset has many more patient records than the
internal CHOA dataset, we would like to transfer the knowledge
learned from the external dataset and apply to the internal
dataset to improve model prediction performance. Specifically,
we would like to apply domain adaptation to transform data from
both domains into a shared feature space and learn domain-
invariant feature representation. When inspecting the datasets,
we found that the feature names in MIMIC and CHOA datasets
cannot be matched since the two datasets are not following the
same rules to name their features. This is a major challenge,
as we cannot directly learn the domain-independent features
across the two datasets. Thus, we proposed to use non-negative
matrix factorization (NMF) and CAE for latent feature space
transformation. NMF reduces feature dimension so that the CAE
model can fit on data from both domains. CAEs are effective
in learning latent feature vectors on pathological whole slide
images (Zhu et al., 2019); yet for this project, we used CAE
with 1D convolutional layers. As shown in Figure 1, the stacked
CAE consists of an encoder that encodes the original input
feature vector into compressed feature representation and a
symmetric decoder that projects learned feature representation
onto the original feature space. Each block of the encoder
includes a 1D convolutional layer, a ReLu activation layer,
and a max pooling layer. Similarly, each block of the decoder
includes a 1D convolutional layer, a ReLu activation layer, and an
upsampling layer. The reconstructed output vector is compared

with the original input vector, and the loss is computed and
backpropagated during optimization.

EXPERIMENTS

As shown in Figure 2, we design three different
experimental settings for both mortality prediction and
ICU readmission prediction.

1. Shallow classifiers only.We directly applied shallow classifiers,
such as gradient boosting, random forest, linear regression,
and SVM models, on temporal and non-temporal features of
CHOA data.

2. Convolutional autoencoder and shallow classifiers. We first
applied NMF on CHOA data for feature dimensionality
reduction and then used a CAE model to learn latent feature
representation. Afterward, we applied shallow classifiers on the
concatenation of temporal and non-temporal features of the
CHOA data.

3. Convolutional autoencoder, domain adaptation, and shallow
classifiers. We first separately applies NMF on MIMIC and
CHOA data for feature dimensionality reduction, then used
two separate CAEmodels to learn latent feature representation
from these two datasets. We then pretrain shallow classifiers
on the learned latent feature vectors of MIMIC data and fine-
tuned the classifiers on CHOA features before evaluating the
testing set of CHOA data.

Hyperparameter tuning was conducted using grid search and
cross validation. The best classification model was automatically
selected based on the highest average AUC-ROC score across
5-fold cross-validation. The maximum tree depth was the
hyperparameter tuned for the random forest model and gradient
boosting model. We also tried a different number of components
in NMF. As for CAE, we empirically varied the number
of blocks between 3 and 5. The number of filters in each
convolutional layer increases by a factor of 2 from outside to
the inside of the encoder, the kernel size of the convolutional
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FIGURE 2 | Diagrams for three experiments settings. The top one is to apply classifiers directly on the Children’s Healthcare of Atlanta (CHOA) data. The middle one is

to apply non-negative matrix factorization (NMF) and convolutional autoencoder (CAE) on CHOA without domain adaptation. The bottom one is domain adaptation

using CAE.

layer is 2, and the stride is 1. The CAE was implemented
in Keras/TensorFlow.

We performed statistical analysis using two-way analysis of
variance (ANOVA) to compare classification results. The two
independent variables are experiment settings and classifiers. The
null hypothesis is that the mean classification results in different
groups are the same. Thus, the alternative hypothesis is that
one group mean is different from other groups. In addition to
variable-level statistical analysis, we also tried to identify which
values of these two variables are significant. We performed
a pairwise comparison using the Tukey’s honestly significant
difference (HSD) test (Keselman and Rogan, 1978). We would
reject the null hypothesis if the p is <0.05.

RESULTS AND DISCUSSION

Temporal and Non-Temporal Features
We first evaluated the classification performance using different
feature sets. As shown in Table 2 and Table 3, the highest
area under the curve (AUC)-receiver operating characteristic
(ROC) score is achieved using a gradient boosting classifier on
the concatenation of both temporal and non-temporal features.
On the mortality prediction task, both feature sets have better
performance than temporal only feature sets, which are better
than non-temporal only feature sets using gradient boosting or
random forest classifier. On ICU readmission prediction, the
performance between using both feature sets and non-temporal
features only is close when using gradient boosting and random
forest models; both sets have better performance than temporal
feature only. Linear regression and SVM classifiers have lower
AUC-ROC scores when using both feature sets than the decision-
tree-based models. We argue that non-temperature feature sets

TABLE 2 | Average and standard deviation (SD) of AUC-ROC score for mortality

prediction using shallow classifiers with temporal features only, non-temporal

features only, and both types of features.

Classifier Both features Temporal only Non-temporal only

Gradient boosting 0.95718 (0.01546) 0.91020 (0.03810) 0.90132 (0.01824)

Random forest 0.94583 (0.01982) 0.92798 (0.03218) 0.87685 (0.02455)

Linear regression 0.71654 (0.08129) 0.80372 (0.05604) 0.74497 (0.06087)

SVM 0.62956 (0.02939) 0.62049 (0.03315) 0.78573 (0.04997)

The highest average score is highlighted in bold and underline.

