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To process language in a way that is compatible with human expectations in a

communicative interaction, we need computational representations of lexical properties

that form the basis of human knowledge of words. In this article, we concentrate on

word-level semantics. We discuss key concepts and issues that underlie the scientific

understanding of the human lexicon: its richly structured semantic representations,

their ready and continual adaptability, and their grounding in crosslinguistically valid

conceptualization. We assess the state of the art in natural language processing (NLP) in

achieving these identified properties, and suggest ways in which the language sciences

can inspire new approaches to their computational instantiation.
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1. INTRODUCTION

The field of computational linguistics (CL) has exploded recently—especially the work
characterized as “NLP,” which has become almost synonymous with “machine learning approaches
applied to large text datasets.” The practical successes have been rampant (e.g., Collobert and
Weston, 2008; Mikolov et al., 2013a; Bahdanau et al., 2015; Vaswani et al., 2017; Devlin et al.,
2018). But the progress on task-oriented measures and benchmark performance has come at a
price. CL as a field has long benefited from bringing together insights from theoretical linguistics,
psycholinguistics, and other of the language sciences, to inform computational methods for
automatically processing language. This inherently interdisciplinary approach has over time helped
to ensure that computational systems are grounded in firm scientific understanding of the nature
of human language. Periodically, however, the success of a particular computational approach has
threatened this interdisciplinarity by seeming to obviate the need for drawing on other disciplines;
this phenomenon has perhaps been most famously captured by the saying from Fred Jelinek,
“Whenever I fire a linguist our system performance improves”.1

1In his LREC 2004 talk, “Some of my best friends are linguists,” Jelinek indicates the quote is from a talk entitled “Applying
Information Theoretic Methods: Evaluation of Grammar Quality,” given at the Workshop on Evaluation of NLP Systems,
Wayne PA, December 1988. The focus on statistical approaches as “the answer” in 1990s NLP is further illustrated by the
loss of the context of this quip: while stressing that data-driven prediction models were key, Jelinek also emphasized the
importance of input from linguistics on data annotation and model structure.
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We are today in NLP seeing a similar emphasis on
performance and an associated focus on a particular class of
algorithms.2 This exclusionary focus is unfortunate, as it has
meant that CL has weakened its crucial connections to the other
language sciences, and thereby lost some of the underpinnings
and guidance that comes from a comprehensive scientific
understanding of language as an essential and uniquely human
ability.3 Although recent NLP work can achieve performance on
benchmarks that was unheard of only a short time ago, one might
wonder how much such research is actually furthering progress
on the overarching goal of matching broad human abilities in
linguistic communication.

In this article, we consider this issue in the context of research
on lexical semantics. We adopt this focus for two reasons.
First, lexical items—or words4—are the locus of fundamental
semantics, as well as of combinatorial properties that underlie
their composition into the larger units of meaning used in
communication. As such, words are a basic building block of
language, and adequately capturing lexical semantics is critical to
computational systems for processing language. Second, words
generally—and lexical semantics in particular—have received
much attention in recent NLP, and are the focus of many of the
reported successes noted above.

Specifically, our aim here is to examine essential desiderata
for computational approaches to lexical semantics. In order
to process language in a way that is compatible with
human expectations in a communicative interaction, we
need computational representations of lexical properties that
adequately capture human knowledge of words. In this context,
we discuss the concepts and issues that underlie the scientific
understanding of the human lexicon and key defining properties
(Section 2); assess the state of the art in NLP in achieving the
identified properties (Section 3); and suggest ways in which
the language sciences can inspire new approaches to their
computational instantiation (Section 4).

2. THE HUMAN LEXICON

The human capacity for language is founded in very powerful
cognitive mechanisms that underlie general intelligence: the
ability to (multiply) categorize stimuli into richly structured

2Perhaps the quote that best sums up the current situation is “deep
learning is going to be able to do everything” (Geoff Hinton, November
2020, when asked about the ability “to replicate all of human intelligence,”
including language processing; https://www.technologyreview.com/2020/11/03/
1011616/ai-godfather-geoffrey-hinton-deep-learning-will-do-everything/). For a
recent informative debate on the tension—and potential for complementarity—
between neural approaches and linguistic theory, see, for example, the perspective
article of Pater (2019) and its associated commentaries.
3We are not alone in decrying the negative effects of the singular focus on
(and sometimes exaggerated claims about) large language models, and associated
benchmark tasks. See, for example, Church (2017), Bender and Koller (2020), and
Church and Liberman (2021), and the carefully articulated recent discourse at
https://twitter.com/emilymbender/status/1430944351358648324.
4While recognizing that the definition of “word” can be problematic and may
have differing instantiations across languages, for simplicity here we will refer to
lexical items as “words,” assuming this includes relevant morphemes, lexicalized
multi-word expressions, etc.

representations, and to continually learn and readily adapt
to novel stimuli (e.g., Langacker, 1987; Croft and Cruse,
2004; Goldberg, 2006). Moreover, language is grounded in
universal human experience, such that these categorization and
generalization mechanisms operate over a level of universal
(crosslinguistically valid) conceptual grounding (e.g., Berlin and
Kay, 1969; Bowerman and Choi, 2001; Levinson et al., 2003;
Regier et al., 2007; Majid et al., 2008; Gentner and Bowerman,
2009). We briefly discuss the implications of each of these three
properties for the human lexicon.

