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Schrödinger’s tree—On syntax
and neural language models
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In the last half-decade, the field of natural language processing (NLP) has

undergone twomajor transitions: the switch to neural networks as the primary

modeling paradigm and the homogenization of the training regime (pre-

train, then fine-tune). Amidst this process, language models have emerged

as NLP’s workhorse, displaying increasingly fluent generation capabilities and

proving to be an indispensable means of knowledge transfer downstream.

Due to the otherwise opaque, black-box nature of such models, researchers

have employed aspects of linguistic theory in order to characterize their

behavior. Questions central to syntax—the study of the hierarchical structure

of language—have factored heavily into such work, shedding invaluable

insights about models’ inherent biases and their ability to make human-like

generalizations. In this paper, we attempt to take stock of this growing body of

literature. In doing so,we observe a lack of clarity across numerous dimensions,

which influences the hypotheses that researchers form, as well as the

conclusions they draw from their findings. To remedy this, we urge researchers

tomake careful considerations when investigating coding properties, selecting

representations, and evaluating via downstream tasks. Furthermore, we outline

the implications of the di�erent types of research questions exhibited in studies

on syntax, as well as the inherent pitfalls of aggregate metrics. Ultimately, we

hope that our discussion adds nuance to the prospect of studying language

models and paves the way for a less monolithic perspective on syntax in this

context.

KEYWORDS

neural networks, languagemodels, syntax, codingproperties, representations, natural

language understanding

1. Introduction

Syntax—how words are combined to form sentences in natural language—

has perhaps never garnered as much attention from NLP researchers as it does

in the present day. Naturally, its recent relevance at conferences is owed to

the deep learning paradigm, which the NLP community has embraced with

open arms since the midpoint of the last decade. Prior to this paradigm

shift, questions central to syntax were often restricted to the parsing domain.

There, researchers were largely interested in developing supervised algorithms for

processing structured input—usually in the form of annotated constituency or

dependency treebanks. Beyond parsing, syntax also often factored into researchers’

hypotheses about what information models may need to succeed in a given task.
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Feature engineering was a pivotal component of pre-neural NLP,

where text was filtered through hand-crafted feature templates

that emphasized parts of speech, morphology, and tree structure,

so as to inform simple, often linear models about the underlying

syntax of sentences.

The deep learning revolution of the mid 2010s quickly

obviated the need for feature engineering, which was widely

considered a time-consuming and painstaking process.

Embeddings—dense vectors representing the distributional

properties of words—quickly replaced the sparse, hand-crafted

vectors of yore and boosted performance dramatically (Mikolov

et al., 2013; Pennington et al., 2014). Such progress presented a

trade-off, however: accuracy at the expense of interpretability.

Indeed, without the guiding hand of the feature engineer, it

became difficult to ascertain what properties of natural language

the new neural models—highly complex and non-linear—had

come to rely on.

It was this uncertainty that inspired a new line of inquiry

within NLP, concerning what exactly models know and how

they come to learn it. Early insights from this domain intimated

that neural networks could capture facets of the hierarchical

structure of language, beyond the linear order of words in

a sentence. The Long Short Term Memory network (LSTM)

(Hochreiter and Schmidhuber, 1997) featured prominently in

such studies, where researchers employed linguistic minimal

pairs (mostly based on agreement phenomena) in order to

demonstrate the model’s sensitivity to syntactic hierarchy

(Linzen et al., 2016; Gulordava et al., 2018). Such findings were

deemed exciting mainly due the LSTM’s design as a sequence

processor, which lacked the sort of structural supervision or

inductive bias that one might encounter in the parsing literature.

Amidst skyrocketing research budgets and the continued

advancement of processing hardware, NLP faced another

paradigm shift in 2018–2019. Researchers began realizing that

representations for input words need not be fixed to a single

static vector per type (as with word embeddings), but can instead

be computed dynamically, with each word contextualized with

respect to the rest of the sentence (Peters et al., 2018). Per

this logic, it also became apparent that models capable of

generating such representations could be fine-tuned with respect

to downstream tasks, with impressive gains in performance

thereafter (Howard and Ruder, 2018). Language models—the

basis of classic word embedding algorithms—were a natural fit

for this paradigm and became NLP’s backbone going forward.

In the modern day, models like BERT (Devlin et al.,

2019), GPT (Radford et al., 2019), and their successors feature

prominently in NLP research, showcasing the efficacy of

the pretrain-and-finetune paradigm. Naturally, the human-like

generation capability of such models, as well as their success

on natural language understanding (NLU) benchmarks (Wang

et al., 2018, 2019), makes the question of what the models

know about language and how they acquire such knowledge

and ever-pressing one. Increasingly, we find, NLP researchers

turn to the field of syntax—with its decades of research,

theory, and debate—in order to answer such questions. In

this paper, we attempt to take stock of the ever-growing

literature on the syntactic capabilities of neural language

models. In doing so, we observe a lack of clarity across

numerous dimensions, which influences the hypotheses that

researchers form, as well as the conclusions they draw from

their findings. We argue that this failure of articulation results

in a body of work whose hypotheses, methodologies, and

conclusions comprise many conflicting insights, giving rise to

a paradoxical picture reminiscent of Schrödinger’s cat—where

syntax appears to be simultaneously dead and alive inside the

black box models. In particular, by framing studies around

aggregate metrics and benchmarks, syntax is often reduced

to a monolithic phenomenon, which fails to do justice both

to the complex interplay between different manifestations of

hierarchical structure in natural language and to the substantial

variation that exists across typologically different languages.

Our goal in this article is not to criticize earlier studies, which

all provide valuable pieces of evidence for understanding the role

of syntax in contemporary NLP, particularly language models.

Instead, we propose a number of conceptual distinctions,

the consideration and articulation of which, we argue, can

help us better understand the seemingly conflicting results,

resolve some of the apparent contradictions, and pave the

way for a more nuanced and articulated research agenda. To

provide the necessary background for this analysis, we begin by

introducing the concept of syntax from a bird’s eye perspective.

We then review a representative sample of investigations into

the syntactic capabilities of neural language models, which

we categorize as belonging to three different paradigms. We

supplement this review by discussing what we perceive to be

important distinctions about syntax left implicit in this body of

work. This leads to a discussion of different classes of research

questions underlying the surveyed literature, and the role of

aggregate metrics in addressing these research questions. We

conclude with some thoughts on how our analysis can inform

our research methodology for the future.

2. Background: Aspects of syntax

Syntax is usually described as the way that words are

combined into larger expressions like phrases and sentences.

On one hand, syntax can then be contrasted with morphology,

which is concerned with the internal structure of words. On

the other hand, it can be contrasted with semantics, which

deals with the meaning of words, phrases and sentences—as

opposed to their form. In reality, however, syntax is concerned

with the complex mapping between form and meaning at the

phrase and sentence level. It is therefore important to make a

distinction between syntactic structure—an abstract hierarchical
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structure that determines or constrains semantic composition—

and coding properties—expressive devices such as word order,

function words and morphological inflection that are used to

partially encode the syntactic structure. To illustrate this point,

let us consider two equivalent sentences in Finnish and English:

(1) koira jahtasi kissan huoneesta

dog-NOM chase-PRS cat-ACC room-ELA

‘a/the dog chased a/the cat from a/the room’

(2) the dog chased the cat from the room

Most linguists would agree that (1) and (2) not only mean

(roughly) the same thing but also have a similar syntactic

structure, where the main verb (jahtasi, chased) takes a subject

(koira, the dog), a direct object (kissan, the cat) and a locative

modifier (huoneesta, from the room). However, the encoding of

this syntactic structure is quite different in the two languages. In

English, the subject and object are primarily identified through

their position relative to the verb, while the locative modifier is

introduced by a preposition (from). In Finnish, the role of all

three dependents of the verb is indicated by morphological case

inflection, and constituent order is not significant1. Note also

that the overt coding properties (word order, function words,

morphological inflection) do not (always) uniquely determine

the syntactic structure. For example, in the English example, the

phrase from the room could also function as a modifier of the

noun phrase the cat, although this is a less likely interpretation

in most contexts.

