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Heterogeneity in Alzheimer’s disease progression contributes to the ongoing failure to

demonstrate efficacy of putative disease-modifying therapeutics that have been trialed

over the past two decades. Any treatment effect present in a subgroup of trial participants

(responders) can be diluted by non-responders who ideally should have been screened

out of the trial. How to identify (screen-in) the most likely potential responders is an

important question that is still without an answer. Here, we pilot a computational

screening tool that leverages recent advances in data-driven disease progression

modeling to improve stratification. This aims to increase the sensitivity to treatment effect

by screening out non-responders, which will ultimately reduce the size, duration, and cost

of a clinical trial. We demonstrate the concept of such a computational screening tool by

retrospectively analyzing a completed double-blind clinical trial of donepezil in people

with amnestic mild cognitive impairment (clinicaltrials.gov: NCT00000173), identifying

a data-driven subgroup having more severe cognitive impairment who showed clearer

treatment response than observed for the full cohort.

Keywords: disease progression modeling, Alzheimer’s disease, mild cognitive impairment, clinical trials,

screening, dementia, biomarkers, donepezil

1. INTRODUCTION

Alzheimer’s Disease (AD) is one of the most important socioeconomic challenges of the
twenty-first century, being the leading cause of age-related dementia in an aging global
population. Despite decades of research and clinical trials of potential therapies (Cummings
et al., 2018b), no trials have been able to prove disease-modifying efficacy (Cummings et al.,
2014, 2016, 2017, 2018a, 2019, 2020). There are multiple possible explanations for this. For
example, potentially targeting the “wrong” pathology at the wrong time—typically amyloid
protein pathogens are the target but if a treatment is given to symptomatic individuals, it
may be too late to halt or reverse any damage done. Notwithstanding this, enrolling the
right people at the right time (disease stage) into a clinical trial remains a considerable
challenge because of undetected heterogeneity in phenotype/presentation (Firth et al., 2020)
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and/or ensuring the underlying pathology is present (Salloway
et al., 2014), which can be a general problem because clinical
trials often cannot adapt their designs to accommodate research
discoveries made after they have begun. This can result in
enrolment of non-responders into a clinical trial that wash out
treatment effect in any subgroup of responders. Identification of
non-responders typically occurs in post hoc subgroup analysis,
which does not confer the benefits of a reduced trial size,
and requires careful analysis to infer conclusions which can be
misleading (Wang et al., 2007; Cummings, 2018). Given the
breadth of evidence in support of the amyloid hypothesis (Hardy
and Higgins, 1992) that has driven this clinical research for two
decades, albeit with some controversies (Morris et al., 2014),
here we focus on the aforementioned challenges of screening to
identify the right participants at the right time. The good news
is that there has been a swell of computational research into
unraveling the heterogeneity of Alzheimer’s disease progression
over the past decade (e.g., see Oxtoby et al., 2017), driven
largely by the increasing availability of large open medical
datasets (Marinescu et al., 2018).

Computational approaches for aging and age-related
diseases have been designed to fuse multimodal data into a
quantitative template (Bilgel and Jedynak, 2019) of disease
progression. These signatures often include a patient staging
mechanism (Young et al., 2014) that provides a quantitative
tool for fine-grained, individualized inference based on
disease severity that goes above and beyond standard clinical
phenotyping using patient symptoms. A recent innovation
of data-driven disease progression modeling incorporates
unsupervised machine learning, i.e., clustering, to provide both
subtype and stage inference (Young et al., 2018). A frequent
occurrence in this literature are claims of how these data-driven
models can benefit clinical trials in Alzheimer’s disease, but we
are yet to find any evidence of studies actually analyzing clinical
trial data to demonstrate the claimed benefit.

In this work we demonstrate the potential of data-driven
models of disease progression to enhance clinical trials in
Alzheimer’s disease via targeted screening. We achieve this by
example, using a particular modeling approach—the event-based
model (Fonteijn et al., 2012)—in a post hoc subgroup analysis
of a particular completed clinical trial that concluded without
evidence of efficacy (Petersen et al., 2005).

2. MATERIALS AND METHODS

This section describes the data, the computational model, and
the statistical analysis used in our study. Overall, our analysis
includes three steps. First, we fit a data-driven disease progression
model of cognitive decline in AD to data from a large multicentre
observational study, the Alzheimer’s Disease Neuroimaging
Initiative (ADNI; training set). Second, we use this computational
model to score disease progression at baseline for participants
in the completed “MCI” clinical trial from the Alzheimer’s
Disease Cooperative Study (ADCS-MCI; test set). Finally, this
disease progression score is used to stratify the ADCS-MCI Trial
participants for a post hoc analysis of subgroup treatment effect.

