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Theory of Mind (ToM)—the ability of the human mind to attribute mental states to

others—is a key component of human cognition. In order to understand other people’s

mental states or viewpoint and to have successful interactions with others within social

and occupational environments, this form of social cognition is essential. The same

capability of inferring human mental states is a prerequisite for artificial intelligence

(AI) to be integrated into society, for example in healthcare and the motoring industry.

Autonomous cars will need to be able to infer the mental states of human drivers and

pedestrians to predict their behavior. In the literature, there has been an increasing

understanding of ToM, specifically with increasing cognitive science studies in children

and in individuals with Autism Spectrum Disorder. Similarly, with neuroimaging studies

there is now a better understanding of the neural mechanisms that underlie ToM. In

addition, new AI algorithms for inferring human mental states have been proposed with

more complex applications and better generalisability. In this review, we synthesize the

existing understanding of ToM in cognitive and neurosciences and the AI computational

models that have been proposed. We focus on preference learning as an area of

particular interest and the most recent neurocognitive and computational ToM models.

We also discuss the limitations of existing models and hint at potential approaches to

allow ToM models to fully express the complexity of the human mind in all its aspects,

including values and preferences.

Keywords: human theory of mind, machine theory of mind, artificial intelligence, cognitive and neuroscience,

inverse reinforcement learning

INTRODUCTION

Theory of Mind as a Cognitive Process
There is a greater and greater reliance on artificial intelligence (AI) in many different aspects of
life. Two very prominent areas include autonomous cars and physical and mental health care.
For these applications of AI it is essential that they include a component of Theory of mind
(ToM; Cuzzolin et al., 2020). ToM is the ability of the human mind to attribute mental states to
others and is a key component of human cognition. In order to understand other people’s mental
states or viewpoint and to have successful interactions with others within social and occupational
environments, this form of social cognition is arguably essential. It is also beneficial for individual
and societal wellbeing to feel that your thoughts and emotions have been understood by others,
thereby promoting positive social engagement.
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“Hot” and “Cold” Cognition
This task, however, is extremely challenging, as ToM is a holistic
process that can be decomposed into a number of separate
hot and cold cognitive processes. Cold cognitive processes are
non-emotional processes, whereas hot cognition relates to social
and emotional cognition (Roiser and Sahakian, 2013). Social
cognition is the way in which people process, remember, and use
information in social contexts to explain and predict their own
behavior and that of others. Hot and cold cognition plays a role in
risky decision-making, which may become important for many
human-AI interactions including in autonomous cars or surgical
robots (Lawrence et al., 2008).

Psychological Approaches to

Understanding Theory of Mind
To understand the mental states of others it is likely that there
are individual differences in the cognitive strategies that we use.
These strategies are likely to have developed during childhood
and adolescence, particularly during ages 1–5 (Frith and Frith,
2005; Academy of Medical Sciences, 2019). To some extent, the
hot and cold processes of the ToM strategies that will be most
successful are context dependent. Examples of different strategies
for ToM are the theory-theory approach (Gopnik and Wellman,
1992) and the simulation-theory approach (Gordon, 1986). The
former can be based on a set of innate rules or on causal and
probabilistic reasoning models, whereas the latter is more of
a perspective based approach. Interestingly, the theory-theory
approach may be analogous to cold cognition where intellectual
processes are used to infer mental states, whereas the simulation-
theory approach is more of a hot technique, which relies on one’s
own motivations and reasoning ability (Gordon, 1996). This is
not to suggest that either strategy solely relies on hot or cold
cognition, as there is an important interaction between the two.
Additionally, in understanding ToM it is important to evaluate
the genetic, hormonal and environmental contributions and their
interactions. Furthermore, it may be that these influences vary in
healthy individuals and those with psychiatric disorders, such as
Autism Spectrum Disorder (ASD).

As AI becomes more readily used in society, it is important
to ensure that AI and human interactions, be it in the motoring
industry, such as autonomous cars, or healthcare including
surgical robots or mental health treatment and management,
including in depression and dementia, are optimally beneficial.
This would require AI models to have ToM abilities. Therefore,
this review aims to synthesize what we currently know about
human ToM and machine ToM, with the intention to stimulate
discussion to better integrate the two fields. It appears thatAI
has not yet provided a truly holistic approach to ToM, and has
rather focused on separate components, perhaps because these
are easier to model. In keeping with the aim of this review, we
briefly present selected cognitive and neuroimaging research that
has contributed to our understanding of ToM. Furthermore, we
attempt to synthesize the existing neurocognitive and AI models
that have been proposed, and critically discuss if and where
potentially useful findings from cognitive and neurosciences have

found their way into computational models. Finally, we provide
suggestions for future research to create computational and AI
models that are heavily guided by knowledge and data from
cognitive and neuroscience research. The aim is to facilitate
discussion as to how ToM can be holistically integrated into AI
models in the context of AI applications in healthcare, automated
driving and the service industry where AI will interact closely
with humans.

COGNITIVE AND NEURAL MECHANISMS

OF THEORY OF MIND

ToM is a key component of human cognition. The term was first
used by Premack and Woodruff (1978), who were attempting to
determine whether a chimpanzee had ToM. Subsequent research
suggested a social brain hypothesis, where authors argued that,
from an evolutionary standpoint, having good ToM abilities
would be beneficial for increasingly complex social environments
(Brothers, 1990). Cognitive and neuroimaging studies have
examined ToM abilities in not only normal developing children
and healthy adults, but also in a number of neurodevelopmental
and neuropsychiatric disorders. Research on individuals with
ASD, where a ToM deficit is present, has particularly contributed
to our understanding of human ToM. Given the knowledge we
have acquired about human ToM through cognitive science and
neuroscience it could prove advantageous for machine ToM to
utilize this knowledge. It should be stated that not all human
ToM aspects are currently transferable to machine ToM with the
technological limitations.

Development of Theory of Mind
We review the literature related to the development of theory
of mind which can help AI researchers to understand the
learning phases of ToM skills and strategies. While it is typically
considered that by the age of 5 children have developed many
aspects of ToM, studies have shown that some ToM abilities are
established very early in life, whereas others develop slightly later.
Baron-Cohen (1995) described a developmental model of ToM.
From around 6months of age human infants begin to distinguish
between the motion of inanimate and animate objects. At 12
months of age joint attention is developed, where the infant has
the cognitive capacity to represent its own perception, that of
an agent (e.g., mother) and that of an object. By 14–18 months,
through gaze direction, the infant begins to understand the
mental states of desire, intention and the causal relation between
emotions and goals (Saxe et al., 2004). Liszkowski et al. (2006)
showed that children as young as 12–18months were able to infer
an adult’s behavior and aid them. In this particular experiment,
infants watched an adult write with a marker on a piece of paper.
The marker would drop off the table, not seen by the adult.
When the adult began randomly searching for the marker, the
infant would either point to or retrieve the marker, ignoring
any other distractors. Between 18 and 24 months toddlers begin
to distinguish between real and pretend events and often start
to engage in pretend play around this age. Around the age
of 3–4 children begin to understand the differences between
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their own and others’ beliefs and knowledge, thereby beginning
to comprehend false beliefs, but this ability does not become
fully stable until age 5–6. Understanding metaphors, irony and
sarcasm only establishes around age 6–7.