First, human lexical representations and the lexicon itself
exhibit a rich semantic structure, encoding a multitude of
semantic relations among words. In addition to semantic
similarity and semantic relatedness,5 people are sensitive
to taxonomic relations, part-whole relations, entailment,
subsumption, hyponymy, and many others, which organize the
meaning of words and their relation to each other in a multiply
connected structure (e.g., Collins and Loftus, 1975; Pustejovsky,
1995; Miller, 1998; Hale and Keyser, 2002; Jones et al., 2015). In
addition to the structured relations among them, words also have
rich internal semantic structure (e.g., Cruse, 1986; Pustejovsky,
1995; Croft and Cruse, 2004). Moreover, the commonalities
along various semantic dimensions can form the basis for classes
of words that have shared linguistic behavior, thus serving as a
critically important means for organizing further grammatical
knowledge (e.g., Levin, 1993; Croft, 1994; Baker, 2003). Lexical
representation is further complicated by lexical ambiguity: Most
words have multiple meanings (Bréal, 1897), with a high degree
of variability in the extent and manner in which those meanings
are related (e.g., Nunberg, 1979; Bartsch, 1984; Williams, 1992;
Geeraerts, 1993; Tuggy, 1993), which people are sensitive to (e.g.,
Rodd et al., 2002; Klepousniotou et al., 2008; Armstrong and
Plaut, 2016). Words are thus linked to each other by elaborate
networks of semantic relations that are crucial to their felicitous
use and combination.

Second, human lexical representations are malleable: in
addition to being multiply ambiguous, they are readily amenable
to meaning shifts in context, and frequently undergo semantic
change, taking on new senses. This online adaptability is the key
to successful interaction. People not only easily access different
aspects of meanings in different contexts, they construct nuanced
interpretations in conjunction with conversational partners (e.g.,
Clark and Clark, 1979; Langacker, 1987; Brennan and Clark,
1996; Cruse, 2000; Kintsch, 2001; Croft and Cruse, 2004; Zawada,
2006). Such representations are not always fleeting: linguistic
creativity entails that people frequently generate new usages of
words and shifts in meaning, and interlocutors adjust their lexical
knowledge in response to such novel usages (e.g., Langacker,
1987; Croft and Cruse, 2004; Goldberg, 2006). While it has long
been recognized that children have inductive biases to help them

5We fully recognize that semantic similarity and semantic relatedness are different
constructs (e.g., Budanitsky and Hirst, 2006, among many others), and perhaps
different as well from distributional similarity and relatedness (e.g., Sahlgren,
2008). Since the distinction between similarity and relatedness is not of high
relevance to most points being made here, we will use “semantic similarity” to
encompass the idea of closeness in semantic space, except where explicitly noted.
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learn from small amounts of data (e.g., Clark, 1987; Markman,
1987; Samuelson and Smith, 1999), the dynamic nature of the
human lexicon means that adults also are continually adapting
their lexical representations.

Third, and finally, lexical semantic knowledge is built on
universal principles that are grounded in fundamental human
perceptual and conceptual experiences that hold across languages
(e.g., Goddard and Wierzbicka, 1994; Haspelmath, 1997; Regier
et al., 2007; Majid et al., 2008; Majid and Van Staden,
2015; Kemp et al., 2018). The result is that languages show
constrained variation in their lexical semantic systems. For
example, languages vary widely in the precise lexical divisions
they adopt in a domain (such as how to carve up the continuous
color spectrum into basic color terms), differentially making a
trade-off between expressivity of the terms and efficiency in their
lexicons (e.g., Kemp et al., 2018; Zaslavsky et al., 2018). However,
considerations of “cognitive naturalness” of lexical categories
greatly constrain the observed variation across languages, such
that human lexicons follow common organizational principles
(e.g., Berlin and Kay, 1969; Levinson et al., 2003; Gentner and
Bowerman, 2009; Xu et al., 2020). Moreover, people benefit (or
suffer!) from “transfer effects” in learning a new language, or
in lexical access in the context of a multilingual lexicon (e.g.,
Van Hell and de Groot, 1998; Degani et al., 2011). Thus, the
universality of the cognitive/conceptual basis of language leads
to predictions about expected crosslinguistic commonalities and
areas of difference.

3. ASSESSING THE LEXICAL

REPRESENTATIONS IN NLP

The identified properties of the human lexicon—richly
structured representations, ready and continual adaptability, and
universality—have been differentially highlighted at different
stages of development in NLP, but have rarely been addressed
comprehensively. In the first subsection below, we briefly outline
some of the relevant history of computational lexical semantics,
presenting the progression of ideas with reference to these key
properties. In the second subsection, we discuss ways in which
the current state-of-the-art in lexical semantic representation
continues to fall short of the identified properties of the lexicon
that support successful human communication.