While coding properties are concrete aspects of the sentence,

the syntactic structure is essentially an abstract concept that is

not directly observable. Nevertheless, linguists have over the

years accumulated compelling evidence for the existence of

a hierarchical structure over and above the sequential order

of words. The most obvious type of evidence is perhaps the

occurrence of structural ambiguity, where a single sequence of

words can be assigned multiple interpretations, exemplified in

the following classic examples:

(3) she saw the man with the telescope

(4) old men and women

(5) flying planes can be dangerous

The principle of compositionality states that the meaning

of a complex expression is determined by the meanings of its

constituent expressions and the rules used to combine them.

Since the different interpretations in the examples above are

not due to lexical ambiguity, they must be due to the rules

used to combine the constituent expressions. Hence, they show

1 In principle, the words of the Finnish sentence can be rearranged in

any order without changing the syntactic roles, but some orders may be

less natural and/or carry special pragmatic implications.

that different syntactic structures can be realized by the same

sequence of words. According to this view, the abstract syntactic

structure is closely connected to semantic composition and

the syntax-semantics interface. Other types of evidence for

a hierarchical syntactic structure come from substitution and

permutation tests (see, e.g., Matthews, 1981).

While the existence of a hierarchical structure is hardly

contested today, the linguistic theories developed to account

for this structure vary in their theoretical assumptions as well

as in their mathematical representations of syntactic structure.

The generative grammar tradition has been dominated by

theories based on phrase structure (constituency) (Bloomfield,

1933; Chomsky, 1957), with successively more abstract

representations. An alternative conception of syntax is found

in theories based on dependency structure (Tesnière, 1959;

Mel’čuk, 1988), which emphasize the functional role of linguistic

expressions over their constituent structure. A third theoretical

tradition is that of categorial grammar (Ajdukiewicz, 1935;

Steedman, 2000), which is based on combinatory logic and

assumes a close connection between syntax and semantic

composition. To some degree, it is possible to convert syntactic

representations from one theoretical framework to another,

but the conversion is usually heuristic and lossy and, therefore,

the different representations are not commensurable, strictly

speaking.

The existence of a wide range of syntactic theories arises

from contested views on how a diverse range communicative

principles, including the use of different coding properties, can

come to exist across languages. For example, the Chomskyan

tradition posits that an innate human grammar—a set of rules

and processes that govern human cognition—is privy to a

series of language-specific transformations that result in such

idiosyncrasies (Chomsky, 1965, 1981, 1995). Other accounts

argue that syntax itself is shaped by functional or cognitive

constraints (Zipf, 1949; Givón, 1995; Hawkins, 2004; Jaeger and

Tily, 2011; Gibson et al., 2019), such as managing memory

load by preferring dependencies of shorter length (Gibson,

1998; Gibson et al., 2000)—a process which can also influence

coding properties like word order (Futrell et al., 2020; Hahn

et al., 2020). Cultural differences across languages are likewise

theorized to play a large role (Evans and Levinson, 2009;

), with complex morphosyntactic processes like polysynthesis

being largely observable in small, non-industrial communities

with dense social-network structures (Trudgill, 2017). Directly

or not, such debates revolve around the controversial poverty

of the stimulus argument (Lasnik and Lidz, 2017)—linguistics’

own spin on psychology’s nature vs. nurture debate—where the

human capacity to acquire and generalize across structures is

perceived as either predominantly learned or predominantly

innate.

Neural networks—especially large scale language models—

have recently assumed an interesting place in this discussion.

Primarily, syntactic theory has offered a useful toolkit for more
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fine-grained evaluation of language models, which have shown

an ability to generate coherent, grammatical output, resembling

that of humans. To this end, researchers have employed well-

studied coding properties like subject-verb agreement (Linzen

et al., 2016) or phenomena like filler-gap dependencies (Wilcox

et al., 2018) to articulate exactly on which grounds a models’

output might be judged as grammatical or not. Such studies have

served as a welcome complement to the ubiqutious, yet opaque

perplexity metric—a measure of how predictable sentences or

documents are, given a model’s parameterization. In a sense,

however, they can likewise be perceived as a means of sanity-

checking models’ behavior (Baroni, 2021), with paper titles often

framed interrogatively: Do neural language models learn ?

Nonetheless, answering such questions is useful, and a concrete

understanding of the ability of neural networks to generalize

with respect to natural language—as well as the algorithmic

processes that underlie this capacity—could, in the least, provide

interesting perspectives on the age-old debates mentioned above

(Linzen and Baroni, 2021).

3. Review: The quest for syntax

In this section, we review work belonging to what we

perceive as the three dominant paradigms for attesting

language models’ knowledge of syntax—targeted syntactic

evaluation, probing, and (downstream) NLU evaluation.

Though comprehensive surveys of such studies can be found,

for example, in Linzen and Baroni (2021) or Manning

et al. (2020), our aim here is to relate them to the concepts and

distinctions discussed in the previous section. Readers interested

in a more detailed description and analysis are referred to the

aforementioned work.

3.1. Targeted syntactic evaluation

Targeted syntactic evaluation2 (TSE) is arguably the most

popular framework for assessing neural networks’ ability to

make syntactic—therefore hierarchical—generalizations. At its

core, TSE is a black-box testing approach concerned with

measuring model output (typically probabilities) with respect

to a curated set of stimuli. Such stimuli are typically based on

minimal pairs motivated by phenomena in the syntax literature.

For example, consider the (by now classic) example in sentences

6a and 6b.

(6) a. The keys to the cabinet are on the table.

b. *The keys to the cabinet is on the table.

c. *The key to the cabinets are on the table.

d. The key to the cabinets is on the table.

2 This term was coined, to the authors’ best knowledge, by Marvin and

Linzen (2018).

The literature dictates that a competent English speaker

would rely on a structural analysis of the keys to the cabinet

to infer number agreement between the plural subject (keys)

and the copula verb (are). On the other hand, a purely

sequential processing of the sentence would arrive at the

opposite conclusion in 6b: is agrees with the adjacent singular

noun (cabinet). To ascertain whether or not a language model

M follows the former logic, one could, for example, compare

the probabilities assigned to the target verb be in 6a–6b, given

the context C = the keys to the cabinet, and examine whether

PM(are|C) > PM(is|C). This can also be extended to full

paradigms, where, in the case of 6, M has to assign higher

probabilities to both (6a) and (6d) with respect to (6b) and

(6c). TSE (per this formulation) can thus be seen as based

on an accuracy metric, which, if returning a high value over

n stimuli, implies that M is able to generalize with respect

to the relevant syntactic phenomenon. It should be noted

that probability assigned to the word form x, per various

theoretical justifications, is sometimes replaced with surprisal,

e.g., S = − log2PM(x|C), as in Wilcox et al. (2018)

and Futrell et al. (2019). Furthermore, in situations where the

locus of ungrammaticality does not lie on a single word (as

in English subject-verb agreement), but is dependent on the

interaction of several words (e.g., as in negative polarity items),

it is common to compare the probabilities or perplexities of

entire sentences (Jumelet and Hupkes, 2018; Marvin and Linzen,

2018).