TABLE 3 | Average and standard deviation (SD) of AUC-ROC score for ICU

readmission prediction results using shallow classifiers with temporal features only,

non-temporal features only, and both types of features.

Classifier Both features Temporal only Non-temporal only

Gradient boosting 0.76651 (0.03185) 0.60214 (0.03058) 0.75414 (0.03747)

Random forest 0.74103 (0.03934) 0.60882 (0.01912) 0.74421 (0.04731)

Linear regression 0.55374 (0.01909) 0.60293 (0.02486) 0.70807 (0.03570)

SVM 0.54261 (0.03597) 0.46318 (0.01806) 0.66418 (0.04506)

The highest average score is highlighted in bold and underline.

and temporal feature sets contain similar information on adverse
events prediction, while the concatenation of both feature sets
would achieve the best performance.

Mortality Prediction
Table 4 shows the average and standard deviation (SD) of the
mortality prediction results across five-fold on CHOA data
under three different experimental settings. We also visualize the
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results using a box plot in Figure 3. Specifically, the experiment
setting of no domain adaptation (directly applying shallow
classifiers on CHOA data) achieves better results than the
other two experiment settings (pairwise comparison, p < 0.05).
Domain adaptation using CAE achieves better results than CAE
without domain adaptation (p < 0.05). This indicates that
even though the existing latent feature extraction method using
CAE is not effective, domain adaptation between two datasets
can significantly improve the performance. Meanwhile, gradient
boosting and random forest algorithms are not significantly
different in performance (p > 0.05), but either of them is
better than SVM and linear regression classifier (pairwise
comparison, p < 0.05).

We also identify the top features for MIMIC and CHOA
mortality prediction that include both temporal information
and non-temporal information (in Table 5). For the MIMIC

TABLE 4 | Mortality prediction results on and Children’s Healthcare of Atlanta

(CHOA) data (both temporal and non-temporal features) under three different

experimental settings.

Classifier No domain

adaptation

CAE on CHOA only CAE and domain

adaptation

Gradient boosting 0.95718 (0.01546) 0.74864 (0.04162) 0.86375 (0.02267)

Random forest 0.94583 (0.01982) 0.74855 (0.03668) 0.86375 (0.02267)

Linear regression 0.71654 (0.08129) 0.69893 (0.05303) 0.76208 (0.03429)

SVM 0.62956 (0.02939) 0.50896 (0.03349) 0.44725 (0.12380)

The highest average score is highlighted in bold and underline.

dataset, maximum and minimum values of Simplified Acute
Physiology Score (SAPS) (Agha et al., 2002) and Sequential Organ
Failure Assessment (SOFA) (Arts et al., 2005) score are top-
ranking features. SAPS II and SOFA are clinical scores that were
designed to assess the severity of illness for ICU patients and to
predict their risk of mortality, using lab tests and clinical data.
Features, such as hospital length of stay and ICU length of stay,
might be controversial for mortality prediction, as the longer
length of stay may indicate more severe illness and they fail to
predict “ahead of mortality event.” For CHOA dataset, the top-
ranking features are lab measurements, clinical events and drug
information and ventilator days. These top-ranking features are

TABLE 5 | Top 10 features in mortality prediction using gradient boosting on

Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) and Children’s

Healthcare of Atlanta (CHOA) data.

Feature ranking MIMIC CHOA

1 sofa_max component_name_art base deficit

2 sofa_min dx_code_v49.86

3 hospital_los component_name_nrbc

4 icustay_los component_name_patient fi02

5 sapsi_max component_name_plasma free hgb

6 sapsi_min ventilator_days

7 subject_icustay_total_num dx_rank

8 cost_weight component_name_ast (sgot)

9 sofa_first dx_present_on_admit_yn

10 peptic_ulcer value_in_range_yn

FIGURE 3 | Boxplot of mortality prediction results using four different classifiers with three experiment settings.
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domain-specific; they are very different from the features in the
MIMIC dataset. Further validation and interpretation of these
top-ranking features are needed to identify potential biomarkers
for clinical practice.

ICU Readmission Prediction
Table 6 shows the average and SD of the ICU readmission
prediction results across 5-fold on CHOA data under three
different experimental settings.We also visualize the results using
a box plot in Figure 4. Similar to the results in the mortality
prediction task, the experiment setting of no domain adaptation
(directly applying shallow classifiers on CHOA data) achieves
better results than the other two experiment settings (pairwise
comparison, p < 0.05). However, domain adaptation using
CAE fails to achieve better results than CAE without domain
adaptation (p > 0.05). If we only focus on the best results models
(gradient boosting and random forest), domain adaptation

TABLE 6 | ICU readmission prediction results on Children’s Healthcare of Atlanta

(CHOA) data (both temporal and non-temporal features) under three different

experimental settings.

