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Recent progress in machine-learning-based distributed semantic models (DSMs) offers

new ways to simulate the apperceptive mass (AM; Kintsch, 1980) of reader groups or

individual readers and to predict their performance in reading-related tasks. The AM

integrates the mental lexicon with world knowledge, as for example, acquired via reading

books. Following pioneering work by Denhière and Lemaire (2004), here, we computed

DSMs based on a representative corpus of German children and youth literature (Jacobs

et al., 2020) as null models of the part of the AM that represents distributional semantic

input, for readers of different reading ages (grades 1–2, 3–4, and 5–6). After a series

of DSM quality tests, we evaluated the performance of these models quantitatively

in various tasks to simulate the different reader groups’ hypothetical semantic and

syntactic skills. In a final study, we compared the models’ performance with that of

human adult and children readers in two rating tasks. Overall, the results show that

with increasing reading age performance in practically all tasks becomes better. The

approach taken in these studies reveals the limits of DSMs for simulating human AM and

their potential for applications in scientific studies of literature, research in education, or

developmental science.

Keywords: distributed semantic models, apperceptive mass, childLex, digital humanities, machine learning,

literary reading, SentiArt

The nature of the comprehension process is determined, most of all, by how well the message can
be apperceived, that is, integrated into a knowledge structure.

— Walter Kintsch, “Learning From Text, Levels Of Comprehension, Or: Why Anyone Would
Read A Story Anyway,” 1980

INTRODUCTION

Imagine a child who has read only one book, the Bible. On top of the child’s biosociocultural
development, this hypothetical singular reading education will have measurable consequences
for the child’s thoughts (e.g., concrete and abstract concepts), feelings (e.g., basic and mixed
emotions), and behavior (e.g., communication). Such consequences can be assessed by various
tests (e.g., active/passive vocabulary, semantic arithmetic, and analogical reasoning), and the child’s
performance in these tests can be predicted via quantitative narrative and advanced sentiment
analysis of the only text it knows. This is what this paper is about: using distributed semantic
(vector space) models (DSMs) trained on representative book corpora as potent null models
of an important part of human semantic memory, or as Kintsch (1980) preferred to call it,
the apperceptive mass (AM) of readers: this term highlights the integration of world knowledge
as for example, acquired via reading books into semantic memory. This allows us to simulate
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and quantitatively predict the performance of individual readers
or reader groups in standard linguistic or intelligence tests.

Since in general, psychological research lacks longitudinal
data about a child’s biosociocultural development, her
communications, and so on, one can hardly estimate the
experiential component of her AM. However, the AM likely
results from a yet unknown integration of both experiential and
distributional data, at least partially represented in associative
activation patterns of semantic networks, as assumed by the
semantics theory of Andrews et al. (2009). Thus, for example,
the emotional valence of a word could be computed from (1)
neural activation patterns distributed over the sensory-motor
representations of a word’s referents (experiential aspect) and
(2) the linguistic company the words keep (Harris, 1951; Firth,
1957), that is, the size and density of their context (distributional
aspect), as computationally modeled using cooccurrence
statistics (e.g., Denhière and Lemaire, 2004; Westbury et al.,
2015; Hofmann et al., 2018). This distributional component of
the AM can be simulated and the performance of this null model
can then serve as a benchmark for more sophisticated (process)
models of the mental lexicon or AM.

To come back to our extreme hypothetical example, if the
child had read the Bible carefully and repeatedly, she could
integrate lots of things into her AM, such as the names of at
least the 20 most frequently mentioned persons (of ∼2k) and
places in the Bible (Figure 1A), or the typical actions Jesus is
most often associated with (e.g., “Jesus spoke,” Figure 1B). The
associative networks of her brain will also have encoded lots
of other pieces of information that can constitute more or less
implicit knowledge about when major characters appeared in
the Bible (Figure 1C; ordered according to verse number), or
with whom they typically interacted (Figure 1D). Thus, the child
could remember that the most popular action in the entire Bible
is speaking—including Jesus—but Jesus also may be remembered
to have threatened a few times. Also, he would likely remember
that Jesus was closer to Petrus than to Paulus, or that Abraham
was closer to God (Gott) thanNoah (Figure 1D). Finally, shemay
also have an opinion on the main protagonists’ emotional figure
profiles (cf. Jacobs, 2019), for example, whether Jesus and Judas
were “good” or “bad” persons (Figure 1E).