The TSE framework also allows for flexibility in integrating

more complex sets of stimuli, as in the study on syntactic state

by Futrell et al. (2019):

(7) a. As the doctor studied the textbook, the nurse walked

into the office.

b. *As the doctor studied the textbook.

c. ?The doctor studied the textbook, the nurse walked

into the office.

d. The doctor studied the textbook.

With respect to (7), Futrell et al. (2019) formulate a set

of hypotheses, whereby they posit (1) that the surprisal at the

matrix clause after the comma (... the nurse walked into the

office.) should be lower for (7a) than for (7c) (the network knows

it is in a subordinate clause per the subordinator as), and (2) that

the surprisal at the matrix clause should be higher for 7b than

7d (the network expects a matrix clause per the subordinator).

Though the aforementioned accuracy approach could likewise

be appropriated here as a summary statistic, researchers also

often employ significance testing in order to accept or reject

their hypotheses. For example, Futrell et al. (2019) apply a linear

mixed-effect model on their models’ stimulus-level predictions

in order to accept hypothesis (1) on behalf of all models,

but reject hypothesis (2) for all but two. This formulation—

in line with common paradigms in psycholinguistics—leads

them to conclude that, while all models are partially capable

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2022.796788
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Kulmizev and Nivre 10.3389/frai.2022.796788

of tracking syntactic state across subordinate and main clauses,

certain training conditions are required (large data or explicit

structural objectives) in order to fully capture the structural

expectations induced by subordinators. A similar methodology

is employed in Wilcox et al. (2018) for investigating filler-gap

dependencies.

The popularity of the TSE framework has precipitated the

creation of challenge suites, which offer holistic measures

of models’ performance across a variety of linguistic

phenomena. Marvin and Linzen (2018) were among the

first to introduce such datasets, employing a context-free

grammar to procedurally generate minimal pair sentences—

such as 6a and 6b—for a variety of phenomena: agreement (of

various kinds), reflexive anaphora, and negative polarity items.

Warstadt et al. (2020) later presented a similar, automatically

generated dataset of minimal pairs (BLiMP), albeit with

wider coverage: 1,000 sentences per 67 paradigms belonging

to 12 different phenomena. The authors used BLiMP to

study various popular language model architectures (LSTM,

Transformer), whereby they associated average accuracy across

phenomena with models’ linguistic knowledge. A similar suite

was contemporaneously introduced by Hu et al. (2020), albeit in

employ of 2× 2 templates like 6 for hand-curated stimuli culled

from syntax textbooks. Like Warstadt et al. (2020), Hu et al.

(2020) used their suite3 to study language model architectures,

most notably relating language models’ syntactic generalization

(SG) score—measured in aggregate across phenomena—to their

test set perplexity.

It is important to note that the aforementioned datasets and

challenge suites are primarily designed to evaluate the syntactic

knowledge of pre-trained models. Indeed, there exists a parallel

line of work that aims at clarifying the generalization capacity of

popular architectures (such as LSTMs or Transformers) when

trained from scratch on curated—often grammar-generated—

data. One such dataset is COGS (Kim and Linzen, 2020)—

a semantic parsing dataset constructed in such a way that

the evaluation (or generalization) set contains combinations

of lexical items and syntactic structures that do not occur

in the training set. In COGS, sequence-to-sequence models

trained on sentences where certain lexical items occur, for

example, only in subject position (a hedgehog ate the cake)

must generalize over structural word order patterns when the

same lexical items appear in the object slot (the baby liked

the hedgehog). Another such dataset is CFQ (Keysers et al.,

2019), which tests models’ ability to parse natural language into

SPARQL when the distribution of compositional rules across

train and test are purposefully divergent. In both cases, as

well as many others (see Baroni, 2020 for an overview), it

has been shown that out-of-the-box models like LSTMs and

Transformers dramatically fail to generalize to samples outside

of their training distributions (though specialized architectures

3 This suite was later named SyntaxGym in Gauthier et al. (2020).

can do so trivially). For example, Kim and Linzen (2020)

report that Transformers and Bi-LSTMs yield meager average

accuracies of 0.31 and 0.05, respectively, on the Subject →

Object rule described above. Though it must be acknowledged

that such setups differ from TSE in targeting cold-started

seq2seq models rather than pre-trained language models, and

employing synthetic rather than naturalistic data, they are

similar in that they study model responses to controlled stimuli.

Moreover, their focus on the compositional aspects of syntax

makes them an interesting alternative approach that may shed

light on some of the potential confounds potentially associated

with TSE.

3.2. Probing

Probing4 is another popular paradigm for attesting NLP

models’ acquisition of syntax. The key distinction between TSE

and probing is that, while the former is concerned with model

behavior, the latter focuses explicitly on model representation. In

this context, behavior is likened to the probabilities assigned to

certain outputs (extracted, typically, from the output layer of a

language model), while representation refers to the intermediate

hidden state vectors computed by the model. Mainly, probing

is motivated as being necessary due to deep learning’s end-to-

end nature: features are learned with respect to a given task,

not engineered like in traditional systems. Due to this fact,

neural models’ representations are wholly uninterpretable to the

human interlocutor and thus require intervention in order to

understand what they portray.

Formally speaking, probing is concerned with

representations h extracted from a model M for a given

input x: h = M(x). A representation h ∈ R
1×d is typically a

fixed-length dense vector corresponding to input word x (e.g.,

keys in 6a), where d is the hidden-state dimensionality of M. A

probe f for a given linguistic property A is a classifier fit on h to

produce output y ∈ Y , where Y is a finite label set: y = fA(h).

For properties that can be decoded from single words, such as

part-of-speech (POS) tags, a trained probe fPOS must be able to

assign the correct label to h with respect to the ground truth,

e.g., ŷ = NOUN for M(keys). For properties concerning two or

more words, such as dependencies or phrases, a concatenation

of hidden states corresponding to (possibly) discontiguous

tokens xi, xj or a contiguous span of tokens xi, ..., xj is applied.

In this latter formulation, deemed edge-probing by Tenney

et al. (2019b), one might expect a probe fDEP to decode

ŷ = NSUBJ for M(keys, are) and fCON to decode ŷ = PP

for M(on, the, table). Though probing models vary widely in

terms of architecture, parameters, optimization, etc., the vast

majority of them assume a training set DA representative of

property A on which f ’s parameters 2 can be fit, like a treebank.

4 Also known as diagnostic classification (see, e.g., Hupkes et al., 2018).
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Such probes are then evaluated in standard supervised learning

fashion via accuracy on a held out test set. If such accuracy is

high, it can then be said that A is decodable from h, i.e., that

M learns it. This framework was notably employed by Liu N.