Classifier No domain

adaptation

CAE on CHOA only CAE and domain

adaptation

Gradient boosting 0.76651 (0.03185) 0.57404 (0.01665) 0.62448 (0.03845)

Random forest 0.74103 (0.03934) 0.59993 (0.01988) 0.63117 (0.03904)

Linear regression 0.55374 (0.01909) 0.57664 (0.00749) 0.58234 (0.01914)

SVM 0.54261 (0.03597) 0.51617 (0.01912) 0.44870 (0.03285)

The highest average score is highlighted in bold and underline.

has better performance than CAE without domain adaptation
(p < 0.05). This indicates that even though the existing latent
feature extraction method using CAE is not effective, domain
adaptation between two datasets can significantly improve the
performance. Similar to the results in the mortality prediction
task, gradient boosting and random forest algorithms are not
significantly different in performance (p > 0.05), but either of
them is better than SVM and linear regression classifier (pairwise
comparison, p < 0.05).

Different from mortality prediction task, the top-ranking
features for ICU readmission prediction on MIMIC data do
not have SAPS II or SOFA scores. As shown in Table 7, these

TABLE 7 | Top 10 features in ICU readmission prediction using gradient boosting

on Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) and Children’s

Healthcare of Atlanta (CHOA) data.

Feature ranking MIMIC CHOA

1 Gender dx_code_v44.1

2 hospital_los dx_rank

3 tidal volume (obser) apgar_score_5_minutes

4 temperature f gestation_age_weeks

5 icustay_los dx_type_coded final

6 spo2 nicu_yn

7 carbon dioxide birth_weight

8 renal_failure discharge_destination

9 congestive_heart_failure dx_present_on_admit_exempt_yn

10 fingerstick glucose birth_length

FIGURE 4 | Boxplot of intensive care unit (ICU) readmission prediction results using four different classifiers with three experiment settings.
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top-ranking features include lab measurements, chart events, and
demographic information. We argue that gradient boosting is
effective in identifying top-ranking features for both mortality
prediction and ICU readmission prediction, as statistical features
of SAPS II and SOFA scores are the majority of top-ranking
features in the mortality prediction task, but not in the ICU
readmission prediction task. For CHOA data, the top-ranking
features are different from those in the mortality prediction
task, focusing on drug-related features, but still include lab
measurements and clinical events. Some of these top-ranking
features are pediatric-specific; they are very different from
the features in the MIMIC dataset. Similar to the mortality
prediction task, further validation and interpretation on these
top-ranking features are needed to identify potential biomarkers
for clinical practice.

CONCLUSION

In this work, we extracted temporal and non-temporal features
from one public ICU dataset (MIMIC) and a local ICU dataset
(CHOA) to build predictive models on mortality risk and
ICU readmission. We designed three different experimental
settings, implemented CAE to learn latent feature representation,
and applied multiple classifiers, such as gradient boosting
and random forest for classification. We demonstrated the
effectiveness of gradient boosting in both mortality prediction
and ICU readmission prediction tasks. In addition, we showed
that domain adaptation using CAE across two datasets
can significantly improve results against using CAE and
classifiers without domain adaptation. We aim to learn domain-
invariant latent feature representation and improve prediction
performance on the clinical adverse event when the local data set
has a very limited sample size.

There are some limitations of this work. First, the temporal
features in the CHOA dataset are binned into intervals of
6 h each, which could result in loss of granularity of data
and introduction of new missing data points. Second, domain
adaptation is designed on the latent feature representation level,
not on the deep neural network (CAE) level. This is largely
due to the different feature names and feature quantities, as the
same deep neural network model with the same hyperparameters
cannot be used on both datasets. Third, there is a fundamental
bias between the two datasets. For the MIMIC dataset, we

extracted ICU data for patients over 16 years old; for the CHOA

dataset, we expect the majority of the patients is children.
Consequently, the knowledge learned from the adult patient
group may not help the model predictions on the children
patient group.

As for future work, we would like to acquire time-stamped
temporal information for the CHOA ICU dataset. We will
implement deep learning models, such as RNNs, to capture
the temporal information of lab tests and microbiology events
(instead of aggregating them into non-temporal data). We
believe that a combination of static and temporal models could
give additional insight into the disease process and improve
prediction performance. In addition, we will apply fairness-
learning techniques to mitigate biased prediction on age- and
birth-related factors. In this way, we can improve the fairness of
the domain adaptationmodel and improve the prediction results.
Lastly, we would like to overcome the different feature names of
the two ICU datasets so that we can apply the same deep neural
network to them to transfer the knowledge between the deep
neural network.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

YZ designed the experiments, implemented the gradient boosting
classifier and convolutional autoencoder (CAE), and drafted the
article. JV initiated the project, cleaned and preprocessed the
data, and helped draft the article. ZZ helped preprocess the data
and literature review. NC and KM annotated the CHOA data
and provided clinical guidance on top features. MW guided and
oversaw the project and reviewed the manuscript. All authors
contributed to the article and approved the submitted version.

FUNDING

This project was supported in part by the Children’s Healthcare
of Atlanta (CHOA), the NIH National Center for Advancing
Translational Sciences UL1TR000454, the National Science
Foundation Award NSF1651360, Microsoft Research, Georgia
Institute of Technology PACE, and Hewlett Packard.