Now, what if by chance this child got her hands on say the
books of the Harry Potter series (e.g., Rowling, 1997) and wanted
to read them. With a limited vocabulary of only ∼27k (unique)
words, she would fully understand just about 10% of the ∼85k
words included in the series. As unrealistic this example may
appear, imagine we had reliable data about the reading materials
of a person for the last 10 years (newspapers, websites, books,
etc.), and then, we could construct reader-specific DSMs and
predict individual reading behavior with remarkable accuracy
(Hofmann et al., 2020)—but also, of course—make sophisticated
guesses about this person’s opinions, preferences, etc., in other
words things that big internet companies already use to further
their business.

Of course, the above “Bible child” example is academic,
although the estimate of a passive vocabulary of ∼27k may be
an overstatement depending on the child’s age and education.
According to empirical studies summarized in Denhière et al.

(2007; cf. De La Haye, 2003), an average child reading about
20min per day learns about 900 root words (i.e., unique words)
per year leading to a “normal” vocabulary of maximally 15k
root words (63% nouns, 17% verbs, and 20% adjectives and
adverbs) at the level of 12th grade (2nd grade: ∼5k, 5th grade:
∼8k). A more recent study estimated the average vocabulary size
of a 20-year-old native speaker of American English as being
∼40k words (Brysbaert et al., 2016). Thus, our hypothetical
Bible child’s vocabulary would range between that of an average
12th grader and a 20-year-old adult as far as sheer size is
concerned, but the contents matter, too, of course. Thus, roughly
10% of the Bible child’s vocabulary are reserved for names and
only about 1/3 are nouns (without names), 1/3 are verbs, and
18% are adjectives and adverbs. Having given an idea of what
quantitative narrative and advanced sentiment analysis can be
used for when analyzing hypothetical individual readers, next we
propose ways to examine the quality of more general DSMs, a
necessary condition for using them as predictive models of reader
group behavior.

BOOK CORPORA AS READER GROUP
MODELS

The developmental lexicon project (Schröter and Schroeder,
2017) aims at helping researchers to advance theories and
computational models of visual word recognition and the mental
lexicon that include a developmental perspective. This paper
contributes to this perspective by providing data about the
performance of reader group null models based on a specific book
corpus, that is, minimalistic and arguably unrealistic models
that provide a benchmark for more sophisticated competitors.
Additionally, they could also serve as normative models, for
example, for educational purposes, for example, regarding their
performance in the analogical reasoning tests of Study 3 below.

In contrast to the English children and youth literature
subcorpus of the Gutenberg Literary English Corpus (GLEC;
Jacobs, 2018a; Jacobs et al., 2020), the 500 books in the German
childLex corpus (CL in the following; Schroeder et al., 2015)
which underlies the present models mainly contain postwar
and contemporary exemplars such as the seven books from the
Harry Potter series (e.g., Rowling, 1997). They also include a
nice mix of texts by a large variety of well-known and less well-
known German and translated international writers (N = 248)
such as Alexandre Dumas, Kirsten Boie, Erich Kästner, Ottfried
Preussler, Enid Blyton, or Antoine de Saint-Exupéry. The 500 CL
books vary widely in terms of length and content. A typical book
for beginning readers (reading age 6–8, henceforth RA1, grades
1–2) would contain around 5k words; a book for intermediate
readers ∼15k words (reading age 9–10, henceforth RA2, grades
3–4); and a book for experienced readers ∼50k words (reading
age 11–12, henceforth RA3, grades 5–6). To ensure a sufficient
number of words in each age group, CL books for the beginning
and intermediate readers were oversampled, that is, contained
a larger number of books (RA1: 44%, RA2: 41%, and RA3:
15%, respectively).
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FIGURE 1 | (A) Twenty most frequent names and places in the Bible (German Luther Bibel). (B) 20 most frequent actions of Jesus in the Bible. (C) Appearance

density of 25 major characters in the Bible ordered according to verse numbera. (D) Interaction network of nine major characters in the Bible (interaction frequency is

represented by line width: bold >dashed>dotted). (E) Emotional figure profiles for Jesus and Judas computed with SentiArt (Jacobs, 2019). acf. https://

pmbaumgartner.github.io/blogfholy-nlp/.