F. et al. (2019) and Tenney et al. (2019b), who concurrently

demonstrated that representations extracted from popular

contextual embedding models (ELMo, BERT, GPT) yielded

exceedingly good performance on suites of linguistic tasks. Also

noteworthy is Tenney et al. (2019a)’s study, which showed that

BERT’s representations appear to evolve in capturing properties

with increasing levels of complexity, from lexical features to

syntax and semantics.

While the aforementioned word-level approach is by far

the most popular probing setup, other methods for decoding

the syntactic structure of entire sentences have been proposed.

One model that is of particular interest is that of Hewitt and

Manning (2019), who attempt to decode dependency structure

from models’ vector spaces. To this end, they propose to

learn transformations over model representations, such that (1)

the squared l2 distance between any vectors hi, hj reflects the

distance between their corresponding words xi, xj in a parse

tree, and (2) that the l2 norm of any vector hi reflects the

depth of its corresponding word xi in a parse tree. They find

that this method is particularly effective for decoding Stanford

Dependencies trees (de Marneffe et al., 2006) from ELMo

and BERT representations, with respect to several lexical-only

baselines. Beyond Hewitt and Manning (2019)’s method, which

can be imagined as doing parsing by proxy, other work has

directly employed (underparameterized) dependency parsers

as probes. For example, Hewitt and Liang (2019) employ a

graph-based bilinear probe; Maudslay et al. (2020) investigate

the relation between probing and parsing; and Pimentel et al.

(2020a) advocate for adding full dependency parsing to the

probing task suite. A potential advantage of probes that attempt

to decode the syntactic structure of a complete sentence is

that they may shed light on the compositional aspects of

syntax—as well as a model’s encoding thereof—in a way that is

complementary to the studies based on synthetic data discussed

in Section 3.1.

At this stage, probing can be considered a field of inquiry in

its own right, with researchers presenting new models, metrics,

and criticisms for every conference cycle. Naturally, the use of

intermediary models trained on top of extracted representations

warrants caution from the interlocutor. Concerns expressed

in the literature include but are not limited to the following:

the use of smaller, linear models vs. larger, nonlinear ones;

appropriate baselines and evaluation metrics; properties being

learned by the probe vs. occurring in representations; properties

being employed by the model in the original task vs. simply

being decodable, etc. Though a full consideration of these

methodological concerns is outside the scope of this article, we

refer the interested reader to Belinkov (2022)—a comprehensive

review of the paradigm, open issues, and alternative approaches

like attention analysis.

3.3. NLU evaluation

Outside of TSE and probing, another technique that

has recently attracted much attention is the evaluation of

models (imbued with or deprived of syntactic knowledge)

on downstream tasks. The logic inherent to this line of

inquiry is as follows: if a model has come to rely on human-

like knowledge of language (or some semblance thereof)

to solve complex NLP tasks, then it should (1) perform

poorly on such tasks when the surface form of an utterance

has been corrupted beyond (human) comprehension, and

(2) perform better when imbued with the exact abstract

structure theorized by linguists as governing the surface form.

Such tasks are typically taken from the GLUE benchmark—

a suite of natural language understanding (NLU) datasets

“designed to favor and encourage models that share general

linguistic knowledge across tasks” (Wang et al., 2018).

GLUE has served as the principal point of comparison for

pretraining architectures, where, as of writing, 15 models have

surpassed the published human performance on the same

tasks.

In terms of input corruption, many studies have investigated

the effect of word order on NLU task performance. Indeed,

word order is the primarymeans of encoding syntactic argument

structure in English, and such work often hypothesizes that

sensitivity to this particular property should result in lower

NLU scores. Gupta et al. (2021) demonstrate that this is

not the case for BERT when fine-tuning on various GLUE

tasks: sequences corrupted at test-time by means of shuffling,

sorting, duplicating, and dropping tokens still retain 70–90%

performance of the non-perturbed input. Moreover, models

appear to be as confident in assigning labels to perturbed inputs

as they are to naturalistic ones. These results are corroborated

by Pham et al. (2020), who show that models predominantly

seek salient words in sequences, with numerous attention heads

specializing themselves for this exact purpose. Sinha et al. (2020)

report similar findings for various NLI datasets (in English

and Chinese) across a variety of model architectures. They

show that models are insensitive to word reorderings, some

of which can actually result in improved task performance.

Perhaps most strinkingly, Sinha et al. (2021) show that pre-

training full-scale RoBERTa models on perturbed sentences

(across n-grams of varying lengths) and fine-tuning them on

unaltered GLUE tasks leads to negligible performance loss. They

also report that a popular probe for dependency structure,

that of Pimentel et al. (2020a), is able to decode trees from

the perturbed representations—even a unigram baseline with

resampled words–with considerable accuracy.
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As a conceptual counterpoint to the permutation-based

line of research, several studies have posed the opposite

question: does explicitly injecting syntactic structure into

models’ representations or training objectives lead to better

downstream performance? The observations in such studies

are similar to the aforementioned work, albeit slightly more

subtle: models that factor syntax into their decisions generally

do not benefit in performance via its injection, which is taken

to imply that such structure is redundant to the model, or not

needed at all. Most notably, Glavaš and Vulić (2021) fine-tune

BERT and RoBERTa (Liu Y. et al., 2019) as dependency parsers,

before fine-tuning the same models again on NLI, paraphrase

detection, and commonsense reasoning tasks. They show that,

while intermediate parsing training (IPT) can produce near

state-of-the-art parsers, repurposing these parameters for NLU

tasks leads to negligible improvement. A similar trend is shown

in Kuncoro et al. (2020), who train a BERT model distilled from

an RNNG teacher (Dyer et al., 2016). They, too, find that, while

their syntactically-aware model achieves top marks on a suite of

parsing and otherwise syntactic tasks, the benefits for fine-tuning

onGLUE are scant, if any. Swayamdipta et al. (2019) corroborate

these findings for ELMo models conditioned on chunked input

derived from phrase structure trees.

4. Discussion: A call for clarity and
caution

After our general discussion of syntax, as well as our review

of work exploring its role in contemporary language models,

we are now in a position to make a few basic distinctions.

In this section, we attempt to situate the findings of the

aforementioned studies along several dimensions that we deem

important toward the advancement of our research agenda.

4.1. Coding properties are not syntax

First, we would like to highlight the need to be clear about

whether a study is concerned with abstract syntactic structure,

overt coding properties, or with some relation between the

two. A typical fallacy that may arise from not observing this

distinction is to conflate a particular coding property with the

abstract syntactic structure that it partially encodes. Naturally,

if we fall victim to this fallacy when interpreting certain

findings, we risk drawing conclusions based on insufficient or

irrelevant evidence. This applies to situations where we may

be tempted to employ coding properties as proxies of syntactic

structure—either for attesting models’ sensitivity to the latter or

refuting it.

For example, it is important to acknowledge that studying

agreement via TSE gives us a glimpse into how language

models capture the syntactic relationship between selected

words, such as verbs and their subjects. Per this view,

high performance—even in the presence of various types of

attractors—does not necessarily ential that a model has learned

the grammar of a language. Rather, it has simply shown

itself to be particularly sensitive to a single coding property,

grammatical relation, or dependency type. Notably, English

agreement is limited to expressing the number or person of

the subject on the finite main verb (when in the present

tense). This amounts to being, in the vast majority of cases,

a binary distinction between correct and incorrect inflections,

which bears a strong random choice baseline of 50% in the

case of TSE. Thus, when one considers types of agreement

manifested in other languages—such as number, gender, and

case agreement between nouns and their modifying adjectives

(e.g., German, Russian), or polypersonal agreement between

a verb and multiple arguments (e.g., Basque, Georgian)—it

becomes difficult to judge agreement as the primary mechanism

by which syntax is encoded in English. Indeed, studies have

shown that models tend to struggle with more expressive

agreement mechanisms in morphologically rich languages

(Ravfogel et al., 2018). Such insights call not only for a

typologically driven research agenda, but also for nuance

in interpreting positive findings for singular properties in

selected languages.