REFERENCES

Agha, A., Bein, T., Fröhlich, D., Höfler, S., Krenz, D., and Jauch, K. W.

(2002). “Simplified Acute Physiology Score” (SAPS II) ina the assessment of

severity of illness in surgical intensive care patients. Chirurg 73, 439–442.

doi: 10.1007/s00104-001-0374-4

Arts, D. G. T., de Keizer, N. F., Vroom, M. B., and de Jonge, E. (2005). Reliability

and accuracy of sequential organ failure assessment (SOFA) scoring. Crit. Care

Med. 33, 1988–1993. doi: 10.1097/01.CCM.0000178178.02574.AB

Batal, I., Valizadegan, H., Cooper, G. F., and Hauskrecht, M. (2011). “A pattern

mining approach for classifying multivariate temporal data,” in 2011 IEEE

International Conference on Bioinformatics and Biomedicine, 358–365.

Bellazzi, R., Ferrazzi, F., and Sacchi, L. (2011). Predictive data mining in clinical

medicine: a focus on selected methods and applications. WIREs Data Mining

Knowledge Discov. 1, 416–430. doi: 10.1002/widm.23

Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R.,

Deo, R., et al. (2017). Heart disease and stroke statistics-−2017 update: a

report from the American Heart Association. Circulation 135, e146–e603.

doi: 10.1161/CIR.0000000000000485

Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., and Erhan, D. (2016).

Domain SeparationNetworks. arXiv:1608.06019 [cs]. Available online at: http://

arxiv.org/abs/1608.06019 (accessed January 20, 2022).

Cai, X., Perez-Concha, O., Coiera, E., Martin-Sanchez, F., Day, R., Roffe, D.,

et al. (2015). Real-time prediction of mortality, readmission, and length of stay

Frontiers in Artificial Intelligence | www.frontiersin.org 9 April 2022 | Volume 5 | Article 640926

https://doi.org/10.1007/s00104-001-0374-4
https://doi.org/10.1097/01.CCM.0000178178.02574.AB
https://doi.org/10.1002/widm.23
https://doi.org/10.1161/CIR.0000000000000485
http://arxiv.org/abs/1608.06019
http://arxiv.org/abs/1608.06019
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Zhu et al. Multi-Source ICU Domain Adaptation

using electronic health record data. J. Am. Med. Inform. Assoc. 23, 553–561.

doi: 10.1093/jamia/ocv110

Casanova, I. J., Campos, M., Juarez, J. M., Fernandez-Fernandez-Arroyo, A.,

and Lorente, J. A. (2015). “Using multivariate sequential patterns to improve

survival prediction in intensive care burn unit,” in Artificial Intelligence in

Medicine Lecture Notes in Computer Science, editors J. H. Holmes, R. Bellazzi,

L. Sacchi, and N. Peek (Cham: Springer International Publishing), 277–286.

Celi, L. A., Galvin, S., Davidzon, G., Lee, J., Scott, D., and Mark, R. (2012). A

database-driven decision support system: customized mortality prediction. J.

Pers. Med. 2, 138–148. doi: 10.3390/jpm2040138

Celi, L. A. G., Tang, R. J., Villarroel, M. C., Davidzon, G. A., Lester, W. T., and

Chueh, H. C. (2011). A clinical database-driven approach to decision support:

predicting mortality among patients with acute kidney injury. J. Healthc. Eng.

2, 97–110. doi: 10.1260/2040-2295.2.1.97

Chen, S., Qin, J., Ji, X., Lei, B., Wang, T., Ni, D., et al. (2017). Automatic scoring

of multiple semantic attributes with multi-task feature leverage: a study on

pulmonary nodules in CT images. IEEE Trans. Med. Imaging 36, 802–814.

doi: 10.1109/TMI.2016.2629462

Cheplygina, V., de Bruijne, M., and Pluim, J. P. W. (2019). Not-so-

supervised: a survey of semi-supervised, multi-instance, and transfer

learning in medical image analysis. Med. Image Anal. 54, 280–296.

doi: 10.1016/j.media.2019.03.009

Choi, E., Schuetz, A., Stewart, W. F., and Sun, J. (2017). Medical Concept

Representation Learning from Electronic Health Records and its Application

on Heart Failure Prediction. arXiv:1602.03686 [cs]. Available online at: http://

arxiv.org/abs/1602.03686 (accessed December 8, 2020).

Choudhary, A., Tong, L., Zhu, Y., and Wang, M. D. (2020). Advancing medical

imaging informatics by deep learning-based domain adaptation. Yearb. Med.

Inform. 29, 129–138. doi: 10.1055/s-0040-1702009

Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia, D., and Courty, N.