The texts in all three subcorpora (the RA3 model included
both the RA1 and RA2 corpora just as RA2 included RA1) were
preprocessed applying standard python NLP tools, for example,
words were POS-tagged using treetagger (Schmid, 1995) and then
used for DSM training. Whereas, Denhière and Lemaire (2004)
in their pioneering work used a model based on latent semantic
analysis (Landauer and Dumais, 1997), here we used the more
recent gensim library with the default parameter set (Rehurek and
Sojka, 2010) to generate 300dword2vec skipgramDSMs (Mikolov
et al., 2013) which we already applied successfully in previous

studies (e.g., Jacobs, 2017, 2018b, 2019; Hofmann et al., 2018;
Jacobs and Kinder, 2019)1. Naturally, the three corpora differ in a
number of lexico-semantic or syntactic features that influence the
readability of the books (cf. Schroeder et al., 2015). As a control
against which to gauge the performance of our CL models, we
used the sdewac model with ∼1.5 million types trained on ∼45
million sentences from unspecified German texts from the web

1All models are available from the 1st author via email request.
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TABLE 1 | Basic features of the corpora, the three CL models, and the control model.

Model/test SDEWAC CL reading age 1 CL reading age 2 CL reading age 3

Books – 221 423 500

Sentences 45 million 89.012 314.596 648.613

Tokens, types ∼1.5 billion, ∼1.5 million 1.217.002, 55.222 4.614.548, 131.735 10.162.991, 195.662

DSM vocabulary size 1.592.753 50.430 100.338 158.615

(Baroni et al., 2009). Some basic features of the corpora and
models are listed in Table 1.

STUDY 1. ESTIMATES OF SEMANTIC
COMPLEXITY

Size (i.e., number of books) matters, but content, variety,
genre, or style are equally important for a readers’ education
and AM, for example, regarding their ability to deal with
figurative language (Kintsch, 2008; Jacobs and Kinder, 2017,
2018a). One feature of books that reflects such aspects of
literary quality is semantic complexity that can be estimated
via different measures such as intertextual variance or stepwise
distance (van Cranenburgh et al., 2019). To compute the average
semantic complexity score for our three corpora, we followed
van Cranenburgh et al. (2019) in choosing stepwise distance as
the crucial measure which turned out to be the best predictor
of human literariness ratings for hundreds of Dutch novels.2

The idea was that this measure can estimate a reader group’s
increasing ability (from RA1 to RA3) to deal with semantic
complexity and to perform various semantic tasks used in
intelligence or language tests, such as analogical reasoning (see
Study 3).

The overall scores for our three RA groups were as follows:
RA1 = 17.7, RA2 = 20.8, RA3 = 23.3 (all statistical differences
significant at p < 0.0001; see Figure 2A), which suggests
an increasing semantic complexity, as could be expected.
According to the scores shown in Figure 2A, our RA3
model thus should perform best in semantic tests, followed
by RA2 and RA1. For illustrative purposes, Figure 2B

displays representative examples for three books showing
how stepwise distance (shown here for the first 5–25 consecutive
chunks) can differ between the three RA groups (RA3 =

27.6. Margot_Berger: Letzte_Chance_für_Jana; RA2 = 11.2.
Kirsten_Boie: Jannis_und_der_ziemlich_kleine_Einbrecher,
RA1 = 8.7. Bettina_Obrecht: Zwei_Freunde_für_Anna). The

2To obtain the final score for say two given books, one first divides them into
N equal chunks of 1,000 sentences and then transforms these into vectors, as
computed by the doc2vec model (Le and Mikolov, 2014). The vectors are then
fed into a clustering algorithm (e.g., kmeans) to compute the cluster centers
(centroids) and predict the cluster index for each book. A PCA is applied to the
vectors to allow a 2d visualization. Finally, one computes the Euclidean distance
between chunk c and chunk c+1 for all chunks of a given book and takes the
mean of these distances as the final score. A greater Euclidian distance between
neighboring chunks reflects a greater semantic difference between them, which
translates into an overall higher semantic complexity for the entire book (cf. van
Cranenburgh et al., 2019).

FIGURE 2 | (A) Violin plot of stepwise distances for the three CL corpora. (B)

Principal Component Analysis (two first components only) of stepwise

distances for three representative books from each CL subcorpus. Distances

between points represent semantic variance, the focus being on distances

between consecutive text chunks.

book representative of RA3 clearly shows a greater semantic
complexity than the books standing for RA2 and RA1 on this
measure of average stepwise distance.