2.1. Data
Our reference model fit to data from the ADNI observational
study is used to stage participants from the ADCS-MCI clinical
trial (clinicaltrials.gov: NCT00000173; Petersen et al., 2005). For
this we use a set of features common to both data sets, which
is a subset of cognitive instruments used in the ADCS-MCI
trial (see the vertical axis of Results, Figure 1), taking care to
exclude ADAS-Cog (being a secondary outcome of the trial).1 For
simplicity, we included only ADNI participants having complete
data for this feature set.

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD).

Additional data used in the preparation of this article
were obtained from the Alzheimer’s Disease Cooperative Study
(ADCS) database (adcs.org). Specifically, we analyse data from
the completed ADCS-MCI clinical trial of donepezil and vitamin
E, reported in Petersen et al. (2005). The ADCS-MCI trial aimed
to assess the efficacy of vitamin E and donepezil in subjects
with amnestic MCI. The primary end point was the time to
the development of possible or probable AD dementia, with
secondary outcomes on cognition and function. Measurements
were taken at 6-month intervals until the end of the trial (36
months). At screening, 769 subjects were included in the trial,
randomized into 259, 257, and 253 subjects for the placebo,
vitamin E, and donepezil arms, respectively—reducing to 174,
158, and 145 by the end of the trial.

2.2. Event-Based Model
The event-based model (EBM) (Fonteijn et al., 2012; Young et al.,
2014) estimates the most likely sequence, and uncertainty in this
sequence, of observable cumulative abnormality events in the
pathophysiological cascade (Jack et al., 2010) of a progressive
disease. In this context, an event constitutes deviation of a
biomarker measurement from those typical of healthy controls,
toward those typical of patients. Events, and the overall sequence
of events, are probabilistic entities. The EBM sequence of
cumulative abnormality is estimated from cross-sectional data.
This is made possible by combining data from a cohort of
individuals at different stages of cumulative abnormality. The
EBM sequence estimation is achieved directly from the data
distributions in diseased and healthy groups and without a priori-
defined disease stages or biomarker cutpoints /thresholds. The
EBM, in its various versions, has been applied to a variety of
diseases since 2011 (e.g., Fonteijn et al., 2012; Eshaghi et al.,
2018; Oxtoby et al., 2018, 2021; Wijeratne et al., 2018; Firth et al.,
2020). For a detailed intuitive description of the EBM, we refer
the reader to Oxtoby et al. (2021).

1Results with ADAS-Cog included can be found in the Supplementary Material.

Frontiers in Artificial Intelligence | www.frontiersin.org 2 May 2022 | Volume 5 | Article 660581

https://clinicaltrials.gov/
adni.loni.usc.edu
https://www.adcs.org/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Oxtoby et al. Data-Driven Screening for Clinical Trials

FIGURE 1 | Event based model of cognitive decline (ADNI). Positional

density/variance diagram showing the sequence (top to bottom) and

uncertainty (left to right) under five-fold cross-validation (repeated 10 times).

CDR, clinical dementia rating; MMSE, mini-mental state examination; bwd,

backward; DSST, digit symbol substitution test.

Here, we employ the recently-developed kernel density
estimation (KDE) EBM that copes naturally with the ceiling/floor
effects seen in cognitive data (Firth et al., 2020), and gives
a cleaner interpretation of the model by exploiting prior
information on disease direction (Oxtoby et al., 2021). To
improve generalizability, we perform repeated five-fold cross-
validation (10 repeats) and combine all 50 sets of posterior
samples of the EBM into a cross-validated positional density
map (Oxtoby et al., 2021).

The EBM affords us a screening tool by way of the patient
staging mechanism introduced by Young et al. (2014). This
process assigns a model stage (disease progression score)
that maximizes the likelihood given an individual’s set of
measurements. Here, we use the ADNI-trained EBM to stage
baseline data from the ADCS-MCI clinical trial, then stratify
subjects into strata based on disease progression scores for post
hoc subgroup analyses. In future, this process could be performed
as part of the screening process to homogenize the clinical
trial cohort.

2.3. Statistical Analysis
Our hypothesis is that AD clinical trial cohorts are likely to
contain undetected heterogeneity that washes out treatment
effects whichmay exist in an independently identifiable subgroup
of responders. Accordingly, in order to examine whether our
proposed screening tool can detect this heterogeneity and reveal
such a subgroup of responders, our post hoc subgroup analysis of
the ADCS-MCI clinical trial closely follows the primary analyses
in Petersen et al. (2005). We describe the key steps below.