There is considerable individual variability in the
development of ToM. This may be due to genetic, hormonal
and environmental influences as well as their interaction.
Interestingly, a genetic study comparing 1,116 monozygotic and
dizygotic 5 years old twins found that ToM ability was more
attributable to environment than genes (Hughes et al., 2005).
However, a previous smaller scale study of 3-year-old twins
did show some genetic influence on ToM abilities (Hughes and
Cutting, 1999). Environmental factors such as regular exposure
to language and conversations about mental states are associated
with better development of ToM abilities (Dunn and Brophy,
2005). McAlister and Peterson (2006) found that preschool
aged children with siblings at home had better ToM abilities
compared to only children with no siblings. Similarly, children
whose parents frequently refer to mental states when talking to
them develop ToM abilities at an earlier age (Carpendale and
Lewis, 2004). Moreover, the development of ToM is strongly
linked to the development of language (Frith and Frith, 2003;
de Villiers, 2007; de Villiers et al., 2014; Kim, 2020) as well as
executive function to some extent (Arslan et al., 2017a; Kim,
2020). Nevertheless, a strong genetic link exists for ASD (Huguet
et al., 2016) and there is evidence of an association between fetal
hormonal testosterone and autistic traits (Auyeung et al., 2009).
This potentially suggests that there are different influences on
ToM abilities between typically developing and non-typically
developing children. Cognitive studies of ToM abilities have
highlighted that there is a strong learning component, through
environment, for developing ToM abilities; this is largely
overlooked in current AI models. The development of ToM
in humans highlights the fact that all ToM abilities are not
developed at the same time: for as such the importance of
continual learning is a crucial aspect for developing a machine
ToM. Similarly, ToM abilities develop in social contexts in
humans and through the development of language; as such, the
impact of artificial and isolated learning settings in AI should
be considered.

Higher-order ToM abilities also exist, and are established
later in the developmental trajectory. Second-order ToM involves
predicting what one person thinks or feels about what another
person is thinking or feeling (Westby and Robinson, 2014). The
literature shows that even humans struggle with higher-order
ToM abilities (Kinderman et al., 1998; Hedden and Zhang, 2002;
Flobbe et al., 2008;Meijering et al., 2010, 2014). This has potential
implications for machine ToM as AI becomes increasingly used
in society. However, in this review we focus on first-order
ToM abilities.

Dysfunction of Theory of Mind
There are several instances where ToM is disrupted, for example
in ASD. An understanding of the cases in which humans display
poor ToM abilities may be useful to guide AI in developing
models with good ToM abilities. Individuals with ASD actively
avoid eye contact, engage in stereotyped or repetitive behaviors

and struggle to establish emotional relationships. There is a large
amount of research on impaired ToM abilities in ASD, which is
not within the scope of this review, but it is important to note that
individuals with ASD have difficulty with tasks of ToM. In high
functioning ASD this is often independent of intelligence (IQ)
and other cognitive capacities that remain intact (Baron-Cohen,
1995). Senju et al. (2010) showed that 6–8 year old children with
ASD were unable to anticipate an actor’s behavior based on his
false belief. They used a false belief task where an actor placed a
toy in a box, when the actor was not looking the toy was moved.
Children were asked to anticipate where the actor would look
and were unable to correctly do so, whereas typically developing
children as young as 25months are able to correctly anticipate the
actor’s behavior in the same task (Southgate et al., 2007). Children
with attention deficit hyperactivity disorder (ADHD) often have
impaired attention and executive functions, but ToM abilities
remain intact (Kain and Perner, 2003) suggesting that ToM is
independent of other cognitive functions. Executive functions are
higher-level cognitive processes, such as planning and problem-
solving, and are normally subserved by frontal lobe networks.
Research on individuals with ASD has demonstrated that they
may struggle to understand even their own intentions and the
relationship between this and understanding others intentions
needs to be further elucidated. This further demonstrates the
importance of understanding the self in computational ToM.
Indeed, “perspective taking” (“what would I do / think / feel if
I were in his/her situation?”) in an internal simulation process
plays a significant role in ToM in humans (Barnes-Holmes et al.,
2004).

Although ASD is the classic example of disrupted ToM
abilities, there is evidence of impaired ToM in disorders such as
schizophrenia (Brüne, 2005), bipolar disorder (Kerr et al., 2003),
frontal lesions following stroke (Happé et al., 1999), and even in
aging (Phillips et al., 2002).

Assessing Theory of Mind
ToM is a complex psychological process with multiple
components; as such, multiple tasks for assessing various
aspects of ToM have been developed. Baron-Cohen (2000)
provides a review of the early tasks assessing various aspects
related to ToM. Here we provide only a brief summary. ToM
has been well-studied in humans in cognitive and neuroscience,
given this wealth of information, it would make sense to look to
how to integrate some human approaches to ToM to machine
ToM. Understanding how ToM is assessed in humans, may
provide not only a better understanding of how to train ToM
in AI models, but also ways to test computational models of
AI. Tasks assessing the mental-physical distinction involved
one character that was having a mental experience (thinking
about a dog) and another character having a physical experience
(holding a dog). The subject is then asked to judge whether
the character is able to perform a specific task (e.g., which
character can stroke the dog?). Typically developing children
aged 3–4 were able to accurately distinguish mental and physical
actions (Wellman and Estes, 1986), whereas children with ASD
were significantly impaired (Baron-Cohen, 1989). Flavell et al.
(1986) demonstrated that children from the age of 4 are able
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to distinguish appearance from reality. When presented with
a candle in the shape of an apple, they accurately state that
the object is a candle. On the other hand children with ASD
mistakenly judge the object as an apple (Baron-Cohen, 1989).
First-order false belief tasks involve inferring a single person’s
mental state and understanding that people can have different
thoughts about the same situation. The classic “Sally-and-Anne
Test” (Wimmer and Perner, 1983) is a test of first-order false
belief. In this task an object is hidden by one character (Anne)
in the absence of a second character (Sally). The key question
is where Sally would look for the object when she returned:
either the location it was before she left the scene, or the place
where Anne had moved it. Wimmer and Perner (1983) showed
that typically developing 4 year olds were able to understand
others’ perspectives. Again, children with ASD are unable to shift
their perspective to what another person may think, and simply
report what they believe (Baron-Cohen et al., 1985, 1986). The
Sally-and-Anne Test is a seminal ToM test in human ToM, as
such it could be useful to use this task to test the ToM abilities
of machine ToM. However, it should also be noted that this is
an early stage of ToM development, and the models may not be
as sophisticated as adult ToM. Nevertheless, this seems like a
potential first step.

Another key component of ToM is being able to understand
how knowledge is acquired to appreciate what an individual
does or does not know. One example is that children are
given a story where one character only touches a box, whereas
another character looks inside the box. Typically developing 3
year olds are able to identify which character knows what is in
the box (Pratt and Bryant, 1990), whereas children with ASD
cannot (Leslie and Frith, 1988; Baron-Cohen and Goodhart,
1994). Children with ASD also struggle to understand their own
intentions. Phillips et al. (1998) developed a novel test where
children were asked to shoot a toy gun at one of six targets and
state their intended target. The experimenter would manipulate
the outcome; this was not known by the child. Typically
developing 4 year olds were able to correctly state their intended
outcome, even if the actual outcome differed, whereas children
with ASD answered with the actual outcome regardless of their
intended target. This work further demonstrates the importance
of self for ToM. Additionally, tasks like these could help to test
whether the machine models of ToM, indeed have ToM abilities,
or have simply learned an intended target or outcome.

Castelli et al. (2002) developed a novel task where the
animations were not human, but rather participants were
presented with animations of two moving triangles. Each
animation was manipulated to show random, goal-directed or
mentalising movements. Individuals with ASD made fewer and
less accurate interpretations of the animations that were related
to mentalising (e.g., two triangles bounced up and down happily;
Baron-Cohen, 2000), thereby suggesting that a ToM is not only
related to human interactions. This is an important finding for
AI, as it demonstrates that ToM is not only related to human
interactions, but may be attributed to objects and machines, e.g.,
in autonomous cars and robots.

ToM is more broadly incorporated as a key component of
social cognition. As such tests of emotion recognition, social

cooperation and morality have been established to assess broader
areas of ToM and social cognition. There is a strong correlation
between ToM and emotion recognition (Mier et al., 2010). There
are a number of tests that assess emotion recognition, many
of which require the identification of basic emotions, such as
happiness and sadness. Some use only the eyes for stimuli,
whereas others include the full face. Indeed a meta-analysis
found that emotion recognition was impaired in ASD (Uljarevic
and Hamilton, 2013). There has been significant work in AI
models for emotion recognition, but as discussed previously and
highlighted by the number of different tasks, ToM goes beyond
simple emotion recognition, and more work is required for
machines to truly develop ToM abilities.