3.1. From Early Structured to Distributional

to Neural Approaches
Achieving broad coverage lexical knowledge has long been
recognized as a critical step to achieving language processing
at scale (i.e., beyond narrow domains or circumscribed tasks).
Early approaches to large-scale lexical resources focused on
highly structured lexical representations, as in, for example,
WordNet (Beckwith et al., 1991; Fellbaum, 1998), FrameNet
(Baker et al., 1998; Fillmore and Atkins, 1998), VerbNet (Levin,
1993; Kipper, 2005), and PropBank (Palmer et al., 2005). The
structure of such lexicons is not only a practical organizational
technique: crucially, lexical items derive their nuanced semantics
in part through the elaboration of multiple semantic and/or

syntactic relations among them. For example,Wordnet organizes
words into synsets that group roughly synonymous words,
and then links these synsets with hypernym/hyponym links
(among other semantic relations) to indicate a basic taxonomic
structure over meanings. Due to ambiguity, words can appear
in multiple synsets, leading to a complex network structure. For
example, one of the synsets of newspaper is {newspaper, paper}
whose hypernym is {press, public press}, while another synset
is {newspaper, newsprint}, whose hypernym is {paper}, where
the word paper in different senses is both a synonym and
a hypernym of newspaper. These resources thus capture rich
semantic structure that has supported a range of applications,
such as word sense disambiguation (e.g., Patwardhan et al., 2003),
semantic parsing (e.g., Das et al., 2014), and question-answering
(e.g., Clark et al., 2018). However, while these resources have
been very successfully deployed for key tasks in NLP, they are
difficult to adapt dynamically, and require considerable manual
effort to transfer to other languages, because of the necessity for
elaborating themultiple senses and/or semantic relations for each
word (e.g., Vossen, 1998; Burchardt et al., 2009). In short, the very
richness of their structure makes it resource-intensive to extend
them within or across languages.

In response to these shortcomings, automatic lexical
acquisition was identified as key to further progress in CL (e.g.,
Ellison, 1997; Baldwin et al., 2005; Armstrong et al., 2010).
Computational work in lexical semantics in the 1990s and 2000s
had two prominent strands: learning of the structured relations
among words (a key source of the power of the above resources),
as well as learning the meaning of individual words. In both
cases, the focus on learning from data was intended to address
both the need for adaptability and the desire for crosslinguistic
breadth and validity.

The first strand of work in data-driven lexical acquisition
concentrated on structured lexical representations. For example,
much work aimed to learn various semantic relations among
words, such as hyponymy, synonymy, part-whole, etc. (e.g.,
Hearst, 1992; Riloff, 1996; Girju et al., 2006). For example,
the simple but highly effective technique of “Hearst patterns”
used common phrases to automatically infer taxonomic relations
among words; e.g., “HYPERNYM, such as HYPONYM” (fruit,
such as apples and bananas) or “HYPONYM and other
HYPERNYM” (apples and other fruit). Another important focus
was on automatically acquiring the rich information about
predicates (such as argument structure and verb or adjective
classes). These methods used statistics over the syntactic patterns
of predicates to automatically classify them into known semantic
classes, or even to discover such classes, in order to generalize
known combinatory properties of lexical items to novel or
previously unseen words (Merlo and Stevenson, 2001, 2005;
Stevenson and Joanis, 2003; Boleda et al., 2004; Korhonen
and Briscoe, 2004; Schulte im Walde, 2006; Li and Brew,
2008; Sun and Korhonen, 2009). In addition to achieving
adaptability within a language, some research was driven by
the goal of crosslinguistic adaptability as well. For example,
some approaches exploited crosslinguistic similarities to extend
methods developed for English to new languages (Merlo et al.,
2002; Padó and Lapata, 2005; Snyder and Barzilay, 2008;
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Burchardt et al., 2009; Samardžić and Merlo, 2010). Other work
leveraged multi-lingual resources further, by using knowledge
of crosslinguistic variation as a way to improve results within
a language. For example, Tsang et al. (2002) exploited bilingual
corpus data to learn a semantic distinction in English that is not
morphologically marked in English, but is so marked in Chinese.
Despite these various advances in automatic lexical acquisition,
a challenge remained for structured lexical approaches: These
methods relied on identifying surface correlates of the deeper
semantic properties to be learned, which often had to be
done manually.

The approaches above were using distributional patterns
to learn a set of semantic relations or an assignment into a
(typically pre-conceived) structured representation. At the same
time, researchers were increasingly considering distributional
cues as capable of comprising the semantic representation itself.
A wealth of work on distributional semantic models (DSMs)
was inspired by early views in linguistics and philosophy that
meaning is determined by use in context (Wittgenstein, 1953;
Harris, 1954; Firth, 1957), and by computational cognitive
modeling approaches to capturing meaning based on word
contextual associations (e.g., Lund and Burgess, 1996; Landauer
and Dumais, 1997). In contrast to the structured lexical
approaches described above, the distributional hypothesis
promised a data-driven representation of semantics that would
avoid both the manual work and the need for explicit
assumptions about semantics that may not generalize across
domains, genres, and languages. Moreover, such representations
had the potential to capture the various senses of a lexical
item, which could be disambiguated in composition with co-
occurring words (e.g., Landauer and Dumais, 1997; Kintsch,
2001; Erk and Padó, 2008; Mitchell and Lapata, 2008; Van de
Cruys et al., 2011). Many types of DSM approaches have been
explored in CL, considering various context sizes (e.g., number
of words, or neighboring words vs. documents), contextual
relations (e.g., word co-occurrence vs. dependency relations), and
statistical measures of word–context association (Schütze, 1994;
Padó and Lapata, 2007; Erk and Padó, 2008; Mitchell and Lapata,
2010). DSMs have generally yielded semantic representations that
perform well on semantic similarity benchmarks and in a range
of downstream NLP tasks (Schütze, 1994; Landauer and Dumais,
1997; Baroni and Lenci, 2010). By the mid 2000s, DSMs had
become a prominent means of lexical semantic representation in
CL (e.g., Lenci, 2008).