(2018). “DeepJDOT: deep joint distribution optimal transport for unsupervised

domain adaptation,” in Computer Vision – ECCV 2018 Lecture Notes in

Computer Science, editors V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss

(Cham: Springer International Publishing), 467–483.

de Rooij, S. E., Govers, A., Korevaar, J. C., Abu-Hanna, A., Levi, M., and de

Jonge, E. (2006). Short-term and long-term mortality in very elderly patients

admitted to an intensive care unit. Intensive Care Med. 32, 1039–1044.

doi: 10.1007/s00134-006-0171-0

Desautels, T., Das, R., Calvert, J., Trivedi, M., Summers, C., Wales, D. J., et al.

(2017). Prediction of early unplanned intensive care unit readmission in a UK

tertiary care hospital: a cross-sectional machine learning approach. BMJ Open

7, e017199. doi: 10.1136/bmjopen-2017-017199

Doshi-Velez, F., Ge, Y., and Kohane, I. (2014). Comorbidity clusters in autism

spectrum disorders: an electronic health record time-series analysis. Pediatrics

133, e54–e63. doi: 10.1542/peds.2013-0819

Elmahdy, M. S., Abdeldayem, S. S., and Yassine, I. A. (2017). “Low quality dermal

image classification using transfer learning,” in 2017 IEEE EMBS International

Conference on Biomedical Health Informatics (BHI), 373–376.

Fagon, J.-Y., Chastre, J., Hance, A. J., Montravers, P., Novara, A., and Gibert,

C. (1993). Nosocomial pneumonia in ventilated patients: a cohort study

evaluating attributable mortality and hospital stay. Am. J. Med. 94, 281–288.

doi: 10.1016/0002-9343(93)90060-3

Fagon, J.-Y., Novara, A., Stephan, F., Girou, E., and Safar, M. (1994). Mortality

attributable to nosocomial infections in the ICU. Infect. Control Hosp.

Epidemiol. 15, 428–434. doi: 10.2307/30148490

Fialho, A. S., Cismondi, F., Vieira, S. M., Reti, S. R., Sousa, J. M. C.,

and Finkelstein, S. N. (2012). Data mining using clinical physiology at

discharge to predict ICU readmissions. Expert Syst. Appl. 39, 13158–13165.

doi: 10.1016/j.eswa.2012.05.086

Friedman, J. H. (1997). On bias, variance, 0/1—loss, and the

curse-of-dimensionality. Data Min. Knowl. Discov. 1, 55–77.

doi: 10.1023/A:1009778005914

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting

machine. Ann. Stat. 29, 1189–1232. doi: 10.1214/aos/1013203451

Fuchs, L., Chronaki, C. E., Park, S., Novack, V., Baumfeld, Y., Scott, D.,

et al. (2012). ICU admission characteristics and mortality rates among

elderly and very elderly patients. Intensive Care Med. 38, 1654–1661.

doi: 10.1007/s00134-012-2629-6

Ghifary, M., Kleijn, W. B., Zhang, M., Balduzzi, D., and Li, W. (2016).

Deep Reconstruction-Classification Networks for Unsupervised Domain

Adaptation. arXiv:1607.03516 [cs, stat]. Available online at: http://arxiv.org/

abs/1607.03516 (accessed January 20, 2022).

Goldstein, B. A., Navar, A. M., Pencina, M. J., and Ioannidis, J. P. A. (2017).

Opportunities and challenges in developing risk prediction models with

electronic health records data: a systematic review. J. Am. Med. Inform. Assoc.

24, 198–208. doi: 10.1093/jamia/ocw042

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

et al. (2014). “Generative adversarial nets,” in Advances in Neural Information

Processing Systems (Curran Associates, Inc.). Available online at: https://

proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-

Abstract.html (accessed January 20, 2022).

Gupta, P., Malhotra, P., Narwariya, J., Vig, L., and Shroff, G. (2020). Transfer

learning for clinical time series analysis using deep neural networks. J. Healthc.

Inform. Res. 4, 112–137. doi: 10.1007/s41666-019-00062-3

Han, D., Liu, Q., and Fan, W. (2018). A new image classification method using

CNN transfer learning and web data augmentation. Expert Syst. Appl. 95,

43–56. doi: 10.1016/j.eswa.2017.11.028

Hug, C. W., Clifford, G. D., and Reisner, A. T. (2011). Clinician blood pressure

documentation of stable intensive care patients: an intelligent archiving

agent has a higher association with future hypotension. Crit. Care Med. 39,

1006–1014. doi: 10.1097/CCM.0b013e31820eab8e

Hunziker, S., Celi, L. A., Lee, J., and Howell, M. D. (2012). Red cell distribution

width improves the simplified acute physiology score for risk prediction

in unselected critically ill patients. Critical Care 16, R89. doi: 10.1186/cc

11351

Hussein, S., Cao, K., Song, Q., and Bagci, U. (2017). “Risk stratification of lung

nodules using 3D CNN-based multi-task learning,” in Information Processing

in Medical Imaging Lecture Notes in Computer Science, editors M. Niethammer,

M. Styner, S. Aylward, H. Zhu, I. Oguz, P.-T. Yap, et al. (Cham: Springer

International Publishing), 249–260.