To summarize Study 1, using a recently empirically validated
global measure of the semantic complexity of books (as one
proxy for literariness; van Cranenburgh et al., 2019), we showed
that together with other global measures such as the number of
sentences or types, it increases with reading age. This supports
our assumption that the RA3 model should perform best in the
semantic tests applied in Study 3.
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STUDY 2. CONCRETE, ABSTRACT, AND
EMOTION CONCEPTS

Distributed semantic models can differ on a number of
features or hyperparameters. It is therefore important to check
their quality before applying them as models of cognitive
representations. Following the approach of an earlier study
(Jacobs and Kinder, 2019), here we use both a first qualitative and
a subsequent quantitative evaluation (Study 3) of our DSMs. As a
first simple and intuitive check, we looked at how well the DSMs
distinguish between some exemplary concrete, abstract, and
emotion concepts using dimension reduction techniques (TSNE;
Van der Maaten and Hinton, 2008)3. In Study 2, we renounced
on extensive quantitative tests using concept categorization
benchmarks such as the Battig test (Baroni and Lenci, 2010)
because they do not explicitly differentiate between concrete,
abstract, and emotion concepts we were interested in. Given that
we only looked at a few exemplary cases that have no single gold
category, we also did not apply quantitative measures such as
purity, that is, the extent to which a cluster contains concepts
from a single gold category. It should be noted that more than
150 years after Darwin’s emotion theory proposing the six basic
emotion categories used in Figures 3, 4, psychological research
still debates whether there are six, eight, or 12 basic emotions
and how these could precisely be distinguished from non-basic
emotions. Moreover, as far as we know, there is a single published
study presenting norms for the categorization of discrete emotion
terms in German (Briesemeister et al., 2011), but that is no basis
for establishing international “gold standards.”

Take the example of the term “Mitleid” (pity). Our control
DSM puts it in Darwin’s “Ekel” (disgust) category (see
Figure 3C). The data from Briesemeister et al. (2011) show the
following ratings (scale of 1–5) for MITLEID: joy (1.5), anger
(1.47), sadness (2.5), fear (1.5), and disgust (1.1). Thus, according
to these data, the DSM’s choice would be a miscategorization.
However, the fact that the highest rating for pity is only
2.5/5 (sadness) suggests that humans have a lot of uncertainty
regarding the “true” or “gold” category of that emotion term.
Thus, so far neither psychological nor neuroscientific research
provides something like gold standards for emotion terms, but
computational data like those in Figures 3, 4 can be used for
predicting those of future empirical studies on verbal emotion
category learning in children and adults.

As a control against which to gauge the performance of our CL
DSMs, we used the sdewacmodel (Baroni et al., 2009) which had
performed best among three DSMs on a series of semantic and
predictive modeling tests (Jacobs and Kinder, 2019). Figures 3,
4 summarize the main results of these exemplary qualitative
analyses. As illustrated in Figure 3, the control DSM offers
clear concrete (e.g., linearly separable animate vs. inanimate and
human vs. animal clusters) and very distinct abstract concepts.
As could be expected from our previous study though, the rather
abstract emotion concepts show more overlap. Theoretically,

3The hyperparameters for our TSNE application were as follows: topn = 50, perp
= 50, init= “pca,” learning_rate= 200.0, n_iter= 3,500, n_iter_without_progress
= 300, random_state= 42.

this increased overlap is interesting and can mean at least two
things: first, it could be due to emotion concepts being generally
fuzzier than other concrete or abstract concepts. Second, it could
mean that emotion concepts are more dynamic, flexible, or
differentiated than others perhaps fulfilling an adaptive function.
Future work along the lines of Briesemeister et al. (2011), Nook
et al. (2017), Huebner and Willits (2018), or Hoemann et al.
(2020) is necessary to decide between these options.

Interestingly for purposes of sentiment analyses, our control
DSM clusters the only two positive emotions among our
set (joy/Freude: cyan dots and surprise/Überraschung: orange
dots) clearly apart from the four negative emotions. Regarding
the latter, sadness/Traurigkeit (green) is pretty well-clustered,
whereas disgust/Ekel (blue), anger/Wut (red), and fear/Angst
(magenta) are more distributed.

Regarding the three CL models, the picture is more complex
(Figure 4). The RA1 model shows an approximately (non-
perfect) linear separability between the two animate concept
groups (humans and animals) and the inanimate group (house,
apartment). Themodel also distinguishes between the six abstract
concepts, albeit in a fuzzier or more differentiated way than
for the concrete ones—as could be expected. Due to vocabulary
limitations, it still lacks a concept for culture/Kultur, though.
Finally, it also gets four of the discrete emotions quite right, but
still mingles joy/Freude and anger/Wut.

Interestingly, the bigger RA2 and RA3 models show more
overlap between concrete, abstract, and especially emotion
concepts. In RA2, one can see an approximate linear separability
between animate and inanimate concrete concepts, but it mingles
man/Mann and dog/Hund quite a bit. RA2 well separates abstract
concepts clustering homeland/Heimat near peace/Frieden,
sense/Sinn near courage/Mut, and information/Information
apart. Like RA1, it still lacks a concept for culture, but unlike
RA1, it mingles the basic emotions quite a bit. In this respect,
RA3 seemingly mixes up all six emotion concepts.