More recently, the increased power of statistical methods
and neural network approaches have enabled DSMs to exploit
the promise of the distributional hypothesis to a high degree
(Collobert and Weston, 2007; Mikolov et al., 2013c; Pennington
et al., 2014; Pereira et al., 2016), and the techniques have
been successfully applied across many languages (Bojanowski
et al., 2017). Moreover, recent methods have extended the
basic framework to integrate with neural language models,
thereby achieving adaptability of meanings in local (sentence-
level) contexts for many languages (e.g., ELMo, BERT, mBERT;
Devlin et al., 2018; Peters et al., 2018; Wu and Dredze,
2019). The broad practical successes of neural approaches
to learning word meaning and integrating lexical semantics

with other NLP tasks has led to their current dominance in
the field.

3.2. Current Limitations in Matching

Human Lexical Properties
Despite their success, distributional semantic representations—
“word embeddings”—are still far from capturing human-
like lexical abilities, along all the dimensions of structure,
adaptability, and universality. First, current word embeddings
do not encode all of the rich semantic properties and relations
that we know humans are sensitive to (e.g., Rubinstein et al.,
2015; Boleda et al., 2017; Grand et al., 2018). For example,
Rubinstein et al. (2015) found that word embeddings captured
taxonomic knowledge (‘is a fruit’, ‘is an animal’) much better
than they did attributive properties of word meanings (‘is yellow,’
‘is round’). With regard to ambiguity, while evidence suggests
that distributional word representations can capture multiple
meanings of a word (Burgess, 2001; Kintsch, 2001;Mu et al., 2017;
Arora et al., 2018; Beekhuizen et al., 2019), much remains to be
explored about whether and how they might do so (Reisinger
and Mooney, 2010; Li and Jurafsky, 2015; Jamieson et al.,
2018). In addition, while much earlier lexical acquisition work
successfully learned verb argument structures and their surface
expression, experiments on context-aware embeddings have
shown inconsistent performance in predicting the valid usages
of verbs (e.g., Kann et al., 2019; Warstadt et al., 2019). While
there is legitimate skepticism that purely text-based distributional
methods can truly learn human-like meanings (e.g., Sahlgren,
2008; Bender and Koller, 2020), there is also much room for
them to extend their capabilities beyond solely similarity-based
semantic space.

Second, contextualized word embeddings have shown some
success at exhibiting nuance of meaning in context (e.g., Choi
et al., 2017; Ethayarajh, 2019; Hofmann et al., 2020). However,
at least some approaches are overly sensitive to irrelevant factors
(e.g., word order variation that does not change meaning), such
that very close paraphrases are not assigned close embeddings
(Shi et al., 2019). Further research will need to assess how well
current approaches to contextualized understanding of words
matches that of people. Moreover, while research on historical
semantic change has thrived using historical embeddings (e.g.,
Hamilton et al., 2016; Lu et al., 2019), little attention has been paid
to shorter-term sense change, with some caveats for using word
embeddings in this task (Del Tredici et al., 2018). In addition,
while there has beenmuch focus on one-shot or few-shot learning
as a means for adapting the knowledge of large-scale models
(e.g., Li et al., 2006; Ritter et al., 2017; Brown et al., 2020; Schick
and Schütze, 2021), recent work has discussed that “few-shot”
learning is not as data-lean as it may seem (Perez et al., 2021).
Thus, although their foundation in learning from data holds
the promise of adaptability, the data requirements of neural
approaches can limit their ability to adapt on-the-fly in the way
that people can.

Finally, it is not yet clear how “universal” are the current
distributional semantic spaces. Word embedding spaces show
a crosslinguistically similar structure (Mikolov et al., 2013c),
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but even the most successful cross-language word embedding
techniques learn the monolingual spaces separately, and only
in a second step map the two languages onto each other
(Artetxe et al., 2017, 2018; Lample et al., 2018). Other effective
approaches have depended on sentence-aligned parallel corpora
to support cross-lingual embeddings (e.g., Gouws et al., 2015;
Levy et al., 2017; Zennaki et al., 2019, among others). These
kinds of techniques may lead to multilingual spaces that show
the influence of the particular resources and languages used. In
short, there has been much work on multilingual approaches,
but multilingual does not necessarily equal universal, which
implies a common conceptual representation across languages.
For example, one approach has required manually-specified
conceptual categories to show improvements on both similar
and distant languages (Wang et al., 2019). Further insights from
linguistic and cognitive constraints on what is a valid lexical
representation or a structured lexicon may further enable true
crosslinguistic generalization.

In summary, computational approaches based on lexical
and grammatical theories have developed richly structured
lexicons, but achieving adaptability and crosslinguistic validity
in such frameworks requires much manual effort. By inducing
representations from data, current distributional semantic
approaches have the potential to be fully adaptable, and
generalizable across languages without the manual effort of
earlier NLP systems. However, distributional research has
largely focused on semantic similarity as the sole organizing
principle of the learned knowledge, with less attention to the
many other semantic relations encoded in the human lexicon.
Moreover, despite their fundamental basis in learning, the
proposed methods cannot adapt dynamically due to cognitively
unrealistic training data requirements. Finally, although the
learning methods are in principle generalizable across languages,
they lack the biases to capture human conceptual underpinnings.
As it stands, overcoming the weakness of the conceptual biases
requires extremely large training data sets, available only for a
few languages.

