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Semantic knowledge about individual entities (i.e., the referents of proper names such as

Jacinta Ardern) is fine-grained, episodic, and strongly social in nature, when compared

with knowledge about generic entities (the referents of common nouns such as politician).

We investigate the semantic representations of individual entities in the brain; and

for the first time we approach this question using both neural data, in the form of

newly-acquired EEG data, and distributional models of word meaning, employing them

to isolate semantic information regarding individual entities in the brain. We ran two sets

of analyses. The first set of analyses is only concerned with the evoked responses

to individual entities and their categories. We find that it is possible to classify them

according to both their coarse and their fine-grained category at appropriate timepoints,

but that it is hard to map representational information learned from individuals to their

categories. In the second set of analyses, we learn to decode from evoked responses

to distributional word vectors. These results indicate that such a mapping can be learnt

successfully: this counts not only as a demonstration that representations of individuals

can be discriminated in EEG responses, but also as a first brain-based validation of

distributional semantic models as representations of individual entities. Finally, in-depth

analyses of the decoder performance provide additional evidence that the referents of

proper names and categories have little in common when it comes to their representation

in the brain.

Keywords: brain decoding, proper names, individual entities, distributional semantics, language models, EEG,

categories

1. INTRODUCTION

As the idiom goes, people and places can be one of a kind—but could it be that our brains actually
mean it? Thinking about Jacinda Ardern involves inevitably bringing to mind the information that
she’s a politician, aside from her face and her voice. But together with this may come to mind much
more: other fellow politicians, other people she is often portrayed with, or places where she’s often
found at. This bundle of information encompasses disparate pieces of knowledge about the person
herself, her kind (or category), other people belonging to the same kind, and other parts of the
world which are associated with her. But how is this bundle structured, and how are the various
bits wound together in the brain?
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It has been shown in cognitive neuroscience that relevant
differences exist between the processing of semantic information
regarding unique, individual entities, which are entities indicated
by proper names such as people and places, and that related to
generic entities, such as referents of common nouns (Semenza
and Zettin, 1989; Gorno-Tempini and Price, 2001; Semenza,
2006, 2009; Martins and Farrajota, 2007; Olson et al., 2013;
Fairhall et al., 2014; Brédart, 2017; Schneider et al., 2018; Morton
et al., 2021). This distinction reflects two ontological distinctions.
The first one holds between instances and categories, with roots
in philosophy (Lowe, 2003; Murez and Recanati, 2016), formal
linguistics (Carlson and Pelletier, 1995) and cognitive psychology
(Rosch, 1975; Kahneman et al., 1992; Leslie et al., 1998; Carey and
Xu, 2001). Intuitively, instances are entities which are perceived
as unique, whereas categories are classes of individuals, grouped
together in order to distinguish them according to their class,
and not to their individual identity (Klapper et al., 2017). This is
the sense in which categories and categorization will be intended
in this work. The second distinction is a further qualification
of the status of instances. It starts from the observation that
whereas certain instances are generally given a proper name
(for example people, places, monuments, pets), others typically
are not (for instance, instances of chairs, pans, windows). The
availability of a proper name as a label, according to this
theory, reflects cognitive and social constraints: only individual,
unique entities which are sufficiently cognitively and socially
salient can receive a proper name (Strawson, 1950; Kripke,
1972; Jeshion, 2009). This is the sense in which we refer to
individual entities.

Semantics investigations in cognitive neuroscience have
mostly focused on generic entities, and individual entities are
usually treated as special cases: early neuroimaging studies found
a strong involvement of the anterior temporal lobes (ATLs)
when processing individual entities (Gorno-Tempini et al., 1998;
Grabowski et al., 2001), but the ATLs have since clearly emerged
as a hub for semantic processing in general (Ralph et al., 2017).
This puts into question the existence of separate loci of processing
for individual and generic entities, as processing of the referents
of proper names may just require more (and more wide-spread)
resources, because of their high specificity (Borghesani et al.,
2019), and because of their social and emotional features (Olson
et al., 2007, 2013). Research on individual entities has then
focused on finding the neural correlates of a possible supramodal
representation of individual entities, specific to this kind of entity
(Fairhall et al., 2014; Schneider et al., 2018; Tsantani et al.,
2019); or, restricting the analysis to people, on understanding
timing and location of uni- and multi- modal processes such
as face and voice recognition (Campanella and Belin, 2007;
Anzellotti and Caramazza, 2017; Young et al., 2020); on trying to
tease apart the processes related to social and general semantic
cognition (Olson et al., 2013; Rice et al., 2018; Binney and
Ramsey, 2020); on the structure of the representations of people,
by comparing associative and categorical priming for faces and
names (Schweinberger, 1996; Wiese and Schweinberger, 2008;
Wiese, 2011). The results in the literature with respect to this
last question are contradictory, as it remains unclear whether

the categorical priming effect is weaker (Young et al., 1994;
Barry et al., 1998; Carson and Mike Burton, 2001; Vladeanu
et al., 2006; Bazzanella and Bouquet, 2011; Germain-Mondon
et al., 2011) or on a par with associative priming (Darling and
Valentine, 2005; Stone and Valentine, 2007; Stone, 2008; Wiese
and Schweinberger, 2011). More in general, it remains open to
debate whether categorical information plays a significant role
in the structuring the semantic representations of individuals, or
not; and if it does, to what extent (Turk et al., 2005).

In artificial intelligence, and in particular in computational
linguistics and NLP, recent advances have provided researchers
with models, based on distributional properties of words in
texts, which capture very subtle semantic knowledge (Erk,
2012; Camacho-Collados and Pilehvar, 2018). In particular,
knowledge about individual entities can be nowmodeled inmuch
greater detail and with impressive results in NLP benchmarks
(Lenci et al., 2021). These representations of individual entities,
however, have mostly been tested on traditional NLP tasks (Chen
et al., 2019). Unlike with generic concepts (Mandera et al., 2017),
very little attention has been paid to how well these models
capture human processing of the semantics of individual entities.
Distributional models of individual entities could, on the one
hand, benefit from cognitive neuroscience research, which could
provide a guide and an evaluation for the models (Günther et al.,
2019; Hollenstein et al., 2019); and on the other, help it, by
offering powerful vectorial models which can isolate processing
of individual entities in the brain (Bruffaerts et al., 2019).

In this work we bring together brain data (in the form
of electroencephalography, or EEG, data) and computational,
distributional models of semantics. From the point of view of
neuroscience, we investigate the way in which entity-exclusive
and categorical (relating the entity to its category) semantic
knowledge structures the semantic representations of both
individual entities and their categories. From the point of
view of computational linguistics, we look for the first time
at whether distributional models encode semantic information
about individual entities as it is processed in the brain.

In order to do this, we collected EEG data from 33 participants
using linguistic stimuli. During the experiment we recorded
responses to proper names of famous people and places,
belonging to different categories (e.g., “Scarlett Johansson,”
“Eiffel Tower”), as well as to the common nouns referring to
their socially-relevant classes (e.g., “actor,” “monument”). This
matched set of stimuli allowed us to investigate four questions:
whether we could find distinctive signatures for each individual
entity in the brain; to what extent these representations were
shaped according to category; whether the evoked responses
to individual entities and categories shared representational
information, as picked up by machine learning models; and
finally, to what extent distributional models map onto brain
processing of individual entities.

We approach our research questions in two ways: one based
on classification of EEG responses according to their category,
both at a coarse- and fine-grained level of categorization; and
another one based on learning regression models that perform
decoding from brain data to word vectors (learning a linear map
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from brain activations to the true values of the word vectors’
dimensions). We show that it is possible to obtain above-chance
performance in both cases, finding traces of individualization and
categorization, overcoming the high noise present in the EEG
data. This also confirms that distributional models of individual
entities, despite relying exclusively on textual data, encapsulate
information matching brain processing. Furthermore, results
indicate that evoked responses to nouns for categories and proper
names for their instances have little representational information
in common.