To summarize, Study 2 established clear differences
between the control “adult” model and the child models
suggesting that especially emotion concepts get fuzzier with
increasing vocabulary. The effect likely is due to the increasing
number of different emotion terms used in RA2 and RA3
books. Theoretically, this could correspond to an increasing
differentiation of emotion terms with increasing age. However,
how and when infants, children, and adolescents develop
emotion categories is not yet well-understood, and some authors
argue that discrete categories are not learned at all (Hoemann
et al., 2020).

To what extent the present exemplary data can be generalized
to other emotion terms and book corpora (e.g., GLEC),
and whether they correspond with the development of the
emotion term vocabulary in children are key questions for
future research. Whereas the neural and affective-cognitive
processes underlying the codevelopment of language and
emotion is still a badly underresearched area of psychology
and the cognitive neurosciences (e.g., Sylvester et al., 2016,
2021a,b), a recent study suggests that the emotion vocabulary
of children of age 4–11 doubles about every second year
(Nook et al., 2017, 2020). According to this study, emotion
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FIGURE 3 | (Continued)
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FIGURE 3 | tsne representations of the semantic space of the sdewac model for exemplary concrete (A), abstract (B), and emotion concepts (C). The words that are

most similar to the target words (e. g., to woman/Frau or to man/Mann) are plotted inthe same color.

representations develop from a unidimensional focus on valence
to a bidimensional focus on both valence and arousal from
age 6 to 25. Increasing the emotion vocabulary seems to
mediate the development of emotion representations over and
above other potential mediators and aids the expansion of
emotion concepts from a “positive or negative” dichotomy in
childhood to a multidimensional organization in adulthood.
Study 2 provides an example of how DSMs could be used in
such studies to generate testable quantitative predictions for this
multidimensional organization.

To complement the qualitative analyses of Study 2, in Study
3, all DSMs were submitted to extensive quantitative tests
(benchmarks) available for German.

STUDY 3. INTELLIGENCE AND LINGUISTIC
TESTS (SEMANTIC AND SYNTACTIC
KNOWLEDGE)

As potential models of readers’ AM, our DSMs should be able
to perform a number of tasks used in intelligence or linguistic
test batteries, such as analogical reasoning or correct verb
conjugation. This can be examined with standard question and
answer procedures discussed below. It should be noted that
as far as we can tell all such NLP benchmark tests are based
on and made for “adult” models and thus favor the control
model (sdewac). What matters here is to see to what extent
the performance of the child models changes with simulated
reading age.

SEMANTIC TESTS: BEST FIT (MATCH),
DOES NOT FIT, AND OPPOSITE
PROBLEMS (BF, DF, OP)

Solving analogies like “King is to man as X is to woman” is
a first standard test of the quality of a DSM (best fit or best
match problem; Mikolov et al., 2013). Another is the so-called
does not fit (or odd item out) problem where one has to select
the concept that does not fit to the other three, for example,
France, Germany, Italy, and Africa. A final semantic test applied
here concerns finding the correct opposite given an example
pair, for example, old-young, night-X. Here, we used the 950
semantic question problems (540 best match, 110 does not fit,
and 300 opposite questions) proposed by Mueller (2015, https://
devmount.github.io/GermanWordEmbeddings/) to check the
quality of his “german.model” (examples for English can be
found at: https://github.com/nicholas-leonard/word2vec/blob/
master/questions-words.txt). It was interesting to see whether the
ability to solve these problems increased from RA1 to RA3 as the
ability of children in the corresponding age groups clearly does.
The performance of our four models in answering the overall 950
questions is given in Table 2.

As can be seen in Table 2, all four DSMs achieve a high
accuracy in the DF test (75-84%), whereas the other two tests (BF
and OP) pose problems for all models. The sdewac solves ∼60%
of analogies (BF) correctly, the three CL models only between
10 and 15%, whereas the correct answer is among the top 10
neighbors in 20–25% of the cases. In finding opposites, sdewac
is correct in 36%, the CL models in only 7–24% with the correct
answer being among the top 10 neighbors in 14–41% of the cases.
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FIGURE 4 | (Continued)
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FIGURE 4 | (Continued)
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FIGURE 4 | (Continued)
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FIGURE 4 | (Continued)
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FIGURE 4 | (A–I) tsne representations of the semantic space of the three CL models for exemplary concrete, abstract, and emotion concepts.