4. INSPIRATION FROM HUMAN LEXICAL

ABILITIES

Early work on lexical resources and automatic lexical acquisition
had a strong basis in linguistic and psycholinguistic theory and
insights. These connections have become more tenuous in recent
NLP, despite earlier recognition that work on distributional
representations in both CL and cognitive science can inform each
other (see, e.g., Lenci, 2008), and despite continued work at the
intersection of the two fields.6 Amore concerted effort is required
to bring linguistic and psycholinguistic understanding together
with recent data-driven approaches in order to achieve more
human-like lexical representations and abilities. Here we describe
some relevant cognitively-inspired work from recent years, and

6See, e.g., the proceedings of regularly-occurring workshops such as CogACLL,
CogALex, and CMCL, as well as tracks on linguistics and psycholinguistics in the
major CL conferences.

suggest how such work can inform future directions in NLP to
address the properties of the human lexicon.

4.1. Structure in Lexical Representations

and Learning
Word embeddings are largely founded on the notion of semantic
similarity, and ensuring that word vector similarities match
human judgments has been an important goal (e.g., Baroni et al.,
2014; Pereira et al., 2016; An et al., 2018; Grand et al., 2018; Iordan
et al., 2022). Less attention has been paid to whether the actual
structure of a DSM’s similarity space matches what is known
about the human lexicon. For example, while work in CL has
noted that different types or levels of similarity may be captured
in DSMs—first-order similarity reflecting word associations, and
second-order similarity reflecting substitutability (e.g., Schütze
and Pedersen, 1993; Grefenstette, 1994; Levy et al., 2015)—less
attention has been paid to whether and how these finer-grained
notions of similarity within current word embeddings match
human lexical processing. Some recent work has addressed this
issue (e.g., Beekhuizen et al., 2019; Chronis and Erk, 2020; Samir
et al., 2020). For example, Samir et al. (2020) demonstrate that
using different combinations of the input and output matrices
of the word2vec algorithm not only mimics the two kinds of
similarity, but does so in a way that matches human behavioral
data on semantic priming and lexical decision. However, other
properties of human similarity judgments—such as asymmetries
in word associations or violations of the triangle inequality (w1

similar to w2, and w2 similar to w3, do not imply w1 similar to
w3; cf. asteroid, belt, and buckle, Griffiths et al., 2007)—are not
consistently captured in embedding spaces (Griffiths et al., 2007;
Nematzadeh et al., 2017; Rodriguez and Merlo, 2020). Building
on the insight from Griffiths et al. (2007) that interpretation
of a word within the context of a topic can resolve some
of these mismatches with human judgments by appropriately
disambiguating the words, one avenue for the future may be to
consider word embeddings that are topically-constrained (such
as in Iordan et al., 2022).

Word embeddings also fail to reflect other linguistically-
relevant types of similarity that play a role in human
language processing. For example, when faced with long-distance
dependencies between two feature-sharing items in a sentence
(such as those found in questions, relative clauses, pronoun
anaphora, and other frequent phenomena), people exhibit effects
of interference if there is a third similar element in the sentence
(Rizzi, 2004; Franck et al., 2015). However, this effect of similarity
interference is not correlated to the similarity of words calculated
statically in a vector space or even dynamically in a neural
network model of processing (Merlo and Ackermann, 2018;
Merlo, 2019). The general picture that emerges from all these
studies is that word similarity is a rich construct of the human
lexicon, and while word embedding spaces represent some
fundamental properties of semantic similarity, more nuanced
notions, and some grammatically-relevant aspects, may not
emerge from such representations.

Moreover, work in psycholinguistics has shown that human
access and interpretation of a word are influenced by its
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semantic neighborhood—the structural layout in semantic space
of semantically similar words (e.g., Burgess, 1998; Buchanan
et al., 2001). Such considerations are especially important
for understanding how ambiguous words encode their varied
semantics. Recent work has shown that some, but not all, oft-used
word embeddings reflect a difference in neighborhood structure
between homonyms (words with multiple unrelated meanings)
and polysemes (words with multiple related senses) (Beekhuizen
et al., 2018, 2021), corresponding to experimental differences in
human processing of ambiguous words (Rodd et al., 2002; Hino
et al., 2006). Other work has shown that contextualized (token)
representations of abstract and concrete words differ in their
pattern of dispersion across different layers of a language model
(Chronis and Erk, 2020), again demonstrating the potential
richness of lexical semantic structure. Such work illustrates
that representational adequacy of distributional semantic models
should consider finer-grained details than a match to human
similarity judgments.