We must also note that the above logic can apply in

reverse: a model’s lack of sensitivity to a single coding

property, for example, word order (Dryer, 1992), does not imply

that the model has failed to acquire syntax as a byproduct

of its training objective. Even in a language like English,

where word order is very salient, it is not the only coding

property that signals syntactic structure. Consider chases the

cats the dog as a permutation of the dog chases the cats: it

is not unreasonable for an English speaker to decode the

argument structure of this permutation using subject-verb

agreement alone. Indeed, recent research in psycholinguistics

has intimated that humans are relatively robust to permutations

of linguistic form (Traxler, 2014). In the context of word

order, Mollica et al. (2020) show that humans are able to

process permuted sentences similarly to naturalistic ones,

albeit when local structure (measured via pointwise mutual

information) is preserved. Recently, this has been corroborated

for models fine-tuned on GLUE as well, with performance

therein strongly correlated with the extent of local structure

corruption (Clouatre et al., 2022). With this in mind, one can

see that order perturbation studies do not provide enough

evidence to conclude that models (or humans) are insensitive to

syntax. Instead, when conducting such studies, we must recall

that word order (or agreement, for that matter) is simply a

single coding property in a mosaic of such properties, all of

which are privy to underlying processes that drive composition

and comprehension.
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4.2. Syntactic representations are not
linguistic data

As a second point, if a study is concerned with syntactic

structure, we need to clarify whether it assumes a specific type of

syntactic representation, since the choice of representation may

affect the results. Other things being equal, we may therefore

prefer methods that do not presuppose specific syntactic

representations, since conclusions will otherwise be valid only

on the assumption that the chosen representation correctly

captures syntactic structure. This consideration is even more

important when we make use of automatically parsed data—

as opposed to manually annotated sentences from treebanks—

where otherwise sound syntactic representations may give

misleading results due to parsing errors. At the same time,

it is important to note that avoiding syntactic representations

altogether may be limiting in another way, as it may restrict

our methodological repertoire. Thus, as long as we maintain a

critical attitude toward representation-dependent methods, they

may still provide us with valuable results that cannot be obtained

with other methods.

To illustrate the importance of representations in the context

of probing, we can start by asking: does high UAS on a particular

treebank imply that those trees are indeed the structures encoded

by a given model? Or can alternative, linguistically plausible

structures be decoded with comparable accuracy? Kulmizev et al.

(2020) explore this question when probing various models for

UD, a dependency formalism which prioritizes content-word

heads (de Marneffe et al., 2021), and Surface-Syntactic UD,

which assumes a traditional function-word head style analysis

(Gerdes et al., 2018). They find that, while the difference in

decoding UAS between the two formalisms is minimal for

some treebanks, other treebanks exhibit strong preferences

for either UD or SUD. They attribute such preferences to

a complex interplay between the formalisms’ inherent graph

properties (e.g., average tree height), the probe employed

for decoding (Hewitt and Manning, 2019’s, in their case),

annotation factors like tokenization, and morphology. Though

preliminary, Kulmizev et al. (2020)’s study is a cautionary tale

in tree-based probing, where choice of representation directly

affects what conclusions one may draw about models.

We can ask similar questions when attempting to imbue

models with syntactic structure. For example, is the injection of

UD trees into a model’s architecture enough to draw conclusions

about the role of syntax in downstream performance? Or do

alternative, linguistically plausible representations exist that

models might yet benefit from? Beyond this, what privileges one

particular injection method, say intermediate parsing training

(Glavaš and Vulić, 2021), over another, such as knowledge

distillation from an RNNG teacher (Kuncoro et al., 2020)?

A template for exploring such considerations can be found

in Wu et al. (2021), who report that infusing BERT with

semantic dependencies can provide modest gains on GLUE.

In that study, they compare the DM representation focused

explicitly on predicate-argument structure (Ivanova et al., 2012)

with the more syntactically oriented UD, finding that the

former leads to slightly better performance5. Furthermore,

they compare their chosen infusion method—semantic graph

embeddings learned via a relational graph convolution encoder

(Schlichtkrull et al., 2018)—with other means of injecting

structure into representations, where their method performs

best in most cases.

4.3. Data, model, and task

In any scientific pursuit, it is vital to acknowledge the (often

vast) number of independent variables in play. For example,

in studies concerning syntax in language models, we might

acknowledge that our choice of model can be decomposed into

various factors: architecture (Transformer, LSTM, etc.), pre-

training task (auto-regressive or masked language modeling,

infilling, etc.), pre-training data (size and domain thereof),

model size, hyper-parameters, etc. Similarly, we might make

considerations as how to source our experimental data

(sampling corpora, grammar-constrained generation, crowd-

sourcing, etc.) and how much of it to utilize. Indeed, it is not

realistic to demand that future studies in this domain account

for every aforementioned confound or enumerate all possible

caveats. However, we nonetheless deem it vital for them to

clearly articulate the interaction of data D, modelM, and task T

as it pertains to the particular aspect of syntax A that is in focus.

As noted earlier, this is the most easily done with TSE, where

models are evaluated in their intended capacity (without an

intermediary T), and D is employed as a representative sample

of A (sourcing caveats notwithstanding). It is more complicated

for probing studies for two reasons. First, although T can be

a task related to syntax, A is typically not specified (outside a

general notion of, e.g., tree structure). This becomes problematic

when treating decoding accuracy as a measurement of the

amount of syntactic knowledge inM’s representations, since the

score is an aggregate dominated by easy, local constructions

at the expense of more complex constructions that are more

important from the point of view of hierarchical structure and

compositionality. Second, the involvement of an intermediary

probe f is a complication here, as it is not immediately clear

whether syntax is actually encoded in M, or if it can be learned

directly from D. Ravichander et al. (2021) demonstrate evidence

of the latter, showing that f can “decode” A (verb tense, subject

and object number, in their case) even if M was not exposed to

any variation within A during pre-training (in other words, M

5 Interestingly, both syntactic and semantic models seem to

outperform the fine-tuned RoBERTa baseline.
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had only seen, e.g., past-tense verbs). Although some proposals

attempt to mitigate such confounds6, applying these methods

requires researchers to conduct a survey of all such approaches

and make a principled choice in employing one over another,

which, we argue, centers f rather than the intended subject of

study:M.

In downstream evaluation studies, the association between

D, M, and T is yet trickier to disentangle. Similarly to probing,

such studies entail fine-tuning the parameters of a pre-trained

M on a separate task T, leading to an updated model M′. If

A is considered, it is often with the goal of evaluating that

particular aspect’s importance in solving T, given a version of

D that is corrupted accordingly (e.g., scrambled word order).

Alternatively, syntax can be operationalized as a general notion

(e.g., constituency structure) that is meant to inform M when

performing across T. In either setup, M′’s performance on T

(typically an NLU task like entailment) is typically attributed to

M, where syntax is hypothesized as a necessity. Assembled this

way, such experiments lead us to put our full trust in T, which

we can employ as a prism through which to opine on M. This

necessitates that T is indeed well-motivated and designed, and

difficult to exploit via heuristics inherent to D—its attestation.