TABLE 2 | Semantic and morphosyntactic test performance.

RA1 RA2 RA3 sdewac

BF 52, 10, 21 66, 15, 25 73, 11, 25 99, 58, 78

DF 66, 75, – 69, 84, – 71, 76, – 91, 82, –

OP 85, 7, 14 93, 24, 37 100, 20, 41 100, 36, 66

Mean correct

matches %

semantic

30.6 41 35.6 58.6

Morphosyntactic 68, 5 81, 12 88, 17 97, 61

The 1st number refers to the hit rate or coverage, the 2nd to the % of correct matches,

and, if present, the 3rd indicates whether the correct answer was among the top 10

semantic neighbors.

With an average accuracy of 58.6% sdewac wins the semantic
test competition, followed by RA2 (41%), RA3 (35.6%), and RA1
(30.6%). Thus descriptively, there is no clear progression from
RA1 to RA3, but given the varying hit rates of the models—both
acrossmodels and the three tests—and in the absence of inference
statistics, this ranking is only exploratory or heuristic.

MORPHOSYNTACTIC TESTS

Whereas, there are various standard semantic tests for DSMs,
syntactic tests are less frequent in the literature. Mueller (2015)

developed an extensive list of 10.000 morphosyntactic question
problems for German, subdivided into 20 classes of 500 questions
each, such as the building of plural (e.g., fear, fears, man, men),
conjugation of verbs in present or past tense (e.g., go, goes, learn,
learns; go, went, learn, learned), or degrees of adjectives (e.g.,
good, better, bad, worse). As shown in Table 2, with a hit rate
of 97% reflecting the questions covered by the vocabulary of
the model, the control model achieved an accuracy of 61.3% in
these tests. The RA1 model achieved only 5% accuracy with a
hit rate of 68%. RA2 produced 12% correct answers (hit rate =
81%), and RA3 17% (hit rate = 88%). Given that the control
model using the same algorithm as our CL models performed
not so badly, their poor performance regarding morphosyntactic
questions may be due to the fact that the CL books do not contain
sufficient training examples for the extensive questions developed
by Mueller (2015).

In sum, compared with the control “adult” model, the three
CL models still have a lot to learn. The observed difference
between the RA1 model on the one hand, and the RA2 and RA3
models on the other, offers space for speculation. Thus, one could
surmise that having read the∼200 books of RA1 with a resulting
limited vocabulary of “only” ∼50k words is a pretty good basis
for developing concrete, abstract, and emotion concepts and also
for solving “odd item out” puzzles (i.e., 75% correct answers
to does not fit/DF questions), but not for correctly answering
other semantic and morphosyntactic questions (∼90% failures).
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Adding the knowledge compressed in 300 more CL books about
doubles the vocabulary and the likelihood of correctly answering
all kinds of semantic and morphosyntactic questions.

Lacking an empirical database providing corresponding
results for human performance in these 950 semantic and
10.000 morphosyntactic test questions—something which could
at least partly be done in future studies—in our final study,
we examined how well our models fared in predicting human
data from a series of rating experiments on word similarity and
word valence.

STUDY 4. PREDICTING HUMAN RATING
DATA

Two standard crossvalidation tasks or benchmarks for the
predictive validity of DSMs are human data on interword
relatedness (“semantic similarity”) and word valence ratings
(e.g., Turney and Littman, 2003; Baroni et al., 2014; Westbury
et al., 2015). Whereas, alternative models have been reported to
produce better fits to similarity ratings or also word association
data than DSMs (e.g., Jacobs and Kinder, 2018b; De Deyne et al.,
2019, 2021), their superior fit to valence rating data not only
for single words (e.g., Hollis et al., 2017) but also for lines of
poetry or whole text segments (e.g., Jacobs, 2018b; Jacobs and
Kinder, 2019) remains a big challenge for any competitor model
type. Also, their predictive power in simulating human word
association ratings (not associations themselves) and especially
in simulating both behavioral and neural affective semantics is
even more challenging for other model types (e.g., Hofmann and
Jacobs, 2014; Westbury et al., 2015; Hofmann et al., 2018; Roelke
et al., 2018). It is thus the latter ability of DSMs that makes them
excellent candidates for sentiment analyses of complex literary
texts, for example, in the context of neurocognitive poetics
studies (Jacobs, 2015, 2019; Jacobs et al., 2020).

Here, we wanted to examine how our different CL models
performed in these two benchmark tasks. For the word-
pair relatedness task, we correlated the cosine word vector
similarities for all 350 word pairs from the most extensive
German relatedness dataset known to us (Gurevych, 2005) for
the three CL models and the control. This dataset was collected
from adults.