A well-known test of social cooperation is the Prisoner’s
Dilemma (see Algarni, 2017). Here we do not go into detail
on the literature regarding this task; although there seem to
be strong links between cooperation and deception behavior
and the cognitive capacity to infer the mental states of putative
allies or competitors. Sally and Hill (2006) showed that younger
children performed worse compared to older children on tasks
of social cooperation; children with ASD also performed worse.
Li et al. (2014) found an interesting relationship between
judgements of morality and cooperative play. Both typically
developing children and children with ASD made correct moral
judgements. However, typically developing children changed
their cooperative behavior depending on whether they were
interacting with the morally nice or morally naughty child,
whereas ASD children did not adjust their cooperative behavior.
Again, this task may be useful to test ToM abilities in machines.
If they perform more like an ASD child, we know that further
work is required for the model. These tasks cover more complex
forms of ToM than emotion recognition, but are important for
developing “holistic” models. However, it is likely that these more
complex forms of ToM are not yet within the technological
abilities of machine ToM.

In terms of moral judgement, tasks have been developed
to assess an individual’s moral reasoning. An example is the
moral judgement task developed by Bland et al. (2016). This
task consists of cartoons of various scenarios: e.g., liquid is
dropped onto a computer. The subject is asked to judge the
amount of shame, guilt and annoyance and how bad they would
feel if in the situation portrayed by the cartoon. The same
cartoon is displayed where the subject is the agent or victim
and the action is deliberate or accidental. A systematic review of
morality in ASD interestingly showed that individuals with ASD
made morally correct judgements, but that their moral reasoning
was compromised, thereby suggesting that they intuitively knew
what was moral, but not why (Dempsey et al., 2020). This is
an important finding for machine ToM, as to fully have ToM
abilities we must also be able to understand why. The current
benchmarks for machine ToM largely overlook these elements
and this is where knowledge of human ToM could be key for
machine ToM.

In summary, there are a number of validated cognitive tasks
available to assess various aspects of ToM. Nevertheless, the
interaction between these aspects has not been fully explored.
The variety of tasks available to assess ToM in humans has an
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important implication for AI research which has often focused
on specific subcomponents and has not considered a more
holistic approach.

Neural Mechanisms of Theory of Mind
Here we briefly review some of the neuroimaging studies
of ToM, an understanding of the neural basis of ToM may
be of particular importance for developing new AI models
incorporating ToM. Neuroimaging research has shown that ToM
involves a number of brain regions in the frontal, temporal
and parietal lobes. More specifically, studies have found that
the medial prefrontal cortex (mPFC), anterior cingulate cortex
(ACC), posterior cingulate cortex (PCC), precuneus, temporo-
parietal junction (TPJ), middle temporal gyrus, and superior
temporal sulcus are all involved in tasks that require ToM (Saxe
et al., 2004; Amodio and Frith, 2006). Studies have suggested
that the mPFC and ACC are involved in distinguishing self from
other and reality (deception), as well as being related to error
monitoring and saliency (Schlaffke et al., 2015). The precuneus
is associated with the experience of agency, and the TPJ is
involved in the representation of others’ thoughts (Schlaffke et al.,
2015). Due to the complex nature of ToM and the number of
different aspects involved, there is some heterogeneity in the
neural mechanisms underlying ToM.

Schurz et al. (2014) conducted an important meta-analysis
of neural mechanisms in ToM, but rather than pooling across
studies, they specifically examined different task groups to
identify regions that were commonly activated, or more specific
to certain task groups. Indeed, they found a core network
involved in all ToM tasks that included the mPFC and TPJ,
suggesting that these regions are key to ToM functioning (Schurz
et al., 2014). While this core network was consistently activated,
each task group showed more specific regions that were involved.
In the false belief task group regions including the middle
temporal gyrus, inferior parietal lobe, precuneus, ACC, PCC, and
insula were activated in addition to the mPFC and TPJ. For the
trait judgement task group (tasks that involve information about
traits of a person) there was activation of the PCC, precuneus,
temporal-parietal cortices, and the anterior temporal lobes. In
the strategic games task group the largest activation was in the
mPFC, extending to the ACC and the posterior frontal cortex.
There was additional activation in the thalamus, middle temporal
area and left fusiform gyrus. For social animations, the largest
area of convergence was in the temporo-parietal cortices, but also
included the thalamus, inferior frontal gyrus, anterior temporal
lobe, and cerebellum. For tasks associated with social over general
intelligence (“mind in the eyes”), regions of convergent activation
included the inferior frontal gyrus, precentral and middle frontal
gyri and the insula. There was also some activation in the
fusiform gyrus. For tasks involving rational actions regions such
as the precuneus, PCC and anterior temporal lobe were activated
in addition to the TPJ and mPFC. These findings suggest that
while there are distinct brain regions involved in specific tasks,
there seems to be a core network involved across all ToM tasks.
Thereby, suggesting that humans do employ a more holistic
approach to ToM. This is an important finding for machine ToM,
where the holistic element is largely overlooked.

The findings from neuroimaging research have highlighted
an interesting dissociation between cognitive and affective ToM.
Cognitive ToM is related to the ability to represent thoughts,
intentions and beliefs, whereas affective ToM is more associated
with the representation of emotional states and feelings. The
Schurz et al. (2014) meta-analysis did not identify the amygdala
as an area of interest, but it is a key region in emotion recognition.
Indeed, when examining cognitive ToM tasks the amygdala does
not play a critical role, whereas it is strongly associated with
affective ToM tasks (Mier et al., 2010). Similarly, Völlm et al.
(2006) showed that affective ToM tasks were associated with
activation of the paracingulate, ACC, PCC and the amygdala.
Schlaffke et al. (2015) investigated overlapping and distinct brain
regions for affective and cognitive ToM by using the same
set of stimuli for all conditions, but using different questions
that prompted either cognitive or affective ToM. Their results
showed overlapping regions similar to those reported before in
the mPFC and TPJ but also showed some important distinctions.
Cognitive ToM recruited the precuneus, cuneus and temporal
lobes, whereas affective ToM recruited areas in the basal ganglia,
PCC and prefrontal cortices. In addition, they were able to
achieve an 85% accuracy at distinguishing between the two ToM
conditions using a multivariate pattern classifier.

Interestingly, there is a large overlap between the regions
identified for the social brain and the Default Mode Network
(DMN; Mars et al., 2012). The DMN is affected in ASD
(Padmanabhan et al., 2017), which suggests that there may be an
association between social cognition and the DMN. Additionally,
this disruption may be related to dopamine, which has been
shown to be associated with the function of the DMN (Spindler
et al., 2021) and has been implicated in ASD (Pavăl, 2017).
The neurotransmitters GABA and glutamate have also been
implicated in ASD (Zhang et al., 2020; Dai et al., 2021). Serotonin
has also been implicated in ToM abilities, specifically in moral
judgements (Crockett et al., 2010, 2015; Kanen et al., 2021).