Additionally, this presupposes that we possess a explanations of

how humans employ syntax to solve T and that we can elicit

comparative explanations fromM.

If we believe the above to be true, we can hypothesize that,

by performing well on such tasks, our models possess whatever

latent ability humans do in solving them—see, e.g., Sinha et al.

(2020): “models should have to know the syntax first, [. . . ] if

performing any particular NLU task that genuinely requires a

humanlike understanding of meaning.” Unfortunately, in the

context of NLI (which Sinha et al., 2020 study) this is a highly

dubious claim: the crowd-sourced nature of such datasets makes

them prone to annotation artefacts (e.g., subsequence overlap

between premise/hypothesis, lexical choice across inference

classes, sentence length, etc.), which models often exploit as

heuristics, thus leading to highly inflated performance metrics

(Gururangan et al., 2018; Poliak et al., 2018; McCoy et al., 2019).

Furthermore, though datasets for some tasks are supplemented

with free-text rationales provided by annotators (Camburu et al.,

2018; Rajani et al., 2019), self-rationalizing models introduce

additional hurdles in terms of evaluation (what merits a model’s

rationale as being acceptable?) and interpretation (how faithful

is a model’s rationale to the label it generated?) (Wiegreffe et al.,

2020; Jacovi and Goldberg, 2021).

Ultimately, the extent of trust we place inM (performing as

hypothesized) over T (being correctly expressed) may influence

not only our hypotheses, but also the conclusions we draw from

our findings. For example, consider Pham et al. (2020) as a

6 See, e.g., information-theoretic probing measures (Pimentel et al.,

2020b; Voita and Titov, 2020; Hewitt et al., 2021), control tasks (Hewitt

and Liang, 2019), or causal intervention (Elazar et al., 2021).

counterpoint to Sinha et al. (2020). Though the observations

regarding BERT-based models’ insensitivity to word order are

largely similar, the former are more critical of the task (“GLUE

does not necessarily require syntactic information or complex

reasoning”), and the latter of the model (“current models do

not yet ‘know syntax’ in the fully systematic and human-like

way we would like them to”). The interpretation of M is crucial

here, as both studies are concerned withM′ (a textual entailment

recognizer) rather than M (a language model). To this end, the

accuracy-based performance of the former cannot, in principle,

be used to interpret the syntactic knowledge of the latter, which

is evaluated via different paradigms (perplexity or cross-entropy

loss) and the weights of which have been overridden. By the same

token, it is likewise important to avoid conflating a particular

M (e.g., language models) with the architecture on which it is

based (e.g., Transformers or LSTMs). This point is particularly

salient if we consider work that targets models’ inductive biases,

which demonstrably shows that popular architectures often fail

in making trivial, human-like generalizations (Lake and Baroni,

2018; Keysers et al., 2019; Lake et al., 2019; Gandhi and Lake,

2020; Kim and Linzen, 2020). It is therefore important to

recognize that the success evinced, for example, in, TSE studies

is a function of a neural network architecture applied specifically

to a language modeling task, and that these results alone do not

justify claims about the capacity of the architecture in general.

4.4. What are the research questions?

In addition to clarifying the role of data, model, and task in

a given study, we also need to be clear about what our research

questions are. For example, given a modelM, a task T, a training

dataset D and an aspect of syntax A, we may ask (at least) the

following three questions:

1. To what degree does M learnAwhen trained onD to perform

T?

2. To what degree can M learn A when trained on D to perform

T?

3. To what degree doesM need to learn A when trained on D to

perform T?

Questions of type 1 are the most straightforward to investigate

as long as we have a valid and reliable method for measuring

the degree to which M learns A in the context of D and T. This

is quite a big assumption in itself, and one that we will return

to shortly, but we will focus first on the logic for answering

different research questions. Questions of type 2 are modal

in nature and therefore hard to investigate empirically, except

indirectly by investigating questions of type 1. For example,

in the pioneering study by Linzen et al. (2016), discussed in

Section 3, the authors were primarily interested in whether

an LSTM (M) can learn “syntax-sensitive dependencies” (A)—

a question of type 2. To investigate this, they examined the
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actual learning behavior of the model in two specific settings

(questions of type 1): (a) when trained on unlabeled text (DU )

for the task of language modeling (TLM), and (b) when trained

on labeled sentences (DL) for a specific agreement decision task

(TA). The results were largely negative in the first case and

positive in the second. From the positive result, they could

conclude that the model can learn the relevant dependencies

when trained on DL for TA; from the negative results, they

could however only conclude that there was no evidence that

the model was capable of learning the relevant aspect of syntax

when trained on DU for TLM . This illustrates the fundamental

asymmetry between positive and negative results when it comes

to generalizations about possibility. A single positive result—if

interpreted correctly—is sufficient to establish that something is

possible, while any number of negative results are in principle

inconclusive7. Indeed, as discussed in Section 3, the later study

by Gulordava et al. (2018) managed to obtain positive results

also in a setting similar to the first scenario of Linzen et al.

(2016), from which they concluded that LSTMs are capable of

learning at least one aspect of syntactic structure without explicit

supervision. A similar conclusion was reached by Goldberg

(2019) for the Transformer-based BERT model. The results are

not directly comparable, because the latter study constructs the

evaluation as a bidirectional masked languagemodeling task, but

they are compatible in that none of the models have been trained

with explicit syntactic supervision.

Questions of type 3 are more complex still, because they

involve causality as well as modality. More precisely, they

combine the question of whether learning A results in better

performance of M on T (causality) with the question of

whether learning A is necessary to achieve better performance

(modality). A typical example is the study of Glavaš and Vulić

(2021), discussed in Section 3, where the authors study the effect

of intermediate parser training of a pre-trained language model

later fine-tuned for various language understanding tasks. The

underlying research question is whether knowledge of syntax

is needed for language understanding—a question of type 3—

and the lack of improvement may suggest a negative answer,

but this conclusion is only warranted if it can also be shown (a)

that the model has actually learned (some aspects of) syntax and

(b) that this knowledge causally affects the model’s behavior on

the downstream task (and still fails to improve performance).

Note, however, that a positive improvement would not be

more conclusive in this case, because it would only show that

improvement is possible, not that it is necessary. This illustrates

the complexity involved when relating experimental results to

research questions and points to the need for careful meta-

analysis.

7 This is the mirror image of the case of necessity, underlying the

famous quotation attributed (probably incorrectly) to Einstein: “No

amount of experimentation can ever prove me right; a single experiment

can prove me wrong”.

4.5. Aggregate metrics may be
misleading—but are necessary

Let us finally turn to the question of how we can measure

the degree to which a model M learns some aspect of syntax

A when trained on data set D to perform task T—a question

that is crucial to all studies in this area, regardless of what

the more general research questions are. As we have seen in

Section 3, the answer usually involves measuring performance

on an appropriate task T′, although the exact solution depends

on the type of study. In TSE studies, T′ is typically the

task of discriminating positive from negative instances of

some grammatical pattern, for example by assigning higher

probability to the positive instance in a minimal pair. In

probing, T′ is a supervised classification task assumed to reflect

syntactic knowledge. And in NLU evaluation, T′ is simply the

downstream language understanding task and thus normally

coincides with the main task T. Each of these paradigms

comes with its own methodological pitfalls, which have been

extensively discussed in particular in the case of probing, but

we will focus here on the complexities that are common to all

of them.