2. BACKGROUND

2.1. Distributional Semantics
Distributional models of semantics represent the meaning of
words in the form of vectors, by looking at co-occurrences
between words as they are found in large collections of texts,
called corpora (Lenci, 2008; Boleda, 2020).

The theoretical underpinning of these models dates back
to Wittgenstein’s considerations on language use (Wittgenstein,
1953). In his view, an important part of a word’s meaning can be
understood by looking at the way in which it is used in actual
language. This so-called distributional hypothesis is best-known
in the version formulated by Firth (1957): “You shall know aword
by the company it keeps”–i.e., words which are found in similar
contexts have similar meaning (see also Harris, 1954).

Vector-space models of lexical meaning based on the
distributional hypothesis started to appear, and to be evaluated
as cognitive models of lexical semantics, little more than 20
years ago, when both computational power and the availability
of textual resources improved dramatically (Lund and Burgess,
1996; Landauer and Dumais, 1997; Schütze, 1997). The success
of these models in, e.g., predicting human synonymy patterns
(Turney, 2001) motivated a great deal of research (Lin, 1998;
Finkelstein et al., 2001; Curran andMoens, 2002; Almuhareb and
Poesio, 2004; Agirre and Edmonds, 2007; Bullinaria and Levy,
2007; Padó and Lapata, 2007; Baroni and Lenci, 2010).

After a first period in which the dominant paradigm was to
learn such models out of word co-occurrences, the field moved
toward deriving distributional models of words as by-products of
neural networks whose objective was to learn language models
(Mikolov et al., 2013; Baroni et al., 2014; Pennington et al.,
2014), which is currently the dominant paradigm. These models
frame word vector learning as a machine learning problem.
The goal is that of learning, by looking at corpora, to predict
word vectors such that words with similar meanings should have
similar vectors, and vice versa. The latest models, which use deep
neural networks (Peters et al., 2018; Devlin et al., 2019), take into
account the fact word meaning changes slightly depending on
the context where a word is found. In these models, there are no
“static” word vectors; instead, they provide, given a sentence or a
paragraph, word vectors specific to that context—and because of
this, they are often called “contextualized” language models.

All along, it has been shown that these models capture
semantic information about words as it is stored and processed in
human cognition (Bruffaerts et al., 2019). This is quite surprising,
given that these models rely exclusively on textual data, whereas
humans have much broader sources of information—for recent

overviews of what phenomena can be modeled, see Günther
et al. (2019) and Lenci et al. (2021). In particular, research
in cognitive neuroscience has shown the important role of
sensory information in brain semantic representations (Barsalou,
2008; Ralph et al., 2017). In order to account for this type of
signal, which cannot be found directly in text, another kind of
distributional semantics models has been developed, adding also
visual (Bruni et al., 2012) and auditory (Kiela and Clark, 2015)
features to the vectors created from corpora. These multimodal
distributional semantics models can, as expected, improve results
on tasks involving concrete concepts (Bruni et al., 2014).

2.2. Cognitive Data and Distributional
Semantics
Much early work on distributional models was evaluated in a
purely qualitative matter, by showing that the lexical vectors
clustered “in an intuitive way.” This informal sort of evaluation
however was quickly replaced by attempts to introduce more
quantitative forms of evaluation. One popular approach was to
extract from a lexical database such asWordNet (Fellbaum, 1998)
test words belonging to different classes (e.g., animals, tools) and
then evaluate the extent to which the learned vectors clustered
into clusters matching the original classes (Lin, 1998; Curran
and Moens, 2002; Almuhareb and Poesio, 2004). However, this
approach to evaluation made the results entirely depend on
the cognitive plausibility of the classes in the target lexical
database, which was problematic. Thus, while the knowledge-
based approach was not completelely abandoned, it was quickly
supplemented with forms of evaluation which tested more
directly the extent to which the learned representations encoded
linguistic and conceptual knowledge.

One type of approach is to use distributional models to predict
human behavior in tests such as the already mentioned TOEFL
test (Turney, 2001). In fact, this is the form of evaluation most
used in the psychological literature from which distributional
models originated (Lund and Burgess, 1996; Landauer and
Dumais, 1997). Benchmarks for distributional models combining
clustering evaluation with tests were proposed, e.g., by Baroni
et al. (2010, 2014), and Lenci et al. (2021).

Another evaluation framework is that of similarity and
relatedness tasks: given a set of words (for instance, concrete or
abstract nouns), measures of similarity or relatedness between
all possible pairs of words in the list are first elicited from
human subjects (as simple examples, “cheese” and “yogurt” are
very similar, whereas “cheese” and “France” are strongly related)
and, in parallel, from a word vector model. For humans, some
quantitative scale is used, whereas, for distributional models, a
vector distance measure such as cosine similarity among word
vectors is employed. Finally, the correlation between human
judgments and the model’s matched predictions is computed—
the assumption being that the higher the distributional model’s
correlation with human ratings, the higher its quality (Finkelstein
et al., 2001; Bruni et al., 2012; Hill et al., 2015). Yet another
method is based on quantifying the models’ ability to replicate
cognitive phenomena such as priming and reading times (Jones
and Mewhort, 2007; Mandera et al., 2017; Günther et al., 2019).

An exciting alternative to this approach was evaluating
distributional models using evidence about semantic
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categorization in the brain (Warrington and Shallice, 1984;
Caramazza and Shelton, 1998; Haxby et al., 2001). One of the
earliest proposals exploring both brain data and distributional
models of word meaning was Mitchell et al. (2008). That paper
showed that, for a selected set of common nouns referring to
concrete concepts, co-occurrence patterns as extracted from
corpora could successfully predict brain activity evoked by
drawings of the referent of the words and recorded with fMRI.
fMRI stands for functional magnetic resonance imaging, and is a
technique which provides images of neuronal activity as reflected
by cerebral blood flow (Friston et al., 1998).

The approach of Mitchell et al. (2008), called brain encoding,
was interesting for a number of reasons. First of all, it indicated
that purely textual co-occurrence captured important features
of semantic processing in the brain. Secondly, it pioneered
an approach to isolate brain signatures of semantic processing
of individual words using computational linguistics models—
essentially turning what could be seen as a classification,
categorical problem (recognizing the word which evoked the
brain activity) to a regression problem (finding a mapping
between one vectorial representation, previously obtained by
way of a model, to another, the brain data). Finally, this work
presented a new way of evaluating vectorial models of word
meaning as created in computational linguistics, looking at how
well they modeled brain processing. This effectively provided
one of the most direct possible evaluations of the cognitive
plausibility of the models.

After, Mitchell et al. (2008), several lines of work expanded
the approach further. One approach focused on using different
models of semantics on the same set of fMRI images provided
by Mitchell et al. (2008). The goal was to try to find if, and
how, performance differed across models: distributional models
other than the ones originally used (Murphy et al., 2012),
models incorporating knowledge base information (Jelodar
et al., 2010), models based on Wikipedia definitions (Pereira
et al., 2013), multimodal models incorporating both textual and
visual features (Anderson et al., 2013), models based on word
associations from a thesaurus (Akama et al., 2015). Another line
of research involved obtaining original fMRI data, applying a
similar encoding analysis, but widening the scope of the approach
to other linguistic phenomena: phrases (Chang et al., 2009),
sentences (Anderson et al., 2021), naturalistic processing of
visually (Wehbe et al., 2014a) and orally (Huth et al., 2016; Zhang
et al., 2020) presented stories.