In summary, ToM clearly involves the mPFC and TPJ,
but there are some specific brain areas that are specialized
depending on the ToM task employed. This further highlights
that ToM is a complex cognitive process that involves a
number of smaller sub-processes. Understanding the structure
of the neural networks that are involved in human ToM
may provide insights into developing suitable models and
architectures for machine ToM. An example of how knowledge
of brain regions involved in ToM can inform the development
of computational models, Zeng et al. (2020) propose a brain
inspired model of belief ToM using high-level knowledge of
the functions of different brain regions relevant for ToM and
test it on two simple false belief tasks. Importantly, evidence
from both cognitive and neuroscience research demonstrates
that ToM is comprised of a number of functions that have
specialized neural underpinnings, but there is a core network
that seems to be active across a number of tasks. As such there
should be a more holistic approach to machine ToM, although
computational models with more specialized subfunctions may
also be useful. The use of human neuroimaging data to train
AI models is becoming increasingly popular (see Section Use
of Human Data).
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Findings and Implications for ToM in AI
Given that ToM is key to understanding social contexts, it is
increasingly important to ensure that AI with social applications
have at least some ToM. For example, autonomous cars are
required to interact with human drivers and pedestrians safely.
If a child is on one side of the road and an ice cream truck
on the other, there is a likelihood that the child will cross the
road to get some ice cream. In this situation, a human driver
would take the precaution to slow down and be vigilant of any
sudden movement from the child, such as running across the
road to the ice cream truck. Without understanding the possible
intentions of the child, an autonomous car may not see this as
a potential hazard. Similarly, in the healthcare setting, there is
a drive toward empathetic healthcare, where robots can assist
in the daily lives of patients by acknowledging their physical,
mental and emotional needs in order to cater for them. More
in general, ToM is essential for AI in human-robot interactions,
such as for surgical robotics. This goes beyond simple emotion
recognition, as all aspects of ToM are involved. This is where
cognitive and neuroimaging studies may be useful to inform how
best to create the appropriate AI models. While machine ToM
can learn a lot from human ToM, even in more specific sub-
functions, one of the main differences seems to be the lack of a
holistic approach in AI. It is worth noting, that as AI becomes
more readily used in society, there will be a need for feedback
between AI and human agents, which would result in higher-
order ToM requirements. However, given the lack of AI models
with first-order ToM abilities, we have focused on this first-
order ToM ability in the current review. Some examples of recent
proposals of recursive reasoning models, relevant for higher-
order ToM (in a Reinforcement Learning framework), include
Wen et al. (2019) and Moreno et al. (2021).

COMPUTATIONAL AND PREFERENCE

TOM IN ARTIFICIAL INTELLIGENCE

A key conclusion from our review of ToM in cognitive
and neurosciences is that learning, and in particular life-long
learning, is a key component of ToM. In this second part of
the survey, therefore, we will review ToM-related proposals
within AI, with a focus on relatively recent proposals which
include a learning component and which are not already
covered extensively in other literature reviews/surveys. We also
focus more on preference ToM (algorithms which focus on
inferring preferences, rather than more generally on inferring
mental states), as there has arguably been more recent work on
preference-ToM than on belief-ToM (e.g., in the fields of Inverse
Reinforcement Learning—IRL—and Preference Learning), and it
has been shown that ToM can indeed be cast as an IRL problem
(Jara-Ettinger, 2019). For broader surveys with less of a focus on
very recent IRL and preference learning algorithms, see Rusch
et al. (2020) and Gonzalez and Chang (2021). We also focus
on first-order ToM models, since first-order ToM is already
challenging enough for current AI models. See Gonzalez and
Chang (2021) for a discussion about computational models of
higher-order ToM and higher-order ToM in humans and Arslan

et al. (2017b) for an example of amodel of children’s development
of second-order ToM. Some examples of recent proposals of
recursive reasoning models, relevant for higher-order ToM (in
a Reinforcement Learning framework), include Wen et al. (2019)
and Moreno et al. (2021). Finally, a significant portion of work in
AI has focused on modeling humans, more generally, for various
purposes. An extensive review is beyond the scope of this survey,
but we point the interested reader toward the following brief
surveys on student (Chrysafiadi and Virvou, 2013; D’mello and
Graesser, 2013) and user modeling (Biswas, 2012) and toward a
brief summary of recommender system surveys (Zhang, 2019), as
example overviews of the extensive work in AI that has gone into
modeling humans more broadly.

Cognitive vs. Affective ToM in AI: A Bird’s

Eye View
We first briefly discuss the current state of the research in belief
inference and emotion inference ToM algorithms, and point the
interested reader to more in-depth surveys.

Gonzalez and Chang (2021) split computational models of
ToM into several broad categories, these include Game ToM,
Observational Reinforcement Learning, Inverse Reinforcement
Learning and Bayesian ToM. We cover these concepts to varying
degrees in this review, but detailed reviews for each are provided
in the following papers (Game ToM in Yoshida et al., 2008;
Observational Reinforcement Learning in Albrecht and Stone,
2018; Inverse Reinforcement Learning in Arora and Doshi, 2021
and Bayesian ToM in Baker et al., 2011). For a selection of
computational models of ToM using cognitive architectures, see
e.g., Trafton et al. (2013), Hiatt and Trafton (2015), Arslan et al.
(2017b).

In Game ToM, players’ beliefs are represented using
probability distributions over actions, states, or other players’
beliefs. Psychological Game Theory, a subcategory of Game ToM,
models motivations that depend on beliefs (either one’s own or
another’s) and has been used to build formal operationalisations
of emotions, as well as to model how players perceive other
players’ intentions behind their actions [see Gonzalez and Chang
(2021) for more details]. For more examples of multi-agent
models of ToM (including Game ToM) see de Weerd et al.
(2017, 2018), Veltman et al. (2019). Bayesian ToM (Baker et al.,
2011) models both beliefs and rewards in a Partially Observed
Markov Decision Processes (POMDP) setting, using Bayesian
inference. Currently, though, we still have little mechanistic
knowledge of how humans perform ToM inferences and the
current modeling oversimplifies the mental operations and the
environments, leading to uncertainty about how well the current
models will generalize (Gonzalez and Chang, 2021). Rusch et al.
(2020) propose a typology of ToM tasks and computational
models across the two dimensions of interaction and uncertainty,
suggesting that it is necessary to take into account relatively high
levels of both uncertainty and interaction in order to effectively
model the more sophisticated ToM processes.

The central role of hot cognition and emotions in ToM has
been recognized by several authors. Some examples of early
work relevant to affective ToM include work on modeling a
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user’s emotions and engagement in educational games (Conati,
2002) and on recognizing the emotions of a user interacting
with an educational computer game (Conati and Maclaren,
2009). Ong et al. (2019) survey previous work on emotion ToM
- computational models of how observers understand others’
emotional states. They point out that there has been less work
on inferring others’ emotional states (falling under the category
of affective cognition) than on inferring their mental states
and that many well-known ToM models (like Bayesian ToM),
often neglect emotions. They derive a taxonomy for affective
cognition inferences, in the framework of an intuitive theory
of emotions, and formalize emotion as part of a graphical
model (which also includes, among others, beliefs, desires and
actions). The taxonomy includes and surveys existing models
of: emotion recognition (how observers infer emotions from
facial expressions and body language), third-person appraisal
(how people reason about an agent’s response to an experienced
event), inferring causes of emotions, emotional cue integration
(how to integrate and reconcile multiple cues to an agent’s
emotions), reverse appraisal (inferring beliefs and desires from
emotions), prediction (of others’ potential behavior given a future
or hypothetical emotion) and counterfactual reasoning and
explanations (reasoning about others’ emotions in states of the
world that are different from the existing reality). The proposed
graphical model formalization allows for unifying the various
types of reasoning from the taxonomy as Bayesian inference
within a common “intuitive Theory of Emotion.” For some of
the categories from the taxonomy no computational models are
proposed, but the authors argue that such models can be built
under their proposed “intuitive Theory of Emotion” framework,
using graphical model tools. Ong et al. (2019) also discuss the
main challenges ahead for models of affective cognition: finding
suitable computational representations of emotions (instead of
the binary or multinomial labels that computational models
currently use) and moving toward more real-world settings, with
their richness of naturalistic data and contexts, and away from
laboratory ones.

A detailed discussion of the advantages and disadvantages
of the different major computational approaches to ToM is
outside the scope of this paper and at least partly covered
by Gonzalez and Chang (2021), but we will summarize some
high-level points here. Bayesian ToM (e.g., Baker et al., 2011)
seems particularly well-suited to model the inherent uncertainty
that comes with trying to infer unobservable mental states and
has previously been found to capture well the judgments of
experimental participants (Baker et al., 2011). However, Bayesian
models’ scalability is often problematic and the scenarios that
Bayesian ToM has been tested in are often quite simplistic.
Cognitive architecture models like Zeng et al. (2020) have the
advantage of often trying to directly model specific brain regions,
but they might be harder to motivate in a principled manner
at the computational level. Game ToM models (Yoshida et al.,
2008) offer the advantage of conceptual analysis using concepts
like Nash equilibria [see Gonzalez and Chang (2021) for more
details], but the game settings they are used in are often too
simple. Finally, RL models (including IRL and MARL) can allow
for state-of-the-art results on real-world tasks and can be highly

scalable, but can also require large amounts of computation
(as well as data, or access to a simulator) for training and be
less interpretable.