Primary Outcome: We use Kaplan–Meier estimators to
estimate the rate of progression fromMCI to AD over the course
of the trial. Additionally, Cox proportional-hazards models were
constructed to compare the risk for progression in each treatment
arm with the placebo (using baseline age, MMSE, and APOE-ǫ4
carrier status as covariates). This intention-to-treat analysis in the

trial was conducted for both placebo vs. vitamin E and placebo vs.
donepezil, but in this paper we focus on the latter.

To correct for multiple comparisons in the Cox proportional-
hazards model (for the two treatment arms), the Hochberg
method was used. As our introduction of subgroups increases
the number of comparisons made, we extend this adjustment for
the total number of subgroups, regardless of whether a single
subgroup is the focus of analysis.

Secondary Outcome: We compare ADAS-Cog 13 scores
between placebo and donepezil arms in subgroups at each 6-
month interval to assess the difference in longitudinal cognitive
decline. A two-sided Mann–Whitney U-test is used to compare
the treatment groups at each time point for each subgroup,
correcting for multiple comparisons using the Hochbergmethod.

3. RESULTS

3.1. Reference Model
Figure 1 shows a positional variance diagram for an event-based
model (Firth et al., 2020) of cognitive decline due to probable
Alzheimer’s disease, across a set of cognitive instruments from
N = 810 (of 2,040) ADNI participants [229 cognitively normal
(CN), 181 AD, 400 MCI] having complete data (see Section
2). The cross-validated model’s confidence in the sequence is
higher where the positional variance is reduced—a dark diagonal
corresponds to strong confidence in the data-driven ordering.
The estimated sequence of cognitive decline starts from the Clock
Drawing test and Clinical Dementia Rating (CDR), through
tests of memory recall (Logical Memory) and general cognition
(MMSE), to verbal fluency (Boston Naming; Animals), working
memory (Digit span backwards), and executive function (Digit
Symbol Substitution Test, DSST).

Figure 2 shows a key component of the EBM—the
normal/abnormal mixture models for each cognitive instrument
(blue/orange solid lines, respectively), and the resulting
cumulative probability of an event having occurred (dashed
lines) (Fonteijn et al., 2012). These sigmoidal event probabilities
quantify divergence from normality (Oxtoby et al., 2021) and
provide a visualization of the data-driven event threshold
(akin to a data-driven biomarker cutpoint). Histograms show
the AD (orange) and CN (blue) data from ADNI. Early/late
events are, respectively, those that have occurred in many/few
patients and thus show greater/smaller separation between the
group histograms.

3.2. Patient Staging: Re-screening the
ADCS-MCI Trial
Figure 3 shows the distribution of patient stages assigned to
participants in the (Figure 3A) ADNI study and (Figure 3B)
ADCS-MCI trial, using the ADNI-trained EBM shown
in Figure 3. The MCI distributions show considerable
heterogeneity, with a notable late-stage ADCS-MCI subgroup
beyond stage 8 in Figure 3B, delineated by a red dashed line.
Table 1 compares the whole ADCS-MCI cohort and 2 subgroups
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FIGURE 2 | ADNI data histograms (adjusted for age and education level) and EBM mixture models for each feature. Orange bars corresponds to AD patient data,

blue bars to data from CN participants, showing the “normal” and “abnormal” distributions and the determined probability of the event having occurred (dashed line).

(“Late-stage” and “Others”) on demographic and cognitive
measures at baseline.

Primary Outcome: Figure 4 shows Kaplan–Meier curves for
the whole ADCS-MCI cohort (Figure 4A), the early-to-middle
“Others” subgroup (Figure 4B) and the “Late-stage” subgroup
(Figure 4C) in the placebo and donepezil arms, illustrating
the change in survival rates (specifically, not progressing to
probable AD dementia) during the trial. For each survival
function estimate, 95% confidence intervals are shown in the
shaded area. Figure 5 shows the corresponding hazard ratios and
95% confidence intervals for Cox proportional-hazards models
quantifying the risk of progression from MCI to AD. Although
there are no significant differences between all subjects (hazard
ratio 0.80; 95% CI 0.57–1.13; p= 0.42), the estimated effect seems
larger than in the early-to-middle stage subgroup (hazard ratio

1.00; 95% CI 0.67–1.51; p = 0.99), or the late-stage subgroup
(hazard ratio 0.55; 95% CI 0.28–1.07; p= 0.24).