Hutchinson, S. G., Mesters, I., van Breukelen, G., Muris, J. W., Feron, F. J.,

Hammond, S. K., et al. (2013). A motivational interviewing intervention to

PREvent PAssive Smoke Exposure (PREPASE) in children with a high risk of

asthma: design of a randomised controlled trial. BMC Public Health 13, 177.

doi: 10.1186/1471-2458-13-177

Huynh, B. Q., Li, H., and Giger, M. L. (2016). Digital mammographic tumor

classification using transfer learning from deep convolutional neural networks.

JMI 3, 034501. doi: 10.1117/1.JMI.3.3.034501

Hwang, S., and Kim, H.-E. (2016). Self-Transfer Learning for Fully Weakly

Supervised Object Localization. arXiv:1602.01625 [cs]. Available online at:

http://arxiv.org/abs/1602.01625 (accessed January 20, 2022).

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2018). Image-to-Image Translation

with Conditional Adversarial Networks. arXiv:1611.07004 [cs]. Available online

at: http://arxiv.org/abs/1611.07004 (accessed January 20, 2022).

Kandemir, M. (2015). “Asymmetric transfer learning with deep gaussian

processes,” in Proceedings of the 32nd International Conference on Machine

Learning (PMLR), 730–738. Available online at: https://proceedings.mlr.press/

v37/kandemir15.html (accessed January 20, 2022).

Kang, G., Jiang, L., Yang, Y., and Hauptmann, A. G. (2019). “Contrastive

adaptation network for unsupervised domain adaptation,” in 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) (Long Beach,

CA: IEEE), 4888–4897.

Keselman, H. J., and Rogan, J. C. (1978). A comparison of the modified-Tukey and

Scheffé methods of multiple comparisons for pairwise contrasts. J. Am. Stat.

Assoc. 73, 47–52. doi: 10.1080/01621459.1978.10479996

Kissoon, N., Daniels, R., van der Poll, T., Finfer, S., and Reinhart, K. (2016).

Sepsis—the final common pathway to death from multiple organ failure

in infection. Crit. Care Med. 44, e446. doi: 10.1097/CCM.00000000000

01582

Kwon, S., Florence, M., Grigas, P., Horton, M., Horvath, K., Johnson, M., et al.

(2012). Creating a learning healthcare system in surgery: Washington State’s

Surgical Care and Outcomes Assessment Program (SCOAP) at 5 years. Surgery

151, 146–152. doi: 10.1016/j.surg.2011.08.015

Lafarge, M. W., Pluim, J. P., Eppenhof, K. A., Moeskops, P. and Veta, M. (2017).

“Domain-adversarial neural networks to address the appearance variability

of histopathology images,” in Deep Learning in Medical Image Analysis and

Frontiers in Artificial Intelligence | www.frontiersin.org 10 April 2022 | Volume 5 | Article 640926

https://doi.org/10.1093/jamia/ocv110
https://doi.org/10.3390/jpm2040138
https://doi.org/10.1260/2040-2295.2.1.97
https://doi.org/10.1109/TMI.2016.2629462
https://doi.org/10.1016/j.media.2019.03.009
http://arxiv.org/abs/1602.03686
http://arxiv.org/abs/1602.03686
https://doi.org/10.1055/s-0040-1702009
https://doi.org/10.1007/s00134-006-0171-0
https://doi.org/10.1136/bmjopen-2017-017199
https://doi.org/10.1542/peds.2013-0819
https://doi.org/10.1016/0002-9343(93)90060-3
https://doi.org/10.2307/30148490
https://doi.org/10.1016/j.eswa.2012.05.086
https://doi.org/10.1023/A:1009778005914
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/s00134-012-2629-6
http://arxiv.org/abs/1607.03516
http://arxiv.org/abs/1607.03516
https://doi.org/10.1093/jamia/ocw042
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.1007/s41666-019-00062-3
https://doi.org/10.1016/j.eswa.2017.11.028
https://doi.org/10.1097/CCM.0b013e31820eab8e
https://doi.org/10.1186/cc11351
https://doi.org/10.1186/1471-2458-13-177
https://doi.org/10.1117/1.JMI.3.3.034501
http://arxiv.org/abs/1602.01625
http://arxiv.org/abs/1611.07004
https://proceedings.mlr.press/v37/kandemir15.html
https://proceedings.mlr.press/v37/kandemir15.html
https://doi.org/10.1080/01621459.1978.10479996
https://doi.org/10.1097/CCM.0000000000001582
https://doi.org/10.1016/j.surg.2011.08.015
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Zhu et al. Multi-Source ICU Domain Adaptation

Multimodal Learning for Clinical Decision Support (Cham: Springer), 83–91.

doi: 10.1007/978-3-319-67558-9_10

Lee, J., Kothari, R., Ladapo, J. A., Scott, D. J., and Celi, L. A. (2012). Interrogating

a clinical database to study treatment of hypotension in the critically ill. BMJ

Open 2, e000916. doi: 10.1136/bmjopen-2012-000916

Lee, J., and Mark, R. G. (2010). An investigation of patterns in hemodynamic data

indicative of impending hypotension in intensive care. Biomed. Eng. Online 9,

62. doi: 10.1186/1475-925X-9-62

Lee, K.-H., He, X., Zhang, L., and Yang, L. (2018). CleanNet: Transfer Learning

for Scalable Image Classifier Training With Label Noise, 5447–5456. Available

online at: https://openaccess.thecvf.com/content_cvpr_2018/html/Lee_

CleanNet_Transfer_Learning_CVPR_2018_paper.html (accessed December 8,

2020).