The overall impression is that past and existing work in the
area has so far failed to propose an integrated, holistic approach
to ToM able to combine both cognitive and affective components.

Fundamental Results on Preference ToM
In the Reinforcement Learning (RL) framework, intelligent
agents take actions in an environment so as to maximize
cumulative reward. While in RL the reward is usually specified
and the agent has to infer the optimal policy, in Inverse
Reinforcement Learning (IRL) the agent tries to extract a reward
function from observed behavior. Rewards or preferences are
indeed a component of ToM, as discussed above. Ng and Russell
(2000), for instance, formulate IRL as a linear programming
problem and make the assumption that the observed behavior
comes from an optimal policy (decision strategy). As a concrete
example, an autonomous vehicle (AV) could be trained using RL
to maximize the ratings (which would correspond to the rewards
in the RL framework) it obtains from its passengers. In this same
case, IRL could be used to e.g., infer what rating (reward) a
particular AV drive would have obtained. This could be achieved
by, for example, training a system which predicts ratings from
drives by using historical data pairs of (drives, ratings). This
rating/reward predictor could then be used to further improve
the AV’s driving through RL.

The Unidentifiability Conundrum
One of the problems of this setup, though, is the unidentifiability
of the reward function: there are many reward functions for
which the observed policy is optimal. Clifton (2021) discusses the
unidentifiability issue in multi-agent settings (using an example
from the ultimatum game). The conclusion is that, in theory, it is
impossible to uniquely recover a player’s reward function from
their actions only. In other words, the underlying motivations
cannot be unambiguously extracted from behavior.

Mindermann and Armstrong (2018) have shown that it is
impossible to infer the reward function of an agent with unknown
rationality. This holds even when we have access to the full
human policy (i.e., a description of how a particular human
responds to all possible inputs), because there are infinitely
many possible ways of decomposing any policy into a planning
algorithm and a reward function. Penalizing more complex
(planner, reward) pairs does not address this problem either. A
second result shows that for any inferred (planner, reward) pair,
we cannot rule out that maximizing the inferred reward leads
to at least half of the worst-case regret [where regret is defined
as the difference between the (discounted) cumulated reward of
the optimal policy and the (discounted) cumulated reward of
the actual policy] with respect to the true reward. The authors
argue that the true (planner, reward) decomposition must be
very complicated since it has to encode the nuances of systematic
human biases in decision-making. Noting that humans seem able
to make inferences about other humans’ preferences as part of
their ToM abilities, they propose that “normative assumptions”
(“key assumptions about the reward function and/or planner,
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that cannot be deduced from observations”) will have to be built
into the inference algorithm and that humans must be using such
shared priors.

The theoretical impossibility of inferring a human’s reward
function without additional assumptions, even with access
to large amounts of behavioral data (e.g., their full policy),
is suggestive of the promise of extracting insights from
the workings of the brain structure more directly involved
in ToM in humans (e.g., the mPFC and TPJ, see Section
Findings and Implications for ToM in AI), especially in
terms of biases and priors, induced by either genetics or the
environment, or for somehow learning these biases and priors
from cognitive data. These can play the role of the above-
mentioned “normative assumptions.”

Overcoming Unidentifiability
Other approaches have been proposed to address the issue.
Abbeel and Ng (2004) weaken the assumption about the observed
behavior (“expert demonstrations”) to near-optimality and can
output a RL policy with performance [measured in (discounted)
cumulative reward] close to that of the expert, without needing
to infer the underlying reward function (thus bypassing the issue
of reward unidentifiability), by using feature matching (between
demonstrations from the learned policy and demonstrations
from the expert). The assumption is that the reward function
is a weighted linear combination of features of the state.
Nevertheless, many policies can satisfy the feature matching
condition. Ziebart et al. (2008) propose choosing the policy with
the maximum entropy. Further, Ziebart et al. (2010) replace the
maximum entropy in the previous algorithm with the maximum
causal entropy, allowing for amore principled algorithm inwhich
each action’s entropy is only conditioned on the previous states,
and not future states. Shah et al. (2019a) propose another way to
potentially overcome the impossibility result from (Mindermann
and Armstrong, 2018), by learning the cognitive biases of the
demonstrator, which are assumed to be encoded in their planner,
in the same framework where a policy can be decomposed into
a (planner, reward) pair. We can then find the reward function
that results in the observed policy and optimize for it using RL,
resulting in a bias-free policy.

Tackling False Beliefs
A number of interesting papers, such as Dafoe et al. (2020),
discuss the importance of understanding others in multi-agent
settings and how false beliefs about others’ beliefs and preferences
can lead to defection and suboptimal results, even in settings
where cooperation is optimal for all the agents. This is a difficult
problem, because preferences might not be defined explicitly or
might even be incoherent. Tackling false beliefs would mark a
clear step forwards toward a more integrated approach to at least
cognitive ToM, within the RL/IRL setting. Reddy et al. (2018)
also tackle the problem of inferring both beliefs and preferences
from human behavior, in particular those of an expert having
a wrong model of (beliefs about) the environment, in the IRL
setup (in contrast, most IRL algorithms assume that the human
expert has an approximately optimal model of the environment).
It proposes to learn the expert’s model by assuming access

to multiple tasks with known reward functions, which helps
overcome the (unidentifiability) problem that many different
such models could be compatible with the observed data from
a single task. The reward function for a new task can then be
inferred using maximum causal entropy IRL.

Key Messages
Prior art in ToM for preference learning in AI has mostly
been conducted within the mathematical framework of (inverse)
reinforcement learning, with key results focusing around the
impossibility or inferring even a simplified mind model of
agents (purely based on rewards or preferences) in the absence
of additional assumptions on the problem. As there is strong
evidence humans are capable of ToM (albeit in a somewhat
imperfect form), this strongly points at the need for further work
on what these assumptions and priors should be. Computational
ToM has also mainly focused on single aspects of the problem,
with an apparent lack of holistic approaches. Neuroscientific
evidence can arguably provide useful insights on both issues.

Source of Information on Preferences
Human preferences can be learned from different information
sources, such as expert demonstrations, comparisons of preferred
trajectories from expert demonstrations, or proxy rewards -
rewards provided by programmers which capture imperfectly
some aspects of human preferences. The latter can be good
specifications for scenarios from the training distribution, but
not necessarily for novel situations which might occur during
deployment [see Hong et al. (2020) for more examples]. Different
sources come with various tradeoffs attached, e.g., in terms of
how much information about preferences they actually provide
and how costly gathering this information is.

A few papers deal with these issues. Hong et al. (2020)
provide a simple formalism which can unify previously-proposed
algorithms for learning preferences from different information
sources in a Bayesian setting, by inferring a distribution over
the possible rewards. Their framework can also integrate more
exotic types of feedback, such as human decisions whether to turn
an AI off, credit assignment (where the subset of the trajectory
that has maximal reward is provided) and meta-choice (how the
choice over what feedback to offer can itself provide information
about the reward function). The key idea in Shah et al. (2019b)
is that the state of the world has already been optimized for
human preferences, so we can infer them in a RL framework
just by looking at the world (e.g., observing a fragile vase intact
on a table suggests humans probably care about it). Lindner
et al. (2021) scale up this proposal using deep learning. This
strand of research suggests that machines can make inferences
on human mental states by observing the environment humans
create around themselves, rather than human behavior alone
(which remains crucial, see below).

More broadly, the question of what stimuli/inputs are relevant
in the perspective of a machine ToM is a crucial one.

Cooperation in Preference ToM
One of the most important paradigm shifts proposed in
recent years with respect to preference ToM algorithms is the
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importance of the interaction between a single AI and its
human overseer, in a cooperative setting, conceptualized in the
framework of assistance games, which we detail below. This is in
line with another conclusion from Section Cognitive and Neural
Mechanisms of Theory of Mind, that ToM development is a
social process which is facilitated by more frequent interactions
with other people.