A mirror approach was also proposed, that of decoding:
the mapping is learnt from the fMRI brain data to the word
vectors. In Anderson et al. (2017) the authors showed that not
only representations of concrete concepts, but also abstract ones,
could be successfully decoded to distributional word vectors.
And in Pereira et al. (2018) a much more extensive set of
stimuli was used, encompassing both abstract and concrete
concepts, presented as words, definitional sentences and pictures
during the fMRI scans. Expanding even further the use of word
vectors to isolate semantic processing in the brain, Djokic et al.
(2020) found evidence, through decoding to word vectors, that
metaphorical and literal readings of sentences have different
brain signatures, and Nishida and Nishimoto (2018) showed

that it was possible to learn a mapping from videos (and
their matched descriptive textual annotations) to distributional
word vectors.

2.3. EEG and Distributional Semantics
Another type of brain data, whose main members are
electroencephalography (EEG) and magnetoencephalography
(MEG), has also been used for brain encoding/decoding studies
from/to computational word vectors. They measure different
signals coming from the brain (electrical fields for EEG, and
magnetic fields for MEG), but their source is the same—ionic
currents generated by biochemical processes in neurons (da Silva,
2013).

Although research on using EEG to evaluate distributional
models started at about the same time as research using fMRI
(Murphy et al., 2008, 2011), they have been used to a lesser
extent, because of both conceptual and practical issues. fMRI
captures extremely detailed brain images every 1 or 2 seconds.
These are the ideal form of concept representation as retrieved
from semantic memory, and can be straightforwardly matched to
word vectors, which are taken to model lexical items in semantic
memory. Instead, M/EEG provide snapshots of brain processing
which have much better time resolution—in the milliseconds
range—but poorer spatial definition. This is especially true in the
case of EEG, which not only has the lowest spatial resolution
of all, but also the lowest signal-to-noise ratio. Conceptually,
word vectors do not model the temporal dimension of semantic
processing, but rather the spatial one, in the form of distributed
vector spaces: and spatial analyses in cognitive neuroscience
research have traditionally involved primarily fMRI, due to its
high spatial resolution (Kemmerer, 2014).

Both EEG and MEG come with their own advantages,
however. EEG is particularly cheap and portable, two reasons
which make it also the preferred choice for brain-computer
interfaces (Allison et al., 2020) and for working with elderly
patients (Gu et al., 2013); and, provided one uses enough
channels, it can be used as a sort of brain imaging tool (Michel
and Murray, 2012). MEG, despite being expensive, provides
much better signal and spatial resolution, and more channels
by default.

The few studies using EEG data implemented the encoding
setup, as in Murphy et al. (2009), where pictures of concrete
entities where used as stimuli; and both encoding and decoding
in Sassenhagen and Fiebach (2020), a study where both concrete
and abstract common nouns were used. MEG data, which grants
higher machine learning performances given the superior signal
quality, was instead used for decoding to word vectors from brain
processing of pictures referring to concrete concepts (Sudre et al.,
2012) and visually presented stories (Wehbe et al., 2014b).

With respect to the literature here reported, the main
innovation of our work is showing that word vectors can be used
for isolating extremely fine-grained brain signatures of individual
entities indicated by proper names. By doing so, we go beyond
knowledge about generic concepts indicated by common nouns,
which was instead the main focus of the works reported above.
Also, we show that it is possible to do so using the available
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technique with the lowest signal-to-noise ratio, EEG, provided
that the experimental design is carefully designed.

3. MATERIALS AND METHODS

3.1. Stimuli
In order to be able to investigate the structural properties of
the representation of individual entities from both an entity-
level and a categorical perspective, we collected evoked responses
not only to proper names of people and places, but also to
words referring to their main categories. Importantly, the set
of stimuli is hierarchically structured, and carefully matched
in terms of semantic categories and entities. There are two
“coarse” categories (people and places); for each of these we
considered four fine-grained categories (musicians, politicians,
actors, writers as people, and bodies of water, monuments, cities
and countries as places); and for each fine-grained category we
included four individuals among the stimuli, as well as the nouns
for the categories. The result is a total of 40 stimuli: 8 nouns
for the fine-grained categories, and 32 proper names for the
individual entities. The hierarchical structure of the stimuli and
the way they are used in the experimental paradigm (Section 3.2)
are presented in Figure 1, and the stimuli selection procedure is
described below.

People and places were chosen a priori as top categories,
following previous work on individual entities in cognitive
neuroscience (Gorno-Tempini and Price, 2001; Grabowski et al.,
2001; Ross and Olson, 2012; Fairhall and Caramazza, 2013;
Leonardelli et al., 2019). In this field, people and places are
the most common choice of categories to be contrasted when

investigating the semantics of individual entities, since a long
tradition of studies on patients has shown that, within human
semantic knowledge of individual entities, these two categories
can be selectively impaired (della Rocchetta et al., 1998; Miceli
et al., 2000; McCarthy and Warrington, 2016). This seems
to entail that semantic knowledge about these two kinds of
individual entities can be teased apart in the brain—a finding
which has consistently been confirmed by results from healthy
subjects (Fairhall et al., 2014; Rice et al., 2018).

It should be noticed that in NLP, where textual resources can
be obtained or created on a very large scale with limited effort,
it is commonplace to consider a wider range of coarse-grained
categories of entities (organizations, dates, events, products, or
categories of biomedical entities such as genes and diseases
Goyal et al., 2018). However, in cognitive neuroscience, it is
much harder to obtain large scale datasets. This is due to
the combination of two factors. The first one is practical:
experimental sessions are particularly intense for subjects,
imposing strong constraints on the number of trials that can
be obtained and analyzed. The second one is methodological:
in most cases, like ours, analyses are conducted at the level
of individual subjects, and then aggregated at a later stage.
This entails that the amount of experimental items that can
be analyzed in the context of an experiment is limited to the
number that can be considered for a single participant. The role
of having multiple participants, instead, is not that of increasing
the number of experimental items or trials, but that of testing the
generalizability of the results.

For the fine-grained categories and the individuals, we
followed a two-step, mixed approach, guiding our manual

FIGURE 1 | Experimental design and hierarchical stimuli organization. Our set of stimuli was organized symmetrically, so that exactly the same number of stimuli was

present for each coarse- and fine-grained category—as shown in (A). Stimuli included both proper names of individual entities and their fine-grained categories. In (B)

we present the experimental paradigm. Each stimulus was projected in isolation on the screen for 750 ms, and subjects then had to mentally visualize its referent while

a cross remained on screen for 1,000 ms. Participants then answered a question, involving the fine- or coarse-grained level of categorization.

Frontiers in Artificial Intelligence | www.frontiersin.org 5 February 2022 | Volume 5 | Article 796793

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Bruera and Poesio Individual Entities, EEG, and Distributional Semantics

selection with data-driven observations. The aim of the first
selection step was providing an initial, large set of individual
entities and matched categories, to be further reduced during
the second phase, using familiarity ratings provided by
independent subjects.

For the first step, we came up with a list of ten fine-grained
categories for people and places. We followed principles of
economy and discriminativeness (Rosch, 1975), selecting, as fine-
grained category stimuli, categories for people and places which
represented economic ways of describing and distinguishing
subclasses of individual entities. In the case of people, we
used occupations as fine-grained categories (e.g., “politician”
for individual concept “Barack Obama”), which is one of most
basic, socially shared and clear-cut way of categorizing people
(Cantor and Mischel, 1979; Mason and Macrae, 2004; Turk
et al., 2005), whereas in the case of places we employed their
taxonomic hypernym (e.g., “city” for individual entities such as
“Istanbul”). The final list of ten categories included the eight
categories reported above (musician, politician, actor, writer as
people, and body of water, monument, city and country as
places), as well as two additional entries, athlete and geographic
area. Then, from this list of fine-grained categories, we manually
picked a preliminary set of 100 well-known individual entities—
10 names for each of 10 fine-grained categories. We made sure
that each individual entity had a dedicated page in both English
and ItalianWikipedia, since we needed that source of textual data
in both languages for the extraction of word vectors, as discussed
in Section 3.5.