Figure 6 shows ADAS-Cog 13 scores at 6-month intervals
throughout the ADCS-MCI trial separately for the two
subgroups. Conducting a two-sided Mann–Whitney U-test at
each time point, no significant difference (in adjusted p-values)
was found in either subgroup, despite the apparent trend toward
treatment effect in the late-stage subgroup.

4. DISCUSSION

We fit an event-based model of cognitive decline in Alzheimer’s
disease using a reference data set (ADNI), which was then used
to score disease progression in subjects at baseline in a completed
clinical trial (ADCS-MCI). This disease progression score was
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FIGURE 3 | Histograms of model stage for subjects in the ADNI dataset (A) and ADCS-MCI trial (B).

TABLE 1 | Demographic and cognitive comparison of ADCS-MCI trial participants

(All) and the model-determined subgroups thereof (“Late-stage” and “Others”).

Group

All Others Late-stage

Measure (N = 769) (N = 648) (N = 121)

Age (years) 72.9 (7.3) 73.0 (7.2) 72.4 (7.9)

Education (years) 14.6 (3.1) 14.6 (3.1) 15.0 (3.0)

Sex (% female) 352 (45.8%) 290 (44.8%) 62 (51.2%)

APOE-ǫ4 carrier (%) 424 (55.1%) 352 (54.3%) 72 (59.5%)

Donepezil arm (%) 253 (32.9%) 219 (33.8%) 34 (28.1%)

Vitamin E arm (%) 257 (33.4%) 216 (33.3%) 41 (33.9%)

Placebo arm (%) 259 (33.7%) 213 (32.9%) 46 (38.0%)

ADAS-Cog 11 11.3 (4.4) 10.8 (4.2) 14.1 (4.0)

ADAS-Cog 13 17.7 (6.1) 17.0 (5.9) 21.6 (5.6)

ADAS-Cog Q4 6.3 (2.2) 6.1 (2.2) 7.3 (2.0)

Boston naming 6.9 (2.4) 7.3 (2.2) 5.1 (2.5)

CDR global 0.5 (0.0) 0.5 (0.0) 0.5 (0.0)

CDR sum of boxes 1.8 (0.8) 1.8 (0.8) 2.2 (0.8)

Clock drawing 4.3 (0.9) 4.5 (0.8) 3.4 (1.0)

Digit span bwd 6.2 (2.1) 6.4 (2.1) 5.1 (1.9)

DSST 31.5 (10.9) 33.4 (10.2) 21.1 (8.0)

Logical memory - delayed 3.3 (2.4) 3.5 (2.5) 2.2 (2.0)

Logical memory - immediate 6.2 (3.1) 6.5 (3.1) 4.7 (2.7)

MMSE 27.3 (1.8) 27.5 (1.8) 26.2 (1.7)

Verbal fluency - animals 15.8 (5.2) 16.8 (5.0) 10.5 (3.0)

used to stratify trial participants for a post hoc subgroup analysis
of treatment effect.

The event-based model of cognitive decline in Figure 1

is representative of typical (memory-led) Alzheimer’s disease,
with CDR and impaired memory recall occurring before

decline in verbal fluency, working memory, and executive
function. Indeed, the estimated sequence shares similarities
with results in Firth et al. (2020), which involved an
independent cohort. We deliberately excluded ADAS-Cog scores
from the model to avoid circularity with the corresponding
secondary outcome of the trial (and also to avoid having to
perform the relatively arduous ADAS-Cog test at a screening
visit). Supplementary Figure 1 shows that the sequence is
largely unchanged with ADAS-Cog features included. Notably,
Clock Drawing appears as the first event (before even
CDR features), albeit with an additional component of
positional density around stages 7–9, supporting the presence
of additional heterogeneity among individuals. This result
warrants further investigation but is beyond the scope of our
study.

The event-based model patient staging mechanism (Young

et al., 2014) revealed considerable heterogeneity in the cognitive

impairment of MCI participants in both the ADNI observational
study (Figure 3A) and the ADCS-MCI clinical trial (Figure 3B).