Li, Z., Wang, C., Han, M., Xue, Y., Wei, W., Li, L.-J., et al. (2018). Thoracic

Disease Identification and Localization With Limited Supervision, 8290–8299.

Available online at: https://openaccess.thecvf.com/content_cvpr_2018/html/

Li_Thoracic_Disease_Identification_CVPR_2018_paper.html (accessed

January 20, 2022).

Liu, Z., Wu, L., and Hauskrecht, M. (2013). “Modeling clinical time series

using gaussian process sequences,” in Proceedings of the 2013 SIAM

International Conference on Data Mining (Society for Industrial and Applied

Mathematics), 623–631.

Mandelbaum, T., Scott, D. J., Lee, J., Mark, R. G., Malhotra, A., Waikar,

S. S., et al. (2011). Outcome of critically ill patients with acute

kidney injury using the AKIN criteria. Crit. Care Med. 39, 2659–2664.

doi: 10.1097/CCM.0b013e3182281f1b

Marshall, J. C., Cook, D. J., Christou, N. V., Bernard, G. R., Sprung, C. L.,

and Sibbald, W. J. (1995). Multiple organ dysfunction score: a reliable

descriptor of a complex clinical outcome. Crit. Care Med. 23, 1638–1652.

doi: 10.1097/00003246-199510000-00007

McCoy, T. H., Castro, V. M., Cagan, A., Roberson, A. M., Kohane, I. S., and Perlis,

R. H. (2015). Sentiment measured in hospital discharge notes is associated with

readmission and mortality risk: an electronic health record study. PLoS ONE

10, e0136341. doi: 10.1371/journal.pone.0136341

Murthy, V., Hou, L., Samaras, D., Kurc, T. M., and Saltz, J. H. (2017). “Center-

focusing multi-task CNN with injected features for classification of glioma

nuclear images,” in 2017 IEEE Winter Conference on Applications of Computer

Vision (WACV), 834–841.

Nemati, S., Malhotra, A., and Clifford, G. D. (2011). T-wave alternans

patterns during sleep in healthy, cardiac disease, and sleep apnea

patients. J. Electrocardiol. 44, 126–130. doi: 10.1016/j.jelectrocard.2010.

10.036

Ribas, V. J., López, J. C., Ruiz-Rodríguez, J. C., Ruiz-Sanmartín, A., Rello, J., and

Vellido, A. (2011). “On the use of decision trees for ICU outcome prediction in

sepsis patients treated with statins,” in 2011 IEEE Symposium on Computational

Intelligence and Data Mining (CIDM), 37–43.

Rozantsev, A., Salzmann, M., and Fua, P. (2019). Beyond sharing weights for

deep domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 41, 801–814.

doi: 10.1109/TPAMI.2018.2814042

Saeed, M., Villarroel, M., Reisner, A. T., Clifford, G., Lehman, L.-W., Moody,

G., et al. (2011). Multiparameter intelligent monitoring in intensive care II

(MIMIC-II): a public-access intensive care unit database. Crit. Care Med. 39,

952–960. doi: 10.1097/CCM.0b013e31820a92c6

Singh, A., Nadkarni, G., Gottesman, O., Ellis, S. B., Bottinger, E. P., and Guttag,

J. V. (2015). Incorporating temporal EHR data in predictive models for risk

stratification of renal function deterioration. J. Biomed. Inform. 53, 220–228.

doi: 10.1016/j.jbi.2014.11.005

Stiglic, G., Davey, A., and Obradovic, Z. (2013). “Temporal evaluation of

risk factors for acute myocardial infarction readmissions,” in 2013 IEEE

International Conference on Healthcare Informatics, 557–562.

Syed, H., and Das, A. K. (2015). “Identifying chemotherapy regimens in electronic

health record data using interval-encoded sequence alignment,” in Artificial

Intelligence in Medicine Lecture Notes in Computer Science, editors J. H.

Holmes, R. Bellazzi, L. Sacchi, and N. Peek (Cham: Springer International

Publishing), 143–147.

Tao, C., Wongsuphasawat, K., Clark, K., Plaisant, C., Shneiderman, B., and

Chute, C. G. (2012). “Towards event sequence representation, reasoning

and visualization for EHR data,” in Proceedings of the 2nd ACM SIGHIT

International Health Informatics Symposium IHI ’12. (New York, NY:

Association for Computing Machinery), 801–806.

Toddenroth, D., Ganslandt, T., Castellanos, I., Prokosch, H.-U., and Bürkle, T.