For the second, and final, stimuli selection step, we chose
familiarity as the main criterion, as it is one of the most
important variables affecting the processing of proper names
(Valentine, 1998; Smith-Spark et al., 2006; Brédart, 2017; Moore
and Valentine, 2020), as well as a necessary requirement for our
experiment (in order to capture the neural representations for
an individual entity, we needed to ensure that subjects had a
previous representation in semantic memory to be retrieved).
Familiarity was defined, followingMoore and Valentine (2020) as
cumulative encounters with (representations of) that individual
entity, across time and media. At the beginning of the second
stimuli selection step, we collected familiarity ratings from 30
Italian subjects, none of which took part to the subsequent EEG
experiment. We made sure that this sample was matched in
nationality and close in age to the sample of the EEG experiment
(mean age: 29), in order to ensure that the entities and the
fine-grained categories used as stimuli for the data acquisition
procedure would be as familiar as possible to our sample of
participants in the EEG study. Note that this procedure was
fully independent from EEG data collection: participants in the
EEG experiment had no role in the stimuli selection procedure,
and they were not asked to norm the stimuli according to
familiarity. In the norming experiments, subjects were asked
to rate on a Likert-type scale, from 1 to 5, their familiarity
with each individual entity, where familiarity was defined as
reported above.

After having collected the familiarity ratings, we retained, for
the EEG study, only the individual entities and the fine-grained

categories which, on average, had the highest familiarity scores.
At the end of this procedure, the four most familiar fine-grained
categories for each coarse category were chosen as fine-grained
categories for the study; and the four most familiar individual
entities belonging to those categories where selected as the
individuals entities to be used. We report the set of stimuli in the
Supplementary Materials.

Psycholinguistic variables such as orthographic complexity
and length are particularly hard to match for proper names,
especially in the case of our experimental setup. First of all, in
languages such as Italian and English, they are morphologically
and orthographically immediately recognizable from common
names, because of features such as upper case initial letter, and
non-applicability of number and case information (Peressotti
et al., 2003). Secondly, proper names of people are in most
cases longer than places’ names, because they require both name
and surname in order to be correctly disambiguated. Thirdly,
there is no hope of matching proper names and words of fine-
grained categories. And finally, since we use a decoding analysis
centered around semantics, we assume that the decoders will
automatically learn to focus on ERP signatures of semantic, not
orthographic, information. Because of these reasons, we chose
not to control rigidly orthographic variables, and in particular
stimulus length, during data collection, taking for granted that
such differences between stimuli would inevitably be present.
Instead, we added word length as a control variable in the
classification analyses (Chyzhyk et al., 2018), where it could
play in principle a confounding role due to the differences in
mean lengths across categories—9 letters for places, 12 letters
for people (see Section 3.4 for the details, and the tables in the
Supplementary Materials for the full list of the experimental
stimuli, together with their familiarity scores and average
word lengths).

3.2. Experimental Procedure
Thirty-tree right-handed subjects (age from 18 to 35 years old,
with 20 female participants) took part to the experiment. The
subjects were all native Italian speakers, and the experiment was
conducted in Italian. All experimental procedures were approved
by the Ethical Committee of SISSA, Trieste, where the data were
collected, and subjects gave their written informed consent.

The experimental procedure involved 24 short runs of 40
trials. In each run, each of the 40 stimuli (both proper names
and fine-grained category nouns) would appear once, in a
randomized order, resulting, at the end of the session, in 24
evoked responses to each name and noun. We chose to repeat
the stimuli 24 times, since (Grootswagers et al., 2017) clearly
demonstrate that, in order to reach optimal decoding and
classification results using evoked potentials, between 16 and 32
trials for each stimulus are needed. Each trial consisted of two
parts, as shown in Figure 1: first, the presentation of a stimulus
name or noun for 750 ms (word presentation times in EEG
experiments are kept below 1 s, as word processing begins already
at 150ms after the stimulus appears Simanova et al., 2010;Wehbe
et al., 2014b; Sassenhagen and Fiebach, 2020); the stimulus was
preceded and followed by the presentation of a white fixation
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cross for 1,000 ms at the center of the screen. Participants were
instructed to read the word and then visualize mentally the
referent of the stimulus, until the cross was on screen.We decided
to leave a relatively short time for the mental imagery task, in
order to keep the process as much as possible time-locked to
stimulus appearance (Bastiaansen et al., 2011; Shatek et al., 2019)
and avoid mind wandering, while allowing subjects to quickly
picture the stimulus’ referent (cfr. Section 5.3).

Afterwards, a question appeared on screen, which always
involved pressing either “s” or “k” on an external keyboard,
placed in front of the subject. “s” and “k” were chosen simply
because of their position on the keyboard’s QWERTY layout:
they can be easily reached with left and right index finger,
respectively, while keeping a comfortable, yet fixed, position on
the chair. There were two possible types of questions, either a
coarse-level question (“people or place?”) or fine-level (e.g., “the
name referred to a musician,” with possible answers “correct”
or “wrong”), similarly to Leonardelli et al. (2019). The mapping
between response keys and answers was fully randomized across
trials. Within each run, questions were randomized, but balanced
across question type and, when applicable, answer type: coarse-
level questions appeared 16 times, whereas fine-level questions
appeared 24 times, of which 12 times required a “correct” answer.
The questions were added to the experimental paradigm in
order to keep participants attentive and to ensure that they
focused on their semantic representation of the individual entity
and its category. The aim of randomizing different questions
was avoiding as much as possible strategic preparation for the
coming question.

3.3. EEG Recording and Preprocessing
For data acquisition, we employed a BIOSEMI ActiveTwo system
with 128 channels 1, recording signals at a sampling rate of
2048 hz.We employed a fully automatized preprocessing pipeline
adapted from Jas et al. (2018), and implemented with the MNE
Python package (Gramfort et al., 2013), in order to improve
replicability. Results were then visually inspected in order to
check for the quality of the preprocessing, and we found that no
amendment was required.

We first downsampled the data to 256 hz, a recommended
choice for cognitive neuroscience experiments (Luck, 2014),
leading to a sampling resolution of 3.9 ms. This reduces the
amount of data points to be processed, speeding up the analyses,
at no cost: as pointed out in Luck (2014), relevant cognitive
activity happens at frequencies below 80 hz, and therefore,
following Nyquist’s theorem, sampling at 256hz is a safe choice
(Nyquist’s theorem states that, in order to capture in a digital
format an analog signal, the sampling rate has to be more than
twice as great as the highest frequency in the signal, here around
80 hz). Given the considerations above, we subsequently applied
a low-pass filter to the data at 80hz so as to minimize the effect of
irrelevant signal interferences.

A further source of noise in EEG recordings are voltage
artifacts that have nothing to do with cognitive activity, such

1https://www.biosemi.com/activetwo_full_specs.htm

as slow voltage drifts. These are due to skin-related potentials,
that generate noise in the recorded waveform because they have
a shifted phase with respect to the evoked responses to the
experimental stimuli (Luck, 2014). To remove them, we applied
baseline correction, which consists in subtracting the average
of the pre-stimulus potentials, in our case from –100 to 0 ms,
from the whole epoch. This is the recommended alternative to
the conceptually simpler high-pass filtering, which may instead
induce undesired artifacts (Tanner et al., 2016; van Driel et al.,
2021).