Beyond the similarity structure of word embeddings, it
remains unclear how much current models capture the many
other semantic relations that people are sensitive to (e.g., Köper
et al., 2015; Santus et al., 2016; Ettinger, 2020). For example, the
extent to which distributional semantic spaces represent more
abstract semantic properties is an open question (Baroni and
Lenci, 2008; Rubinstein et al., 2015; Hollis and Westbury, 2016;
Hollis et al., 2017). Abstract semantic classes, such as verb or
adjective classes, play a crucial role in theories of how human
lexical knowledge encodes knowledge of grammar (e.g., Levin,
1993; Paradis, 2001; Morzycki, 2012), and so it is important
that lexical representations support organization of such classes.
For example, semantic verb classes are an important means for
generalizing knowledge of argument structure: learning that a
new verb gorp reflects a change of state will enable an English
speaker to know that if you can say Jane gorped the cookie,
you can also say The cookie gorped. Such classes often capture
commonalities at a higher level of abstraction than the simple
within-domain similarity that is typically demonstrated in word
embeddings; for example, the change of state class covers verbs as
dissimilar as age, blacken, crumble, deflate, and energize (Levin,
1993). Some recent work has demonstrated the ability of word
embeddings to capture an abstract semantic class of adjectives
that, like verb classes, also has ramifications for appropriate
use of the words in grammatical constructions (Samir et al.,
2021). However, even for the “poster child” task of solving
linguistic analogies, which has showcased the semantic abilities
of modern distributional representations (Mikolov et al., 2013b),
higher levels of abstraction can be a challenge. It has been
shown that for more abstract relations (ones that go beyond
within-domain similarity) it is difficult to achieve reasonable
performance in these tasks (Rogers et al., 2017), requiring
more explicit knowledge of abstract classes (Drozd et al., 2016)
or an additional learning component to extract the relevant
dimensions of comparison (as in Lu et al., 2019).

Better understanding of learning algorithms may be required
to achieve the kind of rich and abstract structure that human
lexical knowledge demands. Again, insight may be drawn
from cognitive principles. Analogies to human processes of

memory and attention abound in neural architectures, yielding
interesting and powerful mechanisms to guide the information
flow through the network (e.g., Hochreiter and Schmidhuber,
1997; Vaswani et al., 2017). These mechanisms take inspiration
from human cognition in an intuitive and loose sense, but
generally do not distinguish the different types of mechanisms—
such as working memory vs. episodic or semantic memory—
found in humans. Closer modeling of the more structured
findings from psychology and cognitive science might bring
further fruits. For example, recent modeling of human reading
processes in neural architectures has yielded finer-grained
understanding of attention to words in language models (Sood
et al., 2020; Hahn and Keller, 2021). Other work has noted
that structured memory, as in humans, may be required for the
kind of meaningful compression in learning that is necessary
for successful abstraction over input stimuli: by disentangling
computation and storage (which are intertwined in the weight
parameters of most neural networks), richer storage mechanisms
can be achieved that support both faster retrieval, and forgetting
in support of abstraction (Nematzadeh et al., 2020). Other
research considering cognitive factors in communication has
found that human lexical organization is subject to optimization
of the trade-off between complexity and accuracy (e.g., Kemp
et al., 2018; Zaslavsky et al., 2018, among many others). The
same principle of an information bottleneck has also been shown
to help explain hierarchical structure in DNN layers (Tishby
and Zaslavsky, 2015). Altogether, studies such as these suggest
that drawing clearer connections between human principles of
communication and current learning approaches may lead to
more human-like lexical representations.

4.2. Adaptability and Learning From Small

Amounts of Data
Adaptability requires generalization. But current data-driven
NLP models do not generalize well to new problems or instances
out of the training distribution (Ettinger et al., 2017; Belinkov
and Bisk, 2018; Schölkopf, 2019). People are not as susceptible to
overfitting, at least partly because they have strong prior biases,
grounded in the actual causal structure of the problem. One
possible approach for developing more robust methods, then, is
to pay more attention to causal chains in the generative process
that give rise to the data and not just to correlations in the data
(Schölkopf et al., 2012; Lake et al., 2017; Bengio et al., 2020).
Drawing on such causal knowledge should enable methods that
support appropriate generalization, and improved adaptability.

Detailed linguistic analyses and psycholinguistic studies can
provide information on the causal structure that is likely to
underlie the observed distributions. For example, recent work
in linguistics has investigated the causes of variation in the
expression of causative constructions in several languages—
corresponding to the alternation in English between Kiva
broke the vase (with the causal agent specified) and the vase
broke (Alexiadou, 2010; Haspelmath et al., 2014; Heidinger,
2015). A superficial correlation has been found between the
distribution of verb form (length of the causative alternative of
the verb) and its frequency (Haspelmath et al., 2014). However,
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further investigation has identified the perceived probability of
external causation—is the event spontaneous or not—as a better
explanation of the patterns of crosslinguistic data (Samardžić
and Merlo, 2018). Taking this latent factor into account is
shown to inform generalization, achieving improved prediction
of which verbs can occur in which causative constructions
(Samardžić and Merlo, 2018). In another example, Yu et al.
(2020) proposed a probabilistic model building on linguistic
analyses of denominalization—i.e., use of a noun as a verb
(Clark and Clark, 1979). Human-like interpretation of novel
uses—inferring that porch the newspaper likely means “throw the
newspaper onto the porch”— depends on a latent frame (topic
or scenario) variable in the model. Yu et al. (2020) demonstrate
that this latent variable enables the model to outperform BERT
in predicting the appropriate paraphrase for novel denominal
verbs. This work suggests that appropriately modeling the causal
structure of a phenomenon can outweigh even the massive
knowledge encoded in a recent language model.