For the valence rating task, we chose the “kidBAWL” dataset
(Sylvester et al., 2016, 2021a,b) and correlated the computed
affective-aesthetic potential (AAP) values for each word—
following the procedure outlined in previous work (Jacobs, 2017,
2019)—with the children’s rating data. The AAP is a potential,
that is, a theoretical measure independent of reader responses,
based on cosine similarities between the vectors of a given test
word and those of a set of 120 predefined labels representing
positive and negative affective-aesthetic concepts. The valence
rating data were collected from children of age seven to 12.

Figure 5 summarizes the results of these two crossvalidation
studies. The correlations for the word relatedness data were all
significant, the best fitting “adult” model (sdewac) accounting
for 60% of the variance in the response measure (quadratic fits:
RA1. R2

= 0.091, p < 0.0002; RA2. R2
= 0.17, p < 0.0001; RA3.

FIGURE 5 | Performance of the four models (% accuracy) in predicting human

rating data for a word similarity (blue) and valence decision task (orange).

R2
= 0.23, p < 0.0001; sdewac. R2

= 0.6, p < 0.0001). As far
as we can tell, this correlation of r >0.77 can challenge many
an alternative unsupervised model, thus keeping DSM models
of the present kind in the competition for this benchmark task.
As could be expected, the child models achieve better fits with
increasing simulated reading age, but RA3’s performance, albeit
being statistically significant, remains far below that of the adult
control model.

The correlations for the word valence data also all were
significant, the best fitting model (sdewac) accounting for almost
70% of the variance in the dependent variable (quadratic fits:
RA1. R2

= 0.14, p< 0.002; RA2. R2
= 0.33, p< 0.0001; RA3. R2

=

0.4, p < 0.0001; sdewac. R2
= 0.67, p < 0.0001). Thus, prediction

accuracy increased from RA1 to RA3, but sdewac outperformed
all three CL models. This is not surprising since, on the one
hand, adults usually perform better in any test than children, and
on the other hand, because valence ratings in children are not
solely based on the books they read, but also on multiple other
sources of information, including their social interactions with
adults (Sylvester et al., 2016, 2021a,b).

Overall, model fits were better for this dataset than for the
previous one confirming the view that DSMs are viable predictive
models for human affective semantics (e.g., Jacobs, 2019). Also,
despite the blurred (discrete) emotion concept representations
suggested by the TSNE method of Study 2, the RA3 model
performs pretty well in this elementary binary affective decision
task (positive vs. negative), which theoretically requires access
to only two discrete emotions, joy and disgust (cf. Jacobs et al.,
2016). Further combined computational and neuroscientific
studies should look into this apparent discrepancy using
other training corpora, model hyperparameters, or dimension
reduction methods to shed light on the highly interesting
relation between neural emotion concept representations and
performance in the valence decision and (discrete) emotion
recognition tasks.
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DISCUSSION, LIMITATIONS, AND
OUTLOOK

We computed DSMs based on a representative corpus of German
children and youth literature as null models of the AM for readers
of different reading ages. In Study 1, we used a measure of
the overall semantic complexity of the three subcorpora (RA1,
RA2, and RA3) and established RA3 as the most complex one
suggesting that this model performs best in various semantic
tasks used in intelligence or language tests, such as analogical
reasoning. In three more studies, we then tested the quality of the
models and evaluated their performance extensively in semantic
and morphosyntactic tests, and also in predicting human data
from word relatedness and valence ratings.

The extensive standard semantic and syntactic benchmark
tests of Study 3 showed a remarkable performance of the three
child models in the “does not fit” test (i.e., finding the odd item in
sets of four), but great difficulties in the “best fit” and “opposite
problems” and also in the morphosyntactic tasks. Given the
decent performance of the “adult” control model, these data show
that reader models that incorporate the vocabulary and semantic
and syntactic knowledge of 200 to 500 children and youth
books cannot compete with a control model that is based on
45 million sentences and possesses a vocabulary of ∼1.5 million
unique words (types). When applied to predict human rating
data (Study 4), our models showed a remarkable performance,
especially for word valence ratings indicating that knowledge of
basic affective semantics is well-developed in the DSMs of the
500 CL books.

Overall, with increasing reading age performance became
better in practically all tasks. Does this confirm the intuition that
“the more books (of literary quality) one reads, the better one
gets in intelligence or linguistic tests?” Given that the knowledge
incorporated in DSMs likely represents only a tiny part of the
cognitive and biosociocultural development children undergo
from RA1 to RA3, our prudent answer is “well, it surely does not
hurt.” At any rate, the approach taken in these studies reveals the
potential and limits of DSMs for simulating human AM which
we will discuss next.