Finally, we epoched the data to –0.100 and 1,200 ms after
stimulus onset, and used the AutoReject algorithm to find and
interpolate bad channels and to remove bad epochs, excluding
from the analyses spans of recorded data that contained excessive
noise or artifacts (Jas et al., 2017).

We also recorded two electrooculogram (EOG) channels,
which record electrical potentials produced by eye movements.
These eye-related potentials, which may be picked up in
parallel by EEG electrodes, interfere with the signal of interest
coming from the brain, and are therefore considered as
artifacts to be removed. The most common way of dealing
with this kind of noise employs the recorded EOG channels
together with Independent Component Analysis (ICA) (Urigüen
and Garcia-Zapirain, 2015). ICA is used to separate linearly
mixed signals, estimating their independent source signals from
recorded data. In our case, we take the EEG recordings to
contain a mixture of eye- and brain- related signals, that we
would like to disentangle. In order to remove ocular artifacts,
we used the standard procedure of Jas et al. (2018). Using
the MNE implementation, we fit ICA on our data, then
we found and excluded automatically the components which
correlated the most with the EOG signal (Jas et al., 2018), the
assumption being that these components capture eye-related
signal sources.

To reduce the impact of noise, which can be quite severe in
EEG recordings, we averaged all evoked responses corresponding
to a stimulus within a subject, as it has been shown to improve
the signal-to-noise ratio (Grootswagers et al., 2017). Before the
analysis, we standardized the data for each channel using MNE’s
scaling method, which standardizes electric potentials channel by
channel. For the standardization, mean and standard deviation
are computed for each channel from all time points within
all epochs.

This preprocessing pipeline provided us with 40 evoked
responses for each stimulus per subject. Conceptually, these
correspond to snapshots of semantic processing across
1,200 ms for the thirty-two proper names and their eight
fine-grained categories.

3.4. Coarse- and Fine-Grained Decoding
Given the structure of our dataset, and our interest in uncovering
the structure of semantic representations of individual entities
at different levels of granularity, we carried out two separate
classification analyses for the coarse-grained level (people
and places) and the fine-grained level (the eight fine-grained
categories). For both setups we employed a SVM with default
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parameters (C=1.0, l2 regularization). This is standard procedure
in cognitive neuroscience, and it has been shown that, with l2-
regularized SVM, fine-tuning the C parameter does not impact
results (Grootswagers et al., 2017; Varoquaux et al., 2017). The
main difference between coarse- and the fine-grained setups was
that, whereas in the former case we set up a binary classification
procedure, with random, baseline accuracy at 50%, in the latter
we usedmulticlass, one-vs-all classification with random baseline
at 12.5%.We will also present results for within-coarse categories
(i.e., results obtained when using only evoked responses to either
people or places). In this case too we used a one-vs-all classifier,
this time with a baseline of 25%, since there are only four
fine-grained categories to consider.

We took a time-resolved decoding approach (Grootswagers
et al., 2017) for our classification, training and testing separately
on each time point. We tested statistical significance at each
time point using threshold-free cluster enhancement (TFCE), a
permutation-based, non-parametric test of statistical significance
proposed in Smith and Nichols (2009) and then widely
adopted in the neuroscientific literature (Helwig, 2019), also for
classification of EEG signals (Grootswagers et al., 2019; Kaiser
et al., 2020; Petit et al., 2020). The main advantages of this
procedure are its sensitivity, due to the fact that it can take into
account the fact that brain signals are clustered both in space and
in time; its avoidance of parametric test assumptions (Mensen
and Khatami, 2013); and finally, the fact that it inherently
counters the multiple comparisons problem (the inflated risk
of finding false positives) that arises from testing so many data
points (in our case, time points; for details on the general
procedure, see Mensen and Khatami, 2013). We used the TFCE
implementation of MNE (Gramfort et al., 2013), with default
parameters. Since our classification took place in the time domain
(time-point by time-point), the TFCE procedure could take into
account only temporal adjacency when looking for potential
clusters. Time-points were considered to be adjacent if they
fell within a 10 ms window (remember that our resolution is
3.9 ms—Section 3.3), as post-synaptic potentials, the kind of
potentials captured by EEG recordings, do not last less than 10
ms (Luck, 2014), and therefore the EEG signal can be assumed to
be smoothed within that time window.

Given the nested categorical structure of the labels, we paid
special attention to data splits among training and testing. We
generally took a leave-4-out evaluation approach (see exceptions
at the end of this section), which trains on 87.5% of the full
original data, leaving out 12.5% for testing. We did not use
random folds, which would end up giving unreliable results,
because of unbalanced splits at the fine-grained level. Instead
we first computed all possible combinations of sample labels to
be used as test sets which respect the following criteria: sample
labels should be balanced across coarse categories (two people
and two places), and the test set should not contain more than
one exemplar from each fine-grained categories. An example
of a test set could be “Barack Obama,” “Scarlett Johansson,”
“Eiffel Tower,” “South Africa,” with different labels depending on
the analysis: “people,” “people,” “places,” “places” for the coarse-
grained analysis, and “politician,” “actress/actor,” “monument,”
“country” for the fine-grained one. This procedure can be

considered as a balanced implementation of the ShuffleSplit data
splitting technique (Pedregosa et al., 2011; Varoquaux et al.,
2017).

Given that word length was not strictly controlled across
categories in stimuli selection, giving rise to different
average word lengths for each category (see Section 3.1 and
Supplementary Materials), word length could in principle
act as a confound in classification, where categories are used
as target labels. In order to control for its effect, we adapted
to our classification analyses the confound variable control
procedure presented in Chyzhyk et al. (2018). This method was
specifically validated by the authors in the case of neuroscience
classification analyses where an individual variable has to be
controlled, showing that it avoids both overly pessimistic and
optimistic accuracies (Chyzhyk et al., 2018; More et al., 2020).
The intuition it follows is that, to control for a potential confound
in classification, given a large enough pool of candidate train-test
splits, it is enough to select and use only the splits where, in the
test sets, the outcome is independent from the confound: with
this procedure, the classification analysis provides an evaluation
of whether the brain data determines successful prediction
beyond the confounding effect. In our setup, controlling for
word length in this way is straightforward since, as discussed
above, we generate as candidate train-test splits all the possible
balanced combinations of stimuli. First, for each possible
candidate test set, we transform stimuli and target labels (the
categories’ nouns), that are categorical variables, to numeric
values: words become word lengths, and target labels become
the average word lengths of the label’s entities (as reported in the
Supplementary Materials; e.g., “Madonna” is encoded as 7, and
“politico” is encoded as 13, the average of all politicians’ names in
our set of stimuli). Then, we compute the Spearman correlation
(indicated by ρ) between the encoded stimuli and target labels:
this quantifies the confounding effect of word length on that
candidate test set. Having computed the correlations for all
the candidate test sets, we sort them in ascending order by
their absolute value. Finally, following Varoquaux et al. (2017),
where authors recommend using 50 random train-test splits
when working with brain data, we retain as final test sets the
50 candidates having the lowest correlation. In the case of the
coarse-grained classification, we could use 50 test sets completely
uncorrelated from word length (ρ = 0.0), whereas in the case of
fine-grained classification the highest correlation is not 0.0, but
still close to it (ρ = 0.162) 2.

In order to get insights regarding the structure of the
representations of proper names, we further exploited the
hierarchical structure of the dataset. In a separate set of analyses,
we trained on evoked responses for individuals, and we only
tested on those for the fine-grained categories. This can be seen as
some sort of transfer learning, looking at whether, and when, the

2Our implementation differs from the original implementation in two respects:

first, we use Spearman correlation, a linear measure, whereas in Chyzhyk et al.