Such predictive generalization is key to achieving the on-
the-fly adaptability that people exhibit. Historical corpora and
other resources (including associated historical embeddings)
have facilitated work on lexical change over some period of time
(Hamilton et al., 2016; Lu et al., 2019), but less attention has
been given to the rapid adaptation to novel nuances of meaning
and novel constructions (e.g., Cook et al., 2014; Del Tredici
et al., 2018; Ryskina et al., 2020; Watson et al., 2021). People
continually produce words in new meanings and in creative
usages of constructions, and interlocutors quickly extend their
lexical knowledge to grasp the novel interpretations. This “one-
shot” learning in people has not been achieved in recent NLP
systems, which, as noted above, do not actually use just small
amounts of training data in so-called “few-shot” learning (Perez
et al., 2021). Psycholinguists have proposed a number of biases
that enable children to learn words with few exposures; what
principles govern the ability of adults to similarly adapt quickly
and generalize over small amounts of data?

Much psycholinguistic work aims to elucidate the cognitive
mechanisms that enable people to generalize their lexical
knowledge in producing and interpreting novel usages of words.
By understanding the cognitive processes at play when people
form generalizations, work in NLP can better identify the factors
and mechanisms required to achieve human-like abilities. For
example, generalization of constructions to new words—such
as saying “don’t try to batman your way into it”—is viewed
as a process of category extension (i.e., seeing a construction,
such as “VERB one’s way into NOUN,” as a category of usages).
This process is influenced by factors such as similarity of the
novel item to observed instances of the construction, and the
frequency and variability of the latter—factors which support
easier extension to new usages (e.g., Bybee and Eddington,
2006; Suttle and Goldberg, 2011; Perek, 2016). Recently, Watson
et al. (2021) have demonstrated that these principles hold in
creative usages in large-scale social media data – specifically,
in novel usages of denominal verb constructions in an online
discussion platform. For example, novel usages such as “I am
a man (...usually all flannelled up)” tend to have high similarity
to existing usages (gear up, glove up, mask up, sweater up, ...)

that form a broad and frequent class. Moreover, Watson et al.
(2021) find that novel usages cluster around other novel usages
(flannel is similar to sweater), confirming that the exemplar-
driven innovation found in historical analyses (e.g., Habibi et al.,
2020; Yu et al., 2020) plays a role in dynamic adaptation of
language. This is an important point, because one-off usages,
rather than being statistical noise, serve as informative signals to
people of legitimate creativity. Research is needed to see how such
biases suggested by cognitive principles might be built into neural
models of meaning acquisition and extension (e.g., compare
McCoy et al., 2020), to ensure the level of lexical adaptability
observed in human communication.

4.3. Truly Crosslinguistic Generalization
Semantic typology has contributed significantly to our
understanding of the crosslinguistic foundations for human
lexical semantics. Clearly, languages vary widely in how they
“carve up” a semantic space with words—e.g., some having a
single word for two concepts for which others have distinct words
(English on [SUPPORT] vs. Dutch aan [TENUOUS SUPPORT]
and op [STABLE SUPPORT]). Despite this lack of alignment
in the world’s lexicons—with various one-to-many or even
many-to-many mappings attested between languages—detailed
linguistic analyses of various semantic domains have revealed
consistent commonalities in how languages label concepts with
words (e.g., Berlin and Kay, 1969; Haspelmath, 1993; Levinson
et al., 2003; Majid et al., 2008; Gentner and Bowerman, 2009).
More recently, large-scale work has confirmed that languages
exhibit universal tendencies in lexical structure across a wide
variety of semantic domains (Youn et al., 2016; Thompson et al.,
2018). However, while NLP has effectively drawn on linguistic
typology in other areas (such as morphology and syntax), little
research has considered how to incorporate the insights from
lexical semantic typology to inform and constrain computational
approaches to meaning (e.g., Bender, 2016; Dubossarsky et al.,
2019).

The creation of multilingual semantic spaces is one area
that may benefit from typological considerations, especially an
examination of how well such spaces capture the crosslinguistic
principles that underlie human lexicons. Much of the richness
of lexical structure, and differences across languages, arise from
variation in polysemy—how languages differently package up
related meanings into ambiguous words. For example, while the
word for “tongue” in English, Hebrew, and Russian refers to both
the physical organ and a language, only in English and Hebrew
does it also refer to a piece of land that protrudes into the sea
(Navigli and Ponzetto, 2010). Such misalignments pose serious
challenges for NLP, since ambiguous words in one language can
map very differently to words in another language. Rabinovich
et al. (2020) showed that a multilingual semantic space could
capture the similarity structure among concepts that match
human patterns of such polysemies. Ensuring that multilingual
spaces have such properties may enable them to better support
automatic alignment across languages in future NLP systems.

One issue raised by such work is the extent to which
multilingual spaces show bias from certain languages, since they
generally rely on monolingual spaces or bilingual resources, in

Frontiers in Artificial Intelligence | www.frontiersin.org 7 May 2022 | Volume 5 | Article 796741

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Stevenson and Merlo Beyond the Benchmarks

which some languages are likely over-represented (e.g., Artetxe
et al., 2017, 2018; Lample et al., 2018). Interestingly, Merlo and
Rodriguez (2019) show that multilingual spaces exhibit transfer
effects—where the source language influences the semantic space
of the target language—that are consistent with the cross-
language influences seen in human bilinguals. This is intriguing,
as it tells us that we can learn much from the broad literature
on lexical semantic transfer effects in humans (e.g., Van Hell
and de Groot, 1998; Degani et al., 2011). For example, even
highly skilled human translators exhibit statistically detectable
evidence of the source language in their target word choice
(Rabinovich et al., 2017). By understanding more clearly how
a source language can influence a target language, better
means might be determined for anticipating bias in transfer
learning and alleviating it. Such considerations are becoming
increasingly important: work in NLP is heavily invested in so-
called “foundation models,” which are largely focused on English
due to their data and/or computation requirements (Bender et al.,
2021; Bommasani et al., 2021). Methods for transferring such
large-scale knowledge to a broad range of diverse languages will
be necessary, and informed debiasing—drawing on knowledge
of crosslinguistic tendencies and divergences—could be key to
such efforts.