MODELING THE SEMANTIC MEMORY,
MENTAL LEXICON, OR APPERCEPTIVE
MASS

Given the theme of this research topic, some more general
considerations on psychological and computational terminology
and models are in order. First, even almost 30 years after
Elman’s (1990, 2004) pioneering work on recurrent nets and
his alternative view of the mental lexicon—seeing words as
operators rather than as operands—there is no such thing as
a standard conceptual, mathematical, computational, or other
model of human semantic memory or the mental lexicon in
particular. A scan through the multiple issues of journals
such as “The Mental Lexicon,” “Psychological Review,” or
others reveals a myriad of models of all types and colors
(e.g., conceptual, mathematical, connectionist/deep neural nets,

graph-theoretic, holographic, prototype vs. instance-based, count
vs. predict DSMs, transformer/masked language models), and of
methods to test them (for relevant reviews see, e.g., Jamieson
et al., 2018; Linzen and Baroni, 2020; Kumar, 2021). That
makes comparisons and benchmark competitions very hard.
The standards for model evaluation proposed in earlier work
(e.g., Hofmann and Jacobs, 2014) are yet far from being in
practice, especially for computational models. Apart from a
lack of standard measures of model complexity, falsifiability,
descriptive, and explanatory adequacy, or vertical and horizontal
generality (Jacobs and Grainger, 1994), even fundamental issues
such as the “Turk problem” (Jones et al., 2015)—that is the
“man in the machine” issue of using human behavioral data as
a cognitive model’s mental representation—or the “circularity
problem” (e.g., Westbury, 2016; Hofmann et al., 2018)—for
example, predicting human ratings with other human rating
data incorporated in a model—remain unsolved. Moreover, the
equally fundamental issue to what extent scientific models should
find a balance between exploration, prediction, and explanation
(Yarkoni and Westfall, 2017; Cichy and Kaiser, 2019) also
remains open.

This being said, the question to what extent DSMs represent
viable psychological models of human semantic memory, the
mental lexicon or the AM is an ongoing one. In general, DSMs
may be both too little (e.g., underestimating the contribution
of speech, embodied experiences, etc.) and too much (e.g.,
often too big to be realistic). Still, DSMs can be considered
as “serious contenders as psychological theories of semantic
representation. . . ” (Günther et al., 2019, p. 9)—and the AM
in particular (Kintsch and Mangalath, 2011)—given that the
representations they produce are at least partially grounded
(e.g., Durda et al., 2009; Louwerse, 2011). Thus, DSMs are
representational and not process models, although they have
been considered as process models of the acquisition stage
(Burgess, 2000)—albeit to a lesser degree than other neural
nets (Huebner and Willits, 2018). They also can be used for
process models, for example, by integrating them into broader
theoretical frameworks, such as the instance theory of semantics
(Jamieson et al., 2018), the construction-integration model
(Kintsch and Mangalath, 2011), or the interactive activation
framework (Hofmann et al., 2011; Hofmann and Jacobs, 2014).
A recent model by Rotaru et al. (2018) presents a promising
example for bringing together DSMs and spreading activation
models, thus allowing to simulate performance in both automatic
lexical processing (e.g., lexical and semantic decisions) and more
deliberate processing (e.g., ratings).

In sum, as acquisition and representational null models
allowing exploratory and predictive studies of the AM in the
sense of Kintsch (1980), for example, for simulating children’s
semantic memory (Denhière and Lemaire, 2004), the present
DSMs appear viable computational tools, but not as realistic
online language processing models that explain, for example,
reading behavior. Integrating them into broader frameworks
such as spreading activation (Rotaru et al., 2018), or by
concatenating them with novel transformer models (Alghanmi
et al., 2020)—to overcome the limitations due to their static
representation of word meaning—or with image embeddings
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(De Deyne et al., 2021)—to overcome their unimodality—bears
a lot of promise for a multitude of applications in scientific
studies of literature, research in education, or developmental
science (cf. Kumar, 2021). Thus, as mentioned above, they could
be used in neurocomputational studies of the emotional and
linguistic development of children (e.g., Sylvester et al., 2021b),
as quantitative predictors of the semantic complexity, literary
quality, and readability or comprehensibility of texts, including
school books (e.g., van Cranenburgh et al., 2019), or the aesthetic
appreciation of poetry (Jacobs, 2018a,b).
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