(2018) the authors ranked and selected candidate test sets based on mutual

information, which is non-linear; and secondly, here we have individual trials as

candidate test items, while in Chyzhyk et al. (2018) the candidates for testing were

whole subjects to be left out.
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two kinds of representations converge. In this case, the dataset
was used in its entirety. Furthermore, since we reckoned that
there could be some differences in terms of discriminability
between people and places, we also ran the analyses separately
first on people only, and then on places. In this case we used a
leave-2-out classification setup, corresponding again to a 87.5%
train–12.5% test split.

3.5. Distributional Semantics Models
One of the key goals of our work is exploiting an array of
recent, cutting-edge computational models of semantics in order
to isolate semantic information in evoked responses in the brain,
at the level of unique, individual entities. We selected a set of
models which can be connected as transparently as possible to
cognitive theories of the semantics of individual entities. At the
broadest level, we use three kinds ofmodels. All of them represent
individual entities as vectors, but the way in which these vectors
are created differs significantly across models.

The first kind of word vector models relies exclusively on
distributional information about words as observed in linguistic
corpora (BERT Devlin et al., 2019, ELMO Peters et al., 2018,
Word2Vec Mikolov et al., 2013; see Section 3.5.1). Within this
family, all models follow, with various degrees of sophistication,
the distributional principle, according to which words which
are found in similar contexts have similar meaning. With
respect to the way they represent individual entities, they can
be understood as putting them on the same level as all other
words—individual entities are not given a special treatment,
and their representation follows the same pathway as that of
all other words. Distributional models have been often taken as
models of human semantic memory, both because of principled
reasons (they embody the assumption that word meaning can
be retrieved from their use, and that it can be defined in a
distributed fashion, across various dimensions) and because of
their empirical success at modeling human data.

The second type of models (TransE Bordes et al., 2013; see
Section 3.5.2) comes from a very different tradition in artificial
intelligence, that of ontologies and structured representations
of entities (Guarino, 1995; Ji et al., 2021). Representations of
these kinds follow a distinct principle, that of creating models
of the world that an artificial intelligence agent could use
in an external environment (Guarino, 1995), and have most
commonly taken the form of knowledge bases—graphs where
entities (both unique and generic) are the nodes, and the links
among nodes capture their relationships. In this case, entities—
and individual entities in particular—are at the very core of the
representational structure.

The third kind of models (LUKE Yamada et al., 2020b,
Wikipedia2Vec Yamada et al., 2020a; see Section 3.5.3) is a
combination of the two approaches presented above, and it has
recently received much attention in NLP because it promises
to overcome the limitations inherent to each methodology: for
distributionalmodels, the lack of precise entity-level information;
and for knowledge bases, their structural rigidity and their
difficult integration with generic linguistic knowledge, as well as
their costly creation and maintenance (Peters et al., 2019; Sun
et al., 2020b; Yamada et al., 2020b). We will call these models, as

is commonplace in the NLP literature, entity-aware embeddings.
From a cognitive point of view, these computational models
may be interpreted as implementing the intuition that individual
entities are represented at a separate level than generic entities.
Somemodels introduced this idea in cognitive psychology (Bruce
and Young, 1986; Burton and Bruce, 1992; Young, 1999), stating
that individual entities bearing a proper name have a dedicated
identity node, which is then integrated, at a later stage, with
generic semantic knowledge.

For all models we use the version trained on English. This is
the language over which the models were developed originally,
because of resource availability—as a matter of fact, importantly,
for most models the Italian version is not available at all. Also,
in terms of performance on NLP tasks in different languages,
English consistently presents the best performances available
(Bender, 2011; Pires et al., 2019). We used English vectors for
many reasons. First of all, our stimuli can be considered to be
largely language-independent (Van Langendonck and Van de
Velde, 2016), at least across the two languages involved in our
experiment (Italian, the language in which the experiment was
carried out, and English), and strongly referential in nature:
the referents of proper names are specific people and places
in the world, which only require to be familiar with them
(Kripke, 1972), and the category nouns that we employed
(occupations and type of place) are shared across Italian and
English cultures. The level of representation of interest is
exclusively semantic, thus ruling out orthographic and phonetic
language-specific phenomena.

To support our argument, we checked empirically whether
using Italian models, instead of English models, would give rise
to relevant differences in decoding performance. We ran the
analyses with the models available also in Italian (Word2Vec,
Wikipedia2Vec and BERT base), and then compared results
across languages with a two-tailed non-parametric Wilcoxon
statistical significance test, correcting for multiple comparisons
using Benjamini and Hochberg (1995)’s False Detection Rate
(FDR) procedure, which is a standard procedure in both
computational linguistics and neuroscience (Groppe et al., 2011;
Dror et al., 2017). Difference in scores was not significant for
BERT (p = 0.97), whereas it was significant for Word2Vec (p =

0.043, with the Italian model performing better—average Italian
model accuracy: 0.619, average English model accuracy 0.595)
and Wikipedia2Vec (p = 0.017, where the opposite was true—
average Italian model accuracy: 0.609, average English model
accuracy: 0.639; cfr. Figure 8). Given that results did not show a
consistent pattern of advantage for one language or the other, and
that most of the available models were trained on English data, we
report and discuss results for the models trained on English.

3.5.1. Static and Contextualized Distributional Models
Distributional models can further be subdivided into static and
contextualized. Static models, such as Word2Vec (Mikolov et al.,
2013), work at the level of individual lexical items. They are
essentially vector spaces, where each vector captures the meaning
of an individual word. Contextualized models, such as the widely
used ELMO (Peters et al., 2018) and BERT (Devlin et al., 2019),
are more recent. They instead focus on sentences, and not on
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individual lexical items (Camacho-Collados and Pilehvar, 2018).
Given a sentence, their goal is that of creating representations
of the words contained in the sentence which reflect their
current idiosyncratic, context-dependent meaning. Contextual
distributional models have been generally shown to improve
on static models on most tasks in Natural Language Processing
(Rogers et al., 2020), but it should be noticed that they are
dramaticallymore complex than static models (Lenci et al., 2021).

As our static distributional model, we choose Word2Vec, a
very well-known model, which has also been shown to be a
good model of human semantic memory (Mandera et al., 2017).
Word2Vec vectors are created by training a feedforward neural
network on a word prediction task. In the case of the model
we use here, it is called the “skip-gram” task (Mikolov et al.,
2013). It requires to learn to predict whether, given a word in a
sentence and another target word from the vocabulary, the target
actually comes from the actual set of words surrounding the
query, or whether it was randomly sampled among the words not
appearing in the window. In this experiment we use a model pre-
trained by the authors of the original papers on a corpus of news
articles, where individual entities have been marked as individual
words so that they end up having their own vector. The vectors
were created by the authors of Mikolov et al. (2013), optimizing
the learning parameters and the dimensionality (1,000) for the
representation of entities.

There is a very large number of contextualized models, often
specialized for specific NLP tasks. We chose to use two of the
“basic,” vanilla models (which are in any case quite complex) on
top of which most of subsequent research has been built, ELMO
(Peters et al., 2018) and BERT (Devlin et al., 2019). Despite
being created for generic language processing—actually, the
adaptability of the word vectors they create is one of the reasons
of their success—these models can in most cases compete with
specialized models in terms of performance, and they are very
often used as a strong benchmark. ELMO is a bidirectional LSTM
neural network, which learns to predict a given word conditioned
on the previous words, as well as the next ones. BERT, instead,
adopts the Transformer architecture (Vaswani et al., 2017), which
relies heavily on the computational mechanism of attention
(Lindsay, 2020), in order to encode a sentence into a set of vectors
capturing both lexical and contextual meaning and structure.
Importantly, BERT is a deep architecture (it exists in two flavors,
one with 12 layers and one with 24 layers), with different
layers encoding—at least partially—different kinds of linguistic
information (Rogers et al., 2020).