First of all, we note that performance on T′ is almost always

measured by averaging over individual test instances. In the

simplest case, this may just be the arithmetic mean of a 0–

1 loss metric, such as the accuracy reported for a probing

classifier predicting part-of-speech tags. In other cases, it may

be a more or less sophisticated macro-average, like an average

over different grammatical patterns in a TSE study. In all

cases, however, such aggregate measures need to be interpreted

carefully. First of all, how do we know whether a given metric

value indicates presence or absence of syntactic knowledge?

Does a value of 0.5 mean that the glass is half full or half empty?

This highlights the importance of relevant and informative

baselines, a point that has been made in the literature before

but that has perhaps not been fully appreciated. In addition,

statistical significance tests should be used as appropriate.

Second, it is in the nature of aggregate metrics that they can

easily be misleading by hiding important variation, especially

if the distribution of different types of phenomena is heavily

skewed. For example, in the related field of syntactic parser

evaluation, Rimell et al. (2009) have shown that parsers with

very respectable performance according to standard aggregate

metrics like EVALB can have close to zero accuracy on certain

types of unbounded dependency constructions. Moreover,

aggregation may hide important variation in a number of

different ways. If we use naturally occurring text in our test

sets, certain words and constructions will inevitably be much

more frequent than others and therefore dominate the aggregate

scores in the same way as for syntactic parser evaluation. As a

result of this, Newman et al. (2021) argue that standard metrics

used in TSE overestimate the systematicity of language model

behavior. If in addition we aggregate over different syntactic
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phenomena, we may hide the fact that different phenomena are

captured to different degrees. And if we aggregate over multiple

languages—or only report results for a single language—we

may neglect important language-specific properties and risk

over-generalization.

Lastly, we must consider the role aggregation plays in

the interpretation of models’ performance on benchmarks like

BLiMP, SyntaxGym, or GLUE. At its core, such an enterprise

entails that all aspects of syntax or language understanding—

at least those of particular salience—have been successfully

enumerated. Given the abstract nature of these notions, and

the extent of debate regarding them, it is naturally doubtful

that such an enumeration could ever be attained. Relaxing this

somewhat, in assuming a salient set of aspects has indeed been

collected, one must likewise assume—before aggregating—that

a principled weighting of such aspects exists. This is especially

relevant when dealing with a space of tasks or phenomena where

fine-grained categorizations are likewise included—for instance,

the six subject-verb agreement settings attested in BLiMP. In

such cases, one must not only choose between micro and macro

averaging across phenomena and their fine-grained attestations,

but also articulate whether or not all phenomena lie on an

equal playing field—in other words, that they are all equally (1)

difficult to attest and (2) salient for evaluation. Certainly, in the

vast majority of cases we assume a uniform weighting of classes

when aggregating, since introducing hand-selected weights may

introduce bias that wewould otherwise prefer to avoid. However,

wemust not fail to acknowledge that benchmarks, in themselves,

are influenced by designers’ theories on what component parts

adequately represent abstract notions like syntax or language

understanding.

There is unfortunately no simple remedy to the complexities

discussed in this section. In particular, giving up aggregate

metrics is definitely not an option, since they are necessary

for statistical significance testing and generalization. However,

we believe that progress can be made by avoiding multiple

aggregations and by making sure that we select our aggregate

metrics to match our research questions and hypothesis. For

example, if we want to know whether a model learns a general

subject-verb relation, as opposed to memorizes agreement

patterns for a small class of high-frequency verbs, then a macro-

average over frequency classes will tell us more than a micro-

average over all verb tokens.

5. Conclusion

The rapid progress in NLP thanks to deeper and larger

neural network models trained on very large data sets

with little or no linguistic supervision raises a number of

questions concerning the status of traditional linguistic notions

and theories in this landscape. Is there still a role for

traditional techniques like supervised syntactic parsing? If not,

is this because neural language models learn the relevant

generalizations about linguistic structure without explicit

supervision, or because language understanding does not

really depend on such generalizations in the way traditionally

assumed? If the latter, does this hold only for language

understanding by machines, or does it also have implications for

human language understanding?

These are exciting questions and it is therefore not surprising

that we have seen a considerable body of research in this area

recently. They are also difficult questions, and the methodology

for tackling them is still under development, so it is also

not surprising that results so far have been inconclusive and

sometimes contradictory. As stated in the introduction, the goal

of this article has not been to criticize previous efforts, but

to contribute to our understanding of methods and results by

articulating and discussing some of the inherent complexities

in this research area. Without pretending to have any complete

solutions, we want to conclude with some tentative conclusions

and recommendations for future research, echoing the main

points made throughout the paper.

Of the three approaches we have reviewed in Section 3, we

are least optimistic about NLU evaluation, for several reasons.

First, the research question that these studies address—whether

syntactic knowledge is needed for a given task—is the hardest

to tackle because it involves causality as well as modality.

Second, it is often unclear what relation holds between the

original pre-trained language model and its fine-tuned version.

Last but not least, the whole endeavor is undermined by the

uncertain status of current benchmark data sets when it comes

to assessing language understanding. Taken together, these

arguments appear to be fatal, and we think little can be salvaged

from this approach.

When it comes to TSE and probing, we are slightly

more optimistic, as long as a certain methodological rigor is

maintained, as argued in Section 4. We need to be clear about

what conception of syntax underlies our investigations, which

aspects of syntax are being studied, and whether we make

specific assumptions about syntactic representations. We need

to explicitly discuss what research questions are being asked,

and how they can be elucidated by the specific experiments we

perform. We need to be careful when interpreting aggregate

results, always looking for alternative metrics and additional

analysis, and making sure to consider evidence from multiple

languages if we want to draw conclusions about natural language

in general. And we should in general resist the temptation to

draw strong conclusions from any single study, which is usually

impossible given the complex interplay of research questions,

methodology, and data.

To make further progress, we also need to refine our

methods of investigation. One way to do this is to combine

different techniques in order to get a more complete picture of

how a model processes a given type of phenomena. An obvious

idea here is to combine probing and TSE, so that we can obtain
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systematic probing evidence related to specific phenomena,

rather than aggregated over a heterogeneous test set, as is the

typical practice today. A combination of techniques may also be

used to bring downstream tasks back into the picture. In a recent

study, Pérez-Mayos et al. (2021) uses structural probing, not to

assess whether a single static model has learned syntax or not,

but to track how syntactic capabilities evolve as a pre-trained

model is fine-tuned for different tasks. One could imagine a

similar experimental design using TSE instead of (or together

with) probing. Another idea worth exploring is to increase the

complexity of stimuli used for TSE or probing. The ability

to produce and understand arbitrarily nested structures is a

hallmark of compositionality and underexploited for analytical

purposes.

Many researchers today seem to hold the view that, as

language models get more and more powerful, their ability to

learn syntax increases but the necessity to do so decreases for

most tasks that we want them to handle. This may well be true,

and maybe in this sense syntax is both dead and alive inside the

black box. The evidence, however, is still far from conclusive, and

we need more data as well as deeper analysis to make it so.
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Mel’čuk, I. (1988). Dependency Syntax: Theory and Practice. Albany, NY: State
University of New York Press.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.