Such clinical heterogeneity is likely to mask treatment response

in clinical trials, particularly if the underlying source is

biological heterogeneity relevant to the experimental treatment.
The biological underpinnings here are unknown due to the

absence of biomarker data in the ADCS-MCI trial, and we
need access to such individual-level biomarker data from
more recent clinical trials if we are to assess the value of

EBM screening vs. biomarker screening. Regardless, we found
promising trends in our post hoc subgroup analyses (discussed

below). Of course, the reduced sample size increases screen-in
cost of a clinical trial and potentially diminishes the treatable

patient group (affecting also the drug label). This is mostly
positive. Pros: a medicine that is effective on a subgroup is

better than no medicine at all; not treating non-responders
reduces the occurrence of unnecessary side-effects. Con: the
smaller group of potential responders limits the treatable
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FIGURE 4 | Kaplan–Meier survival curves for all 769 participants (A), the “Others” subgroup (B), and the “Late-stage” subgroup (C) in the ADCS-MCI trial.

FIGURE 5 | Hazard ratios (with 95% confidence intervals) for the progression

to AD for the two subgroups and all subjects when comparing the placebo

and donepezil arms.

patient population (but at least those treated are likely to
benefit).

In the ADCS-MCI trial we found encouraging trends toward
improved survival (Figure 4), preserved cognition (Figure 6),
and a lower hazard ratio (Figure 5) in the more severely affected
“Late-stage” MCI subgroup (N = 121) compared to the less
affected “Others” subgroup (N = 648). These results suggest
that the treatment (donepezil) may protect cognition and provide
more protection against MCI conversion to dementia for late-
stage MCI. This result concurs with the fact that donepezil
is approved for symptomatic relief in more severely affected
groups—specifically, dementia patients. Additionally, a recent
re-analysis of the ADCS-MCI trial unmasked beneficial effects
of donepezil (Edmonds et al., 2018) in a more severely affected
subgroup by screening out false-positive MCI participants using
hierarchical clustering by Ward’s method.

There are multiple possible explanations for why more
severely impaired individuals with MCI seem to benefit from
donepezil preferentially over less impaired individuals. For one,
donepezil may have less cognitive benefit earlier in the disease.

Another is that ADAS-Cog might be inadequate to detect such
a benefit. Regardless, the key finding is that our approach
was able to stratify a clinical trial population into potential
responders and non-responders using only baseline/screening
data. This supports the notion that computational, data-
driven screening can substantially reduce the size (and cost)
of a clinical trial, without sacrificing statistical power (see
also Franzmeier et al., 2020).

Our work motivates using event-based model staging as a
screening tool to enrich clinical trials, but the general principle
can be applied using other models that can calculate disease
progression scores (e.g., Jedynak et al., 2012; Leoutsakos et al.,
2016; Stallard et al., 2017; Wang et al., 2020). While many such
works mention the potential application to analyzing clinical
trial data, fewer suggest incorporating this into the screening
stage, and none (to our knowledge) have actually applied such
models in clinical trials, nor in post hoc analyses that follow the
original analysis protocol to retrospectively determine subgroup
treatment effects. Closest to this work is the aforementioned
study of the ADCS-MCI trial data by Edmonds et al. (2018), and
the work of Schneider et al. (2016), but the approaches used in
these studies do not provide an interpretable disease progression
signature, nor do they allow for future extension to seamlessly
incorporate imaging data and other biomarkers.

In summary, the ADCS-MCI trial was an attempt to
test whether donepezil, an approved symptomatic treatment
of dementia patients, could slow progression from MCI to
dementia. This placebo-controlled, double-blind, phase 3 study
found no significant treatment effects (Petersen et al., 2005).
Here, we reanalyzed the trial in a post hoc subgroup analysis,
with the subgroups defined by a data-driven disease progression
model: the event-based model (Fonteijn et al., 2012; Young
et al., 2014; Firth et al., 2020). Our two key findings are: (1)
there was considerable heterogeneity in cognitive impairment
in the ADCS-MCI trial, suggesting an inadequate screening
protocol; (2) this heterogeneity masked a possible treatment
effect in a sample of more severely impaired late-stage MCI
participants, despite the likelihood of this smaller sample being
under-powered to detect an effect of this magnitude. Our
study has highlighted a potential mechanism for improving
clinical trial design but the general applicability will require
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FIGURE 6 | Progression of ADAS-Cog 13 scores in the placebo and donepezil arms throughout the trial for each of the two subgroups.

broader verification, ideally in more recent trials having
biomarker data.

In conclusion, our findings support the use of our proposed
data-driven screeningmethod to enhance targeting and efficiency
of future clinical trials in Alzheimer’s disease. What is perhaps
most exciting in the immediate future is the prospect of
performing similar post hoc analyses in other “failed” clinical
trials, which could resurrect some Alzheimer’s disease drug
research programs, saving billions of dollars and years of
research. This work is continuing.
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