One of the challenges posed by contextual models, as opposed
to static word vectors, is that they leave many free choices to
the experimenter when it comes to extracting the vectors: which
layer to use; whether to use vectors for word mentions, or instead
those for full sentences; what model dimensionality to choose.
For both ELMO and BERT, we follow amethodology proposed in
Bommasani et al. (2020) and refined in Lenci et al. (2021), which
has been show to capture effectively lexical meaning. We extract
many vectors for separate mentions of each proper name, and
then average them. The mentions are taken from the Wikipedia
pages of each individual entity, in order to encode definitional
information about the entities themselves. From each Wikipedia

page we take up to the first 32 sentences. We experimented with
various layers, but finally we decided to use an average of the
final layers, as in Lenci et al. (2021) (the last four for BERT, and
the last one for ELMO), since they have already been shown to
perform well with neural data (Jat et al., 2019). For BERT we
used Huggingface’s Transformers implementation (Wolf et al.,
2020) and the original pre-trained weights, both in their so-
called “base” and “large” versions (1,024 and 2,048 dimensions,
respectively). For ELMO we used the pretrained original weights
(1,024 dimensions) and the AllenNLP implementation (Gardner
et al., 2018).

Our method for extracting static representations from
contextualized models has not been tested specifically on
entities, but only on common nouns. Therefore, we validate
it by measuring its performance on WikiSRS, a similarity and
relatedness task (cfr. Section 2.2) created specifically for entities.
This benchmark was introduced in Newman-Griffis et al. (2018),
and it was recently used for the evaluation of contextualized
models (Chen et al., 2019). The dataset was created by crowd-
sourcing similarity and relatedness judgments for 688 pairs
of named entities. To evaluate the performance of our vector
extraction methodology, we followed the procedure of Chen
et al. (2019): first we obtained the vectors for the entities
appearing in WikiSRS; then we computed the pairwise cosine
similarities between vectors corresponding to the dataset’s pairs;
and finally we looked at the Spearman correlation between
model similarities and human judgments. We carried out
separate evaluations for the two portions of the dataset—once
for similarity and another for relatedness. As a baseline, we
computed the scores obtained when using the vector extraction
methodology proposed in Chen et al. (2019), which differs from
ours in two respects: first, they only employed the first sentence
from Wikipedia as input for the creation of the entity vector;
and second, for BERT, as entity representation, they used the
special [CLS] token, used by BERT to represent the whole input
sentence. For BERT large, our methodology improves on the
baseline for relatedness from ρ = 0.297 to ρ = 0.423, and for
similarity from ρ = 0.424 to ρ = 0.491. For BERT base, the
model’s fit with relatedness scores improves from ρ = 0.287 to
ρ = 0.375, and for similarity from ρ = 0.401 to ρ = 0.468.
For ELMO, the baseline score for relatedness is ρ = 0.372, while
with our method it improves to ρ = 0.399; and for similarity,
correlation goes from ρ = 0.424 to ρ = 0.4399. We take this
consistent pattern of improvements to confirm the validity of our
proposed methodology for the extraction of static entity vectors
from contextualized language models.

3.5.2. Knowledge-Base Models
As a knowledge base model, we used vectors obtained using
TransE (Bordes et al., 2013), a method to translate a knowledge
graph into a set of entity and relationship vectors (we only used
the entity vectors). Roughly, TransE starts from random vectors,
and goes through the knowledge base, optimizing along the way
entity and relation vectors. Vectors are tuned so that, given a
triplet of entity1, entity2 and a relation holding between the two,
the sum of the vectors for entity1 and the relation should return
a vector which is among the nearest neighbors of entity2; and
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the opposite for randomly sampled negative relationships. We
employed a pre-trained model, published in Han et al. (2018),
which was trained on WikiData, an open knowledge base that
can be seen as a structured sibling to Wikipedia (Vrandečić and
Krötzsch, 2014). The final vectors have 100 dimensions.

3.5.3. Entity-Aware Models
Finally, as entity-aware embeddings, we use both a static and a
contextualized model, built on top of Word2Vec and BERT, that
were shown to both improve on their basic version with respect to
entity-related tasks in NLP. The first one is calledWikipedia2Vec
(Yamada et al., 2020a), and the second one is LUKE (Yamada
et al., 2020b). We chose these two models because they both
adopt a conceptually similar approach, and they use the same
training data, which reduces possible confounds—the English
text of Wikipedia, complemented by the underlying graph of
the hyperlinks contained in each page. Both models modify
their basic training regimes, storing and processing separate
representations for individual entities and common nouns. Their
strategy consists of exploiting hyperlinks in Wikipedia pages as
annotations of entity mentions, using these mentions for an
additional entity-specific task which is added to the training.
In this task, given an entity mention in a sentence within a
Wikipedia page, the model has to learn to predict other entities
found in that sentence. We use the pre-trained versions of the
models published by the authors. Wikipedia2Vec comes with 500
dimensions, and was trained from scratch with a window size
of 10 words and 15 negative examples, for 10 iterations. The
entity-specific task is a skip-gram prediction task for mentions of
entities. LUKE, both in the base and large versions, has the same
dimensionality as BERT (1,024 and 2,048) and was trained on top
of pre-trained BERT weights, which were used as initialization
weights for the part of the model dedicated to generic word
representations. Representations for the individual entities are
learnt with the same masked language modeling objective of
BERT, just applied separately to entities. For LUKE, which works
in practice as a contextualized language model, we follow the
same word vector extraction procedure validated in Section 3.5.1.

3.6. Decoding to Distributional Word
Vectors
In order to find out whether we can distinguish between evoked
responses at the finest level of granularity, that of individual
identities, we exploit our entity vectors as mapping targets. In
other words, for each entity, we use a regularized linear regression
model to learn to predict the true values of the dimensions of
each entity vector from the corresponding EEG representation of
that entity.

As inputs (i.e., as our EEG representations) we use whole
epochs, from 100 to 1,200 ms after stimulus onset, which we
collapse to one vector, so that for each evoked response to a
name or a noun we have one vector. To learn the mapping, we
use Ridge regression with default parameters, following recent
work (Pereira et al., 2018; Sassenhagen and Fiebach, 2020),
implemented in the Python package Scikit-learn (Pedregosa et al.,
2011).

We adopt for evaluation the pairwise evaluation approach
proposed by Mitchell et al. (2008). This is a leave-2-out
training regime, repeated for all possible pairs of stimuli.
Note that the model has to learn to predict the true value
of each vector dimension for entities which are completely
unseen during training—a form of zero-shot machine learning
task, which requires the model to isolate and exploit at test
time the signatures in the brain of semantic processing of
individual entities.

In pairwise evaluation, at test time the model first predicts

two entity vectors, Êe1 and Êe2, using the corresponding evoked
responses; then the respective Spearman correlations to the
original entity vectors Ee1 and Ee2 are computed. At the end there
will be four correlation measures, two of which are for the
matching vectors and are expected to be, taken together, higher
than the correlations for the mismatched vectors. The decoding
accuracy evaluation is based on this expectation, in that it is

considered successful, with accuracy = 1, if ρ( Ee1, Êe1)+ρ( Ee2, Êe2) >

ρ( Ee1, Êe2) + ρ( Ee2, Êe1); else, decoding is considered unsuccessful,
and accuracy = 0.

We controlled for statistical significance using a one-
sample, one-tailed Wilcoxon test, because of the minimal
assumptions made regarding the distribution underlying the
scores (Grootswagers et al., 2017). We also applied FDR to
control for multiple comparisons, given that we were running
statistical analyses for eight models.