(2014). Employing heat maps to mine associations in structured routine care

data. Artif. Intell. Med. 60, 79–88. doi: 10.1016/j.artmed.2013.12.003

Venugopalan, J., Chanani, N., Maher, K. and Wang, M. D. (2017). “Combination

of static and temporal data analysis to predict mortality and readmission in

the intensive care,” in 2017 39th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC) (IEEE), 2570–2573.

Venugopalan, J., Chanani, N., Maher, K., and Wang, M. D. (2019). Novel data

imputation for multiple types of missing data in intensive care units. IEEE J.

Biomed. Health Inform. 23, 1243–1250. doi: 10.1109/JBHI.2018.2883606

Vranas, K. C., Jopling, J. K., Scott, J. Y., Badawi, O., Harhay, M. O., Slatore, C. G.,

et al. (2018). The association of ICU with outcomes of patients at low risk of

dying. Crit. Care Med. 46, 347–353. doi: 10.1097/CCM.0000000000002798

Wang, T. D., Plaisant, C., Quinn, A. J., Stanchak, R., Murphy, S., and Shneiderman,

B. (2008). “Aligning temporal data by sentinel events: discovering patterns

in electronic health records,” in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems CHI ’08. (New York, NY: Association

for Computing Machinery), 457–466.

Warner, J. L., Zollanvari, A., Ding, Q., Zhang, P., Snyder, G. M., and Alterovitz, G.

(2013). Temporal phenome analysis of a large electronic health record cohort

enables identification of hospital-acquired complications. J. Am. Med. Inform.

Assoc. 20, e281–e287. doi: 10.1136/amiajnl-2013-001861

Wheeler, D. S., Giaccone, M. J., Hutchinson, N., Haygood, M., Bondurant, P.,

Demmel, K., et al. (2011). A hospital-wide quality-improvement collaborative

to reduce catheter-associated bloodstream infections. Pediatrics 128, e995–

e1007. doi: 10.1542/peds.2010-2601

Wong, L. S. S., and Young, J. D. (1998). A comparison of ICUmortality prediction

using the Apache II scoring system and artificial neural network. Anaesthesia.

54, 1048–54. doi: 10.1049/ic:19980797

Wu, A.W., Pronovost, P., andMorlock, L. (2002). ICU incident reporting systems.

J. Crit. Care 17, 86–94. doi: 10.1053/jcrc.2002.35100

Yang, H., and Yang, C. C. (2015). Using health-consumer-contributed data to

detect adverse drug reactions by association mining with temporal analysis.

ACM Trans. Intell. Syst. Technol. 6, 55:1–55:27. doi: 10.1145/2700482

Yu, C.-N., Greiner, R., Lin, H.-C., and Baracos, V. (2011). Learning patient-specific

cancer survival distributions as a sequence of dependent regressors.Adv. Neural

Inf. Process. Syst. 24, 1845–1853.

Zhu, Y., Tong, L., Deshpande, S. R., andWang,M. D. (2019). “Improved prediction

on heart transplant rejection using convolutional autoencoder and multiple

instance learning on whole-slide imaging,” in 2019 IEEE EMBS International

Conference on Biomedical Health Informatics (BHI), 1–4.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Zhu, Venugopalan, Zhang, Chanani, Maher andWang. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 11 April 2022 | Volume 5 | Article 640926

https://doi.org/10.1007/978-3-319-67558-9_10
https://doi.org/10.1136/bmjopen-2012-000916
https://doi.org/10.1186/1475-925X-9-62
https://openaccess.thecvf.com/content_cvpr_2018/html/Lee_CleanNet_Transfer_Learning_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Lee_CleanNet_Transfer_Learning_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Li_Thoracic_Disease_Identification_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Li_Thoracic_Disease_Identification_CVPR_2018_paper.html
https://doi.org/10.1097/CCM.0b013e3182281f1b
https://doi.org/10.1097/00003246-199510000-00007
https://doi.org/10.1371/journal.pone.0136341
https://doi.org/10.1016/j.jelectrocard.2010.10.036
https://doi.org/10.1109/TPAMI.2018.2814042
https://doi.org/10.1097/CCM.0b013e31820a92c6
https://doi.org/10.1016/j.jbi.2014.11.005
https://doi.org/10.1016/j.artmed.2013.12.003
https://doi.org/10.1109/JBHI.2018.2883606
https://doi.org/10.1097/CCM.0000000000002798
https://doi.org/10.1136/amiajnl-2013-001861
https://doi.org/10.1542/peds.2010-2601
https://doi.org/10.1049/ic:19980797
https://doi.org/10.1053/jcrc.2002.35100
https://doi.org/10.1145/2700482
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Domain Adaptation Using Convolutional Autoencoder and Gradient Boosting for Adverse Events Prediction in the Intensive Care Unit
	Introduction
	Materials and Methods
	Data and Preprocessing
	MIMIC Data
	CHOA Data

	Classifiers
	Random Forest
	Gradient Boosting
	Linear Regression
	Support Vector Machine

	CAE and Domain Adaptation

	Experiments
	Results and Discussion
	Temporal and Non-Temporal Features
	Mortality Prediction
	ICU Readmission Prediction

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