Beneficial Machines
Rather than coding machines in order for them to optimize
a certain objective (which, if misspecified, can lead to failure),
Russell (2019) proposes that we aim for machines to be beneficial
to humans: “Machines are beneficial to the extent that their
actions can be expected to achieve our objectives,” and should be
designed according to the following principles:

1. “The machine’s only objective is to maximize the realization of
human preferences.”

2. “The machine is initially uncertain about what those
preferences are.”

3. “The ultimate source of information about human preferences
is human behavior.”

In a way, achieving “beneficial” machines is the whole purpose
of endowing AI with ToM capabilities. However, it is important
to note that in real-life contexts, human behavior is often
constrained by moral, ethical, social and financial considerations.

Assistance Games
Hadfield-Menell et al. (2016) provide a formalization of the three
principles above, in a setting including a human H and a robot R
which tries to maximizeH’s objective (corresponding to principle
1 above), which only H knows, and for which R only has a
probability distribution (principle 2). R assumes that H chooses
actions optimally according to their reward (corresponding to
principle 3). In this assistance game, H’s best strategy is to teach
R about the reward and R’s is to interactively learn and act.
Ho et al. (2016) have shown that humans tend to be pedagogic
when teaching, picking trajectories that help disambiguate their
preferences, rather than optimal ones for the task.

Such explicit teaching frameworks recall efforts to “train”
ToM to humans using demonstrations (Section Assessing Theory
of Mind). In this assistance games framework, humans are
modeled as part of the environment and their preferences are
expressed via a latent variable that the AI can infer. In the
reward learning framework considered in the first part of Section
Computational and Preference ToM in Artificial Intelligence,
instead, the AI learns a reward model from human feedback
which is external to the environment. Shah et al. (2021a) compare
the two approaches and claim that, by merging reward learning
and control in a single policy, assistive agents can reason about
the impact of control actions (such as asking questions) on the
reward learning. This allows them to choose what questions to
ask the human based on their relevance, to create plans whose
success depends on future feedback and to learn not just from
explicit communication, but also from physical human actions.
The “asking questions” behavior is not hardcoded, but emerges
from the interaction between the human and the AI. This is in

line with what we observed in Section Development of Theory
of Mind, about the paramount importance of language in ToM
development in humans. Clearly human behavior (principle 3
above) is meant to include linguistic interactions as well.

Woodward et al. (2020) combine deep RL with assistance
games, in that a principal and an agent have to pick fruit in a
gridworld but only the principal knows which fruit is rewarding.
They show that the agents can learn to cooperate simply as a
result of joint training, without needing explicit demonstrations
or trajectory comparisons. Examples of emergent behaviors are a
restricted field-of-view agent learning to follow the principal to
see which fruit it prefers and the agent learning to communicate
its uncertainty about the preferred fruit, while the principal
learns to “answer” through its movements. They also show that
human/AI pairs obtain better performance than single humans
on this task, reinforcing our conclusions in Section 2.5 about
the importance of cooperative settings and the opportunity of
exploring ideas from developmental robotics.

Evolving Preferences
While standard IRL algorithms assume that humans’ preferences
are fixed, Chan et al. (2019) model humans as learning
their preferences, using an assistive multi-armed bandit setting
(Slivkins, 2019) in which humans repeatedly choose one of
several arms of different slot machines with unknown reward
distributions to pull. They are aided by a robot which can
intercept the player and pull an arm of its own choice and
can only see the human’s arm pull choices (not the rewards).
This formalizes the setting of an AI with partial information
trying to help a human who is learning their preferences. Using
both a theoretical analysis and an experimental setting, the
authors find that better human performance in isolation does
not necessarily lead to better performance of the human-robot
team (since information can also be communicated through
the arm pulls) and that robots which model humans’ learning
tend to do better, even when the model is wrong. The problem,
however, is very sensitive to the human’s learning model and the
robot’s assumption about it. More generally, human goals evolve
over time, so an effective computational ToM approach arguably
needs to model mental states in a dynamic, rather than static way.

Modeling Preference Uncertainty
ToM can be seen as a process in which unobservable,
latent variables (e.g., goals, preferences, emotional states, and
intentions) need to be inferred from the available observable
quantities (human behavior and scene context). As such, ToM
is inherently subject to severe uncertainty, as mental states are by
definition inaccessible.

Consequently, incorporating measures of uncertainty about
the learned preferences and trying to handle misspecification of
the space of possible reward functions have received increasing
attention in preference ToM lately. As a proof of the importance
of assessing uncertainty, Hadfield-Menell et al. (2017a) use
the assistance game framework to study how the robot R’s
uncertainty (about the human H’s preferences) impacts the
incentives around an off-switch, which H can use to switch R off.
It showed that, generally, more uncertainty on R’s side leads to
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more deference toward H (allowing H to shut off R), though at
the cost of R being less able to help H when it is very uncertain
about the reward.

The mainstream approach to modeling uncertainty in
(inverse) reinforcement learning is Bayesian IRL. Ramachandran
and Amir (2007) propose using a distribution over the
inferred reward function (as opposed to non-Bayesian
IRL, which produces a point estimate), which can be
used to plan conservatively (taking into account the worst
potential outcomes), also known as risk-averse planning, with
potential safety benefits. Bayesian IRL algorithms are typically
computationally expensive, though. Brown et al. (2020) propose
a much faster algorithm, based on learning from preferences
over demonstrations. The inferred uncertainty over the reward
allows for confidence intervals around the performance of the
policy to be estimated and makes the reward model more robust
to reward hacking (which can be detected as high variance in the
reward model’s estimate).

Hadfield-Menell et al. (2017b) propose reinterpreting the
common hand-coded reward functions in RL as only providing
information about the AI’s optimal behavior in the training
environment (rather than more generally), using a Boltzmann
rationality model. The latter assumes that a hand-coded reward
is more likely to be picked by the programmer (from the
space of possible hand-coded rewards) if it leads to higher
true reward in the training environment. We can then perform
Bayesian inference to obtain a probability distribution over the
true reward function, which can be combined with risk-averse
planning to avoid negative side effects that the AI has never
encountered before. In a slightly different approach, Bobu et al.
(2018) propose one algorithm to check whether the human’s
true reward function is outside the robot’s hypothesis space
on a task using learning from physical human corrections, by
checking whether all corrections appear irrelevant to the robot.
Jonnavittula and Losey (2021), instead, propose to mitigate the
effects of misspecification by making sure we underestimate the
demonstrator’s capabilities (how good are the demonstrations
they can provide).

Overall, the state of the art so far seems to neglect the
modeling of uncertainty of other aspects of ToM other than
goals/rewards/preferences, with the partial exception of Bayesian
ToM (see Section Cognitive vs. Affective ToM in AI: A Bird’s
Eye View). A proper accounting of the severe uncertainties
involved is likely to be key for future work in this area.
Additionally, existing efforts focus on Bayesian inference, which
models uncertainty using classical probability theory. Methods
from evidential (Sensoy et al., 2018) or epistemic (Cuzzolin, 2021)
artificial intelligence, which model “second order” uncertainty
about the probabilities themselves may be interesting to consider
to provide a safe and robust approach to ToM in AI.

Multi-Task Learning, Meta-Learning, and

Continual Learning
Learning is a key component of ToM. However, when naively
implemented this can be prohibitively expensive, given the level
of challenge involved. In particular, learning a specification using

preference ToM algorithms can often require large amounts of
data. In situations in which we have access to data from multiple
overlapping tasks, however, we can employ techniques from
multi-task learning (Caruana, 1997), meta-learning (Vanschoren,
2018), and/or continual learning (Van de Ven and Tolias, 2019)
to learn from the available training data more efficiently.