Mollica, F., Siegelman, M., Diachek, E., Piantadosi, S. T., Mineroff, Z., Futrell,
R., et al. (2020). Composition is the core driver of the language-selective network.
Neurobiol. Lang. 1, 104–134. doi: 10.1162/nol_a_00005

Newman, B., Ang, K., Gong, J., andHewitt, J. (2021). “Refining targeted syntactic
evaluation of language models,” in Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics, 3710–3723.
doi: 10.18653/v1/2021.naacl-main.290

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2022.796788
https://doi.org/10.1016/S0010-0277(98)00034-1
https://doi.org/10.1016/j.tics.2019.02.003
https://doi.org/10.18653/v1/2021.eacl-main.270
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.1073/pnas.1910923117
https://doi.org/10.1093/acprof:oso/9780199252695.001.0001
https://doi.org/10.18653/v1/2021.emnlp-main.122
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.1613/jair.1.11196
https://doi.org/10.1162/tacl_a_00367
https://doi.org/10.1002/wcs.126
https://doi.org/10.18653/v1/W18-5424
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.acl-main.375
https://doi.org/10.1162/tacl_a_00345
https://doi.org/10.1093/oxfordhb/9780199573776.013.10
https://doi.org/10.1146/annurev-linguistics-032020-051035
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.18653/v1/D18-1151
https://books.google.be/books?id=jLNb1EI39JwC
https://books.google.be/books?id=jLNb1EI39JwC
https://doi.org/10.18653/v1/2020.acl-main.659
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.1162/nol_a_00005
https://doi.org/10.18653/v1/2021.naacl-main.290
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Kulmizev and Nivre 10.3389/frai.2022.796788

Pennington, J., Socher, R., and Manning, C. (2014). Glove: global vectors for
word representation. 1532–1543. doi: 10.3115/v1/D14-1162

Pérez-Mayos, L., Carlini, R., Ballesteros, M., and Wanner, L. (2021). “On
the evolution of syntactic information encoded by BERT’s contextualized
representations,” in Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume.
doi: 10.18653/v1/2021.eacl-main.191

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., et al.
(2018). “Deep contextualized word representations,’ in Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers) (New Orleans,
LA), 2227–2237. doi: 10.18653/v1/N18-1202

Pham, T. M., Bui, T., Mai, L., and Nguyen, A. (2020). Out of
order: how important is the sequential order of words in a sentence in
natural language understanding tasks? arXiv preprint arXiv:2012.15180.
doi: 10.18653/v1/2021.findings-acl.98

Pimentel, T., Saphra, N.,Williams, A., and Cotterell, R. (2020a). “Pareto probing:
trading off accuracy for complexity,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP) (Association for
Computational Linguistics), 3138–3153. doi: 10.18653/v1/2020.emnlp-main.254

Pimentel, T., Valvoda, J., Hall Maudslay, R., Zmigrod, R., Williams,
A., and Cotterell, R. (2020b). “Information-theoretic probing for
linguistic structure,” in Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics (Association for
Computational Linguistics), 4609–4622. doi: 10.18653/v1/2020.acl-
main.420

Poliak, A., Naradowsky, J., Haldar, A., Rudinger, R., and Van Durme, B.
(2018). “Hypothesis only baselines in natural language inference,” in Proceedings
of the Seventh Joint Conference on Lexical and Computational Semantics
(New Orleans, LA: Association for Computational Linguistics), 180–191.
doi: 10.18653/v1/S18-2023

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).
Language models are unsupervised multitask learners. OpenAI Blog 1:9.

Rajani, N. F., McCann, B., Xiong, C., and Socher, R. (2019). “Explain
yourself! Leveraging language models for commonsense reasoning,” in
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (Florence: Association for Computational Linguistics), 4932–4942.
doi: 10.18653/v1/P19-1487

Ravfogel, S., Goldberg, Y., and Tyers, F. (2018). “Can LSTM learn
to capture agreement? The case of Basque,” in Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP (Brussels: Association for Computational Linguistics), 4932–4942.
doi: 10.18653/v1/W18-5412

Ravichander, A., Belinkov, Y., and Hovy, E. (2021). “Probing the probing
paradigm: does probing accuracy entail task relevance?,” in Proceedings of the
16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume (Association for Computational Linguistics), 3363–3377.
doi: 10.18653/v1/2021.eacl-main.295

Rimell, L., Clark, S., and Steedman, M. (2009). “Unbounded dependency
recovery for parser evaluation,” in Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing (Singapore), 813–821.
doi: 10.3115/1699571.1699619

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I.,
and Welling, M. (2018). “Modeling relational data with graph convolutional
networks,” in European Semantic Web Conference (Cham: Springer), 593–607.
doi: 10.1007/978-3-319-93417-4_38

Sinha, K., Jia, R., Hupkes, D., Pineau, J., Williams, A., and Kiela, D. (2021).
“Masked language modeling and the distributional hypothesis: order word matters
pre-training for little,” in Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing (Punta Cana: Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.230

Sinha, K., Parthasarathi, P., Pineau, J., and Williams, A. (2020).
Unnatural language inference. arXiv preprint arXiv:2101.00010.
doi: 10.18653/v1/2021.acl-long.569

Steedman, M. (2000). The Syntactic Process. Cambridge, MA: MIT Press.
doi: 10.7551/mitpress/6591.001.0001

Swayamdipta, S., Peters, M., Roof, B., Dyer, C., and Smith, N. A. (2019). Shallow
syntax in deep water. arXiv preprint arXiv:1908.11047.

Tenney, I., Das, D., and Pavlick, E. (2019a). “BERT rediscovers the classical
NLP pipeline,” in Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (Florence: Association for Computational Linguistics),
4593–4601. doi: 10.18653/v1/P19-1452

Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy, R. T., et al. (2019b).
What do you learn from context? Probing for sentence structure in contextualized
word representations. arXiv preprint arXiv:1905.06316.

Tesnière, L. (1959). ’Eléments de Syntaxe Structurale. Editions Klincksieck.

Tomasello, M. (2009). The Cultural Origins of Human Cognition. Harvard
University Press. doi: 10.2307/j.ctvjsf4jc

Traxler, M. J. (2014). Trends in syntactic parsing: anticipation, Bayesian
estimation, and good-enough parsing. Trends Cogn. Sci. 18, 605–611.
doi: 10.1016/j.tics.2014.08.001

Trudgill, P. (2017). “The anthropological setting of polysynthesis,”
in The Oxford Handbook of Polysynthesis (Oxford University Press).
doi: 10.1093/oxfordhb/9780199683208.013.13

Voita, E., and Titov, I. (2020). “Information-theoretic probing with minimum
description length,” in Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP) (Association for Computational
Linguistics), 183–196. doi: 10.18653/v1/2020.emnlp-main.14

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F.,
et al. (2019). Superglue: a stickier benchmark for general-purpose language
understanding systems. arXiv preprint arXiv:1905.00537.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R.
(2018). Glue: a multi-task benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461. doi: 10.18653/v1/W18-5446

Warstadt, A., Parrish, A., Liu, H., Mohananey, A., Peng, W., Wang, S.-F., et al.
(2020). Blimp: The benchmark of linguistic minimal pairs for English. Trans. Assoc.
Comput. Linguist. 8, 377–392. doi: 10.1162/tacl_a_00321
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