In addition to considering transfer between languages, NLP
could also benefit from additional insights into the universal
basis of lexical semantics. A key finding in semantic typology
is the observation that, the more frequently (across languages)
that two meanings are referred to by a single word, the more
likely those meanings are to be (“universally”) semantically
similar (e.g., Levinson et al., 2003; Gentner and Bowerman,
2009). Building on this insight, recent computational modeling
work has shown that patterns in crosslinguistic data can reveal
conceptual similarities that can form the basis of a “universal”
semantic space for various lexical domains (Beekhuizen et al.,
2014, 2017; Beekhuizen and Stevenson, 2018). In contrast to the
typical multilingual approach in NLP of aligning a collection of
monolingually-derived spaces, here a common semantic space
across languages is founded in the dimensions of meaning that
emerge from the crosslinguistic lexical patterns of aligned word
usages. Such representations can reveal important properties
of a distributional semantic space that conforms to typological
principles. For example, building on insights from such a
semantic space, Rabinovich et al. (2019) derived typologically-
predicted patterns of human use of semantically-nuanced words,
and demonstrated that some neural languagemodels mimic these
patterns. Practical limitations have prohibited the token-level,
word-aligned techniques of Beekhuizen and colleagues from
deployment for large-scale broad-coverage lexicons. However,
there has been success in supersense tagging using coarser-
grained type-level representations based on sentence alignments
(Zennaki et al., 2019). Such results suggest that discovering
similar methods for finer-grained representations that can
scale is a promising avenue to pursue. Moreover, because
their success depends on having a representative sample of
languages, these kinds of approaches can inform how to
sample languages efficiently to capture the broad crosslinguistic
regularities (e.g., Stoll and Bickel, 2013; Beekhuizen and
Stevenson, 2015; Beekhuizen et al., 2017). Thus, drawing on

typological principles could extend the repertoire of NLP
approaches to creation ofmultilingual spaces that truly generalize
across languages.

5. CONCLUDING THOUGHTS

The research from adjoining fields of linguistics,
psycholinguistics, and cognitive science provides many
challenging targets—as well as many sources of inspiration—for
learning more structured, adaptable, and generalizable models
in NLP. We have highlighted a broad range of interdisciplinary
work that indicates how these high-level goals translate into
more specific questions and hypotheses about computational
approaches to word meaning. Such studies have informed the
current understanding of human-like lexical representations and
the algorithms that can achieve them, and have highlighted the
possibilities for future research aimed at bringing these insights
into NLP.

First, interdisciplinary research points to the need to
learn more richly-structured notions of semantic similarity
and other types of relations. Representations must achieve a
higher level of abstraction that identifies classes of words that
capture generalizable knowledge. The overarching challenge
is for neural architectures to learn such structured semantic
spaces. Research suggests that drawing closer connections to
human cognitive mechanisms, such as memory, attention, and
communicative efficiency, can lead to insight into what to
store in memory and how to effectively abstract and simplify
representations. Second, to achieve human levels of lexical
adaptability, we must move beyond correlation to causation:
systems must be sensitive to the latent causal factors of
the observed effects, in order to support generalizations that
mirror the structure of the problem, and thus are both
more predictive and more explainable. To do so will require
consideration of cognitive mechanisms such as categorization,
and incorporation of human-like biases, such that learning
systems can adapt dynamically given small amounts of
data (even within a conversation). Finally, the goal of true
crosslinguistic validity will require lexical representations that
conform to a universal conceptual foundation, and multilingual
semantic spaces that reflect the understood mappings between
language-specific lexicons. Practical learning algorithms will
need to anticipate transfer effects when using more-resourced
languages to leverage knowledge for less-resourced languages.
Multilingual systems will also need to draw on the known
dimensions of typological, historical, and structural variation
to inform small but representative language samples to ensure
crosslinguistic generalization.

We have undergone a paradigm shift in natural language
processing due to the ability of recent machine learning
methods to effectively process huge amounts of data. But the
integration of machine learning methods into computational
linguistics is not new. The statistical revolution of the 1990s
led to tremendous advances in a vast array of applications,
from machine translation to automatic lexical acquisition
to summarization and more. It also eventually led to a
realization that knowledge of the language sciences—that is, deep
understanding of the findings from fields like linguistics and
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psycholinguistics, on both the qualitative and the quantitative
properties of language—were critical to obtaining success in
NLP. Today, the same marvel of very large scale language
models that is having such a positive effect on our ability to
generate useful applications with relatively simple fine-tuning,
has the negative effect of making us forget that grounded natural
language processing is far from solved. Moreover, scientific
progress is held back when resources and efforts are concentrated
into the single mould of NLP as generic optimization, and
away from questions and techniques that are more deeply
integrated with the properties of the object of study. The
language sciences have long (in some cases, thousands of years)
revealed subtleties of the linguistic system that may be fruitfully
incorporated into current approaches in NLP as knowledge

representations, inductive biases, and principles of constrained
variation.
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