Multi-task learning, meta-learning and continual learning
are all motivated by the idea of reducing the amount of data
required for machine learning algorithms to learn different tasks,
by leveraging the shared structure of multiple related tasks. The
differences between these three types of algorithms are as follows.
In multi-task learning, the data from all the different training
tasks is usually all available from the beginning of the training
phase and the goal is to try to solve all the training tasks. In meta-
learning, instead, the goal is to use the training tasks in order to
solve new (test) tasks from a small amount of data. Finally, in
continual learning, the goal is to learn a model for a large number
of tasks sequentially without forgetting knowledge obtained from
the preceding tasks, where the data in the old tasks is not available
any more during training new ones.

Meta-Learning
One prototypical meta-learning algorithm is Model-Agnostic
Meta-Learning (MAML; Finn et al., 2017), which explicitly
trains the parameters of a model so that a small number of
gradient steps with a small amount of training data from a
new task will produce good generalization performance on that
task. Xu et al. (2019) adapts MAML to maximum entropy IRL
(Ziebart et al., 2008) by learning a “prior” over reward functions
which is specifically optimized so that the reward function
corresponding to a new task can be learned from a limited
number of demonstrations. Rabinowitz et al. (2018) shows a
proof of concept of machine prediction of other agents’ false
beliefs, inspired by the cognitive Sally-Anne test in humans, by
formulating ToM as ameta-learning problem. There, an observer
meta-learning agent (called ToMnet) parses the episodes of many
agents in many simple gridworld environments, so as to learn a
prior over the behavior of an agent type. At test time, ToMnet
can infer the type of a novel agent and use recent episodes
of experience of that agent, as well as its trajectory on the
current episode, to predict the agent’s future behavior. It is also
shown to be able to perform few-shot IRL, by inferring the
goals of agents (state-based reward functions defined over simple
gridworlds). When trained on deep RL agents, ToMnet implicitly
learns that other agents can hold false beliefs (about these simple
gridworlds) and it can also be trained to predict agents’ belief
states (which helps with revealing them). It can then infer these
beliefs from behavior alone. The authors interpret their results as
demonstrating “that representational Theory of Mind” can arise
simply by observing competent agents.

Multi-Task Learning
An example of multi-task IRL is (Dimitrakakis and Rothkopf,
2011), which extends Bayesian IRL (Ramachandran and Amir,
2007) to the multi-task setting by using multiple structured
priors which capture the relatedness of different tasks on reward
functions and policies. The authors show that this allows them
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to both learn efficiently from multiple experts and differentiate
between their goals, in experiments on simple MDPs.

Continual Learning
Mendez et al. (2018) propose a continual IRL algorithm in
the maximum entropy IRL framework (Ziebart et al., 2008),
by assuming that the structure of the multiple tasks is shared
and by using a sparsity reward prior over the reward functions
corresponding to different tasks. The authors show that they
can obtain better performance than the baseline single-task
maximum entropy IRL algorithm (which learns separate reward
functions for each task, without any shared structure), with little
computational overhead.

Key Messages
These efforts seem to confirm that ToM can develop more
efficiently, and by using much less data, in a life-long learning
scenario in which machines can observe humans perform a
variety of tasks. Results also seem to indicate that ToM in
machines (and possibly in humans) may be considered a form
of “emergent” behavior.

Meta-learning also appears to be, in our view, a critical
component of a fully-fledged machine ToM, as the task consists
in learning how different agents (e.g., different individual
humans) behave as a function of their rich mental states.

Continual learning per se seems to have received less
consideration so far in ToM efforts in AI (albeit one might argue
that RL is an intrinsically sequential/continual learning setting).
One reason might be that the continual learning community
has so far mostly focused on supervised settings, whereas, as we
argued above, any efficient ToM learning mechanism must be
able to leverage a small number of labeled examples.

Benchmarking and Evaluation
One of the difficulties involved in building better ToM
algorithms, especially in the case of preference ToM, concerns
the evaluation of such algorithms. Many of the tasks we would
want to be able to solve do not possess specifications which
can easily be captured using hand-crafted code. More generally,
human preferences are vague and hard to specify. This suggests
that a good benchmark of preference inference algorithms
should probably have humans evaluate the performance of these
algorithms, because, if we had a signal that allowed us to
automatically evaluate such algorithms, that signal could also be
used for learning (Shah et al., 2021b).

Shah et al. (2021b) introduce the MineRL BASALT
competition, with tasks aiming to be realistic, in the sense
of it being challenging to write reward functions for them and
there being many other potential goals in the environment
than the one intended. The Minecraft game was chosen for
these reasons, with tasks such as “create a waterfall and take
a scenic picture of it.” The chosen tasks are inherently vague
and hard to formalize and the agents are evaluated by humans.
Inspired by false-belief ToM evaluation protocols in cognitive
science, Nematzadeh et al. (2018) and Le et al. (2019) have
proposed first-order and second-order belief evaluation tasks
for language models (also see Section Dysfunction of Theory of

Mind for discussion about the interaction of ToM and linguistic
abilities in humans). Sap et al. (2019) have proposed a dataset to
evaluate language-based commonsense reasoning about social
interactions, including reasoning about motivation (preference
ToM—relevant) and about emotional reactions (relevant for
affective ToM). Zellers et al. (2021) introduce an evaluation
method for NLP (natural language processing) models for tasks
in which there is no literally correct answer. In TuringAdvice
(Zellers et al., 2021), an NLP model must provide a helpful
response in a situation where a human is asking for advice, with
model responses compared against good human responses and
the response considered successful if it is at least as helpful to the
advice-seeker as the human-written one. The authors also show
that there is still a large gap between the best language models
and human-written advice on this task.

Bard et al. (2020) propose the cooperative, imperfect
information card game Hanabi as a challenge benchmark, since
it requires reasoning about the beliefs and the intentions of
other players, focusing on the ad-hoc setting where an agent
has to coordinate with a team they encounter for the first
time. Choudhury et al. (2019) compare a preference ToM-
based learning algorithm with two other non-ToM algorithms
on a task where an autonomous vehicle (AV) interacts with a
human-driven one. The preference ToM-based approach models
the human as approximately optimizing an unknown reward
function, to then use planning to determine the AV’s actions.
The second algorithm, called Black-box model-based learning,
also uses planning, but trains a neural network to directly predict
human actions. The third algorithm, model-free learning, just
uses a deep RL algorithm to directly output the AV’s actions.
They find that the ToM-based method is much more sample-
efficient and more robust to changes in the domain distribution
when not much data is available, but with enough data the second
algorithm dominates. If the preference ToM assumptions are
significantly violated (which is quite likely in practice, because of
misspecification), then the black-box model-based algorithm will
vastly outperform. In their setup, the model-free algorithm did
not work at all.

Clearly, the establishment of commonly accepted criteria for
the design and implementation of ToM benchmarks and the
associated evaluation protocols is still in its infancy, as arguably a
serious stumbling block in the further development of the field.

COGNITIVE VS. COMPUTATIONAL TOM: A

DISCUSSION

As evidenced by the neuroimaging of ToM (Section Cognitive
and Neural Mechanisms of Theory of Mind), there appear
to exist specialized, context-dependent applications of ToM,
but also a core structure to human ToM that is present in
any task requiring ToM abilities. As illustrated above, AI has
largely focused on single aspects of the problem, rather than
propose more holistic approaches to computational models
of ToM. This may be largely due to the fact that the
notion is difficult to conceptualize mathematically, but also
computationally expensive. Much, however, can be learned

Frontiers in Artificial Intelligence | www.frontiersin.org 11 April 2022 | Volume 5 | Article 778852

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Langley et al. Theory-of-Mind in Cognitive-Neurosciences and AI

from cognitive psychology and neuroscience for the purpose of
developing computational models with ToM.

A number of potentially useful insights and conclusions
have been already drawn throughout our exposition of
Sections Cognitive and Neural Mechanisms of Theory of
Mind and Computational and Preference ToM in Artificial
Intelligence. We wish to conclude the paper with some additional
critical reflections.

Current State of ToM in AI
Our review of the prior art in Section Computational and
Preference ToM in Artificial Intelligence shows that there has
been significant progress on the theoretical side, especially
in preference ToM, e.g., combining different information
sources about human preferences (Hong et al., 2020) and
integrating uncertainty (Hadfield-Menell et al., 2017b) and
human interaction (Shah et al., 2021a). On the other hand,
some theoretical results (Mindermann and Armstrong, 2018)
cast doubt on the possibility of completely inferring human
preferences from observed behavior only, even with access to
infinite amounts of behavior data. Using data and insights from
cognitive sciences might be a way to bypass these impossibility
results, since we know that humans can infer others’ preferences
satisfactorily. A related limitation of current preference ToM
algorithms is the large amounts of data they require in practice
to learn ToM capabilities which are still inferior to humans; Jara-
Ettinger (2019) points out that the machine ToM experiments
reported in Rabinowitz et al. (2018) required 32 million samples
to learn to perform goal inference at a level similar to that of a
6-month-old infant. If infants learned ToM in this way, 175,000
labeled demonstrations would be required every day during those
6 months. Cognitive sciences might help build machine ToM
algorithms which need less data.

Use of Human Data
One possibility is to use human derived data, be it brain or
behavioral data, to develop AI models. There are already some
cases in the literature of brain data being used to improve
computational models. Kim et al. (2017), for instance, use
error-related potentials from EEG signals, for implicit feedback,
to improve gesture-based robot control during human robot
interactions. A recent review provides details as to how brain
computer interfaces and neurofeedback research is now being
used to estimate cognitive load, attentional level, perceived
errors and emotions from brain signals to improve interactions
between humans and robots (Alimardani and Hiraki, 2020).
Zeng et al. (2020) propose a brain inspired model of belief
ToM using high-level knowledge of the functions of different
brain regions relevant for ToM and test it on two simple
false belief tasks. It could then be possible to use human
data from ToM tasks to develop AI models with better ToM
abilities. For example collecting data from human drivers
on reactions in various situations and using this data to
train autonomous cars. However, such an approach also has
limitations. To develop accurate AI models large amounts of
data are required, collecting human data is often expensive
(especially in the case of neuroimaging data). There are now

projects such as the Human Brain Project (HBP; https://
www.humanbrainproject.eu/en/) and UK Biobank (https://www.
ukbiobank.ac.uk/) that are actively collecting neuroimaging
measures from thousands of participants; unfortunately, these
measures are not directly related to ToM. As stated above,
the study of the structures more directly involved in ToM
in humans and their associated processes could inform new
architectures and classes of computational models specifically
suited to ToM.

Ethical Issues
It is not within the scope of this review to fully review
the ethical concerns of ToM research in AI; nevertheless, we
feel obliged to provide a brief overview here. Obvious ethical
concerns exist when handling human data (anonymity and
privacy). With the movement toward open science and data
sharingthis might become less of a potential limitation when it
comes to historical data. When considering the improvement
of AI models, particularly those that may have ToM abilities,
several ethical considerations need to be taken into account.
Better machine ToM technology could increase concerns about
machines violating the privacy of others’ minds, though (e.g., at
deployment). We also discuss additional safety-relevant concerns
in section Safety Concerns. Dafoe (2018) states a number of risks
with increasing AI technology including labor displacement,
inequality, strategic instability, and an AI race that sacrifices
safety and other values. As yet there seems to be relatively little
policy guidance governance regarding AI (Dafoe, 2018). Take
autonomous driving cars. When an accident occurs, who should
be considered at fault: the driver, the companywhomanufactured
the car, the programmer who developed the AI system in use?
Similarly, if we develop AI systems or robots that are able
to replace human workers, what happens economically to the
displaced workforce? There are organizations, e.g., the Centre
for the Governance of AI (GovAI: https://governance.ai/) that
attempt to maximize the benefits, whilst managing the risks, of
artificial intelligence. GovAI research is used to advise decision-
makers in private industry, civil society, and government. An
additional ethical concern relates more to the field of machine
ethics. Moor (2011) argues that there are four types of machine
agents: ethical impact agents; implicit ethical agents; explicit
ethical agents and full ethical agents. An AI endowed with
ToM abilities would be considered a full ethical agent, but
this may suggest that the AI should have moral patiency and
as such deserving of moral consideration. Harris and Anthis
(2021) survey the literature on the moral considerations of
artificial entities.

A Contrarian View
It might also be the case that no further cognitive science
inspiration or data is necessary for advanced ToM capabilities.
One plausible scenario is for the currently observed growth
in capabilities of language models to continue, as computing
power is scaled up (Kaplan et al., 2020), potentially all the
way to human levels of performance (Branwen, 2021). A
number of people argue that a language model with human-level
prediction performance would have to have acquired advanced
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(implicit) ToM capabilities (as it is hard to imagine human-level
language modeling otherwise). While the required amounts of
computational resources to accomplish this might be beyond
what is available today, it is not clear that they will still be
unavailable within a few decades, given continuously decreasing
costs, algorithmic progress and increased willingness to spend
[see Karnofsky (2021)]. As a result, this might end up being the
most direct path to more powerful AI (Sutton, 2019), including
ToM abilities.

Safety Concerns
Better ToM algorithms could also come with more safety
concerns, especially if the improvements only concern the
cognitive aspects of ToM, and not the affective ones too.
An AI system with human models with a catastrophic bug
might optimize for human suffering, and AI systems with
human models might produce subsystems that are agent-like
and thus dangerous, given that humans are agent-like (Kumar
and Garrabrant, 2019). AI systems with better ToM capabilities
could also be better at deceiving and manipulating people. In this
context, one ToM-related problemwhich (in our view) appears to
have received too little attention is how to have AIs be motivated
to only try to fulfill human preferences, known as the problem
of intent alignment (between an AI A and its human overseer H;
Christiano, 2018). This is separate from the problem of having
the AI be capable of inferring and fulfilling human preferences.
One reason to focus more on this problem could be that wemight
expect AI capabilities of inferring and being able to satisfy human
preferences to keep increasing, even without major conceptual
breakthroughs (see previous paragraph), while having the AI be
intent aligned seems like a separate problem, which increasing
capabilities wouldn’t solve by default. We can also draw some
loose analogies from cognitive sciences, where some people can
understand others’ preferences (and, more generally, mental
states) without being motivated by them (e.g., psychopaths);
this provides a proof of existence of intelligences which are
capable of inferring (some) human preferences without being
motivated to follow them. Research from cognitive science on
phenomena like psychological altruism, empathy (deWaal, 2008)
and empathic concern (FeldmanHall et al., 2015) might help
with clarifying this problem and might even provide inspiration
for designing more intent aligned AI. Intent alignment alone
might not be sufficient though. Additional risks (related to
the governance of AI, also see Section Ethical Issues) include
misuse (Brundage et al., 2018) and structural risks (e.g., altering
global market structures, shiftingmilitary power, or undermining
nuclear stability; Dafoe, 2020). The question of who the AI
is aligned to is also important. Recent work has proposed
a multi-principal (user) assistance game framework where an
AI acts on behalf of N humans who may have very different
payoffs (Fickinger et al., 2020).

CONCLUSION

While it is clear that there has been progress on AI models
for specific aspects of ToM, at least in limited settings, there
needs to be a more holistic approach. Advancement in this field

could be enhanced through interdisciplinary research, including
psychologists, neuroscientists and those in mathematics and
computing who have a special interest in AI. For example, this
is being done as part of the HBP, where supercomputers are
being used for AI simulation of the human brain (EBRAINS
and SpiNNaker, https://www.humanbrainproject.eu/en/). It is
recognized that part of the difficulty is that on a psychological
level there is little evidence that the multiple components
assessed by various tasks of ToM are indeed measuring the same
construct. Factor analytical or principal component techniques
using measures from a wide variety of tasks, such as those
mentioned above, might be able to better elucidate this. However,
there does seem to be some shared, core ToM network
evidenced by neuroimaging, where a core network including
the TPJ and mPFC is activated across multiple ToM tasks. In
addition, the more direct use of human data in AI computation
has been so far underexplored. This approach might lead to
outperform current AI techniques, while allowing us to better
benchmark the capabilities of machine ToM. Nevertheless,
there have been great advances in the field, which holds
promise for eventually being able to produce AI models which
incorporate ToM for better use in society including healthcare
and other industries.
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