With respect to word length, we could not apply
straightforwardly the confound control procedure presented in
Section 3.4, since decoding to word vector is not a classification
task. However, we point out that, in this case, word length
should not even be considered a confound variable for principled
reasons: word vectors do not encode any information about
word length at all. To show that this is the case, we compute
the Spearman correlations between pairwise vector similarities
and the matched pairwise differences in character length
among words (the intuition being that, if word vectors encoded
information regarding word length, their distance in vector
space should correlate with the number of additional letters
required to match two words in length). Results confirm that
word length should not be considered as a confound variable for
the word vector decoding analyses: for all models except one we
found extremely low correlations (in all cases, ρ < 0.08); the
only exception is LUKE, where correlation is anyways quite mild
(LUKE base: ρ = 0.144, LUKE large: ρ = 0.326).

In order to prove that the word vectors actually captured the
kind of semantic information regarding entities that we wanted to
isolate in EEG data, we carried out some clustering analyses as a
validation procedure, as is customary with distributional models
(Almuhareb and Poesio, 2004; Baroni and Lenci, 2010; Lenci
et al., 2021), reported in Figure 2. We measure to what extent
we can cluster word vectors according to their coarse-grained
and fine-grained semantic class, when considering individuals
only, categories only, or both individuals and categories; and
when restricting the analyses to people and places only, or using
both people and places together. As a clustering algorithm, we
use K-Means, a common choice in computational linguistics
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FIGURE 2 | Clustering results on word vectors, with various possible assignments of categorical labels. We test the performance of each model on a completely

unsupervised clustering task. In this evaluation, we measure to what extent word vectors can be clustered according to their category, evaluating separately

coarse-grained and fine-grained categories. The evaluation metric that we used, Adjusted Rand Index, involves a correction for chance, so results above 0.0 show

some sensitivity to categorical structure. We report results for all possible combinations of stimuli: clustering using only the vectors for individuals; only the vectors for

categories; both categories and individual entities; people and places separately. Most models perform above chance in all clustering tasks.

(Lenci et al., 2021). As an evaluation measure we use the adjusted
Rand Index, which looks at all possible pairs of samples,
measuring howmany pairs are correctly assigned to the same or a
different cluster, then correcting for chance (Hubert and Arabie,
1985). Both for the clustering algorithm and the evaluation
measures we use their Scikit-learn implementation (Pedregosa
et al., 2011).

The results show that clustering is above chance (> 0) for
almost all models. Discrimination is easiest for coarse categories,
and particularly so when individuals and categories are clustered
separately. Performance is above chance for most models in all
possible labellings, for fine-grained categorical labels as well. The
toughest discrimination is the one where both individual and
category vectors for people are used, and in this respect others
have already found that social categories for people are not well
captured by distributional models (Westera et al., 2021). Also,
in general, performance worsens when clustering vectors for
individuals and categories together, as already observed by Gupta
et al. (2018). Overall, however, indicate that the distributional
models encode the categorical structure that we need in order to
use them for decoding.

4. RESULTS

4.1. Coarse-Grained Semantic Category
Classification
We report in Figure 3 the averaged results for the time-resolved
classification of coarse-grained categories, where we classify
evoked responses at time t into two classes, either person or

place. Classification accuracy raises intermittently above the
baseline level from around 150 ms after stimulus onset, which
is compatible with visual word recognition processes starting
at around 150 ms (Carreiras et al., 2014; Ling et al., 2019)—
but never reaches significance while the stimulus in on screen.
We interpret this as an effect of the variable control procedure
for word length described in Section 3.4, given that it is in this
time range that semantics and word-reading processes can get
confounded. Scores reach statistical significance later on, starting
at around 800 ms, indicating that it is possible to decode coarse-
grained categories of individual entities from EEG data during
the mental imagery task.

One of our objectives was trying to understand whether,
and when, semantic information about the coarse-grained class
is shared in brain processing between proper names and the
names of the categories these individual entities belong to. In
Figure 4 we report classification scores obtained when training
on individuals, but then testing on categories only—effectively
looking at howmuch information about coarse-grained semantic
categories can be transferred from instances of categories
(the individual entities) to the categories themselves. Although
statistical significance is never reached, decoding performance
goes above baseline after 800 ms, during the mental imagery
task. The lack of significant decoding accuracies in Figure 4,
which are instead reached when using only evoked responses
to stimuli at the same ontological level (instances, instead
of categories; Figure 3), suggests that coarse-level semantic
information does not seem to be strongly shared between entities
and categories.
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FIGURE 3 | Classification of coarse-grained categories from individuals. We run a time-resolved binary classification on the EEG data. For each time point, we learn to

classify evoked responses according to their coarse semantic category (either person or place). We control for word length employing the test sets where the

correlation between labels and stimulus length is lowest (see Section 3.4). The green line is the average of results across the 33 participants, and the shaded areas

correspond to the standard error of the mean. The random baseline is at 0.5, given that this is a binary classification problem, and is represented by a dotted

horizontal line; we also plot as dotted vertical lines the time-points when stimuli appear and disappear. Statistically significant points (p < 0.05 corrected for multiple

comparisons by TFCE; see Section 3.4) are reported both on the averaged lines and, to make them easier to read, below the x axis.

FIGURE 4 | Classification of coarse-grained categories, transferring information from individual entities to categories. Here we report time-resolved classification

scores, following the same structure as Figure 3. However, in this case we look explicitly at whether discriminative representational information is shared across

individuals and entities, training on individuals, and testing on categories. The results show that this is not the case: scores go past the random baseline only after the

stimulus disappears, and never reach statistical significance.

4.2. Fine-Grained Semantic Category
Classification
4.2.1. Aggregate Results
When it comes to classification of fine-grained categories, as it
can be seen in Figure 5, classification accuracy is again above

chance starting after around 150 ms. It reaches statistically

significant discriminability between 300 and 400 ms, then it

drops until 800ms, when scores start being statistically significant

again during the mental imagery task, until 1,100 ms. A peak of

classification accuracy close to 400 ms is to be expected, as this
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FIGURE 5 | Classification of fine-grained categories from individuals. We run a time-resolved multi-class classification analysis, trying to decode at each time point the

fine-grained semantic category of the stimulus. Figure structure is the same as in Figure 3, but here the random baseline is at 0.125, since there are eight possible

categories (four for people and four for places). Scores are statistically significant between 300 and 400 ms, and from 800 to 1,100 ms.

has been consistently found to be the time frame where word-
level semantic processing happens (Hauk et al., 2006; Simanova
et al., 2010; Frank et al., 2015; Sassenhagen and Fiebach,
2020). For instance, the N400, a negative deflection in recorded
brain potentials at around 400 ms after stimulus appearance,
is considered to be a signature of semantic processing in EEG
responses, although it is still debated precisely what semantic
process it should reflect (Lau et al., 2008; Kutas and Federmeier,
2011; Rabovsky et al., 2018). Concerning mental imagery, the
scores strongly indicate that fine-grained categorical information
can be discriminated during this experimental task, converging
with the results of Figure 3.

When considering the commonalities between evoked
responses for individual entities and categories (Figure 6),
we see that decoding accuracy when training on individuals
and testing on categories barely makes it past the random
baseline at discontinuous time-points, never reaching statistical
significance. These results concur with those of Figure 4, in
that both seem to indicate that not much in terms of semantic
representation is shared across individuals and categories.

4.2.2. Per-Category Results
We also compared, separately, the performance on either people
or places. These two coarse-grained categories may, in principle,
produce very different results, as their respective fine-grained
categories are defined differently, by necessity: for people, based
on their occupations; for places, more generically based on their
most immediate superordinate category (cfr. Section 3.1).

And indeed, the emerging patterns of results go in different
directions. Results for both categories are reported in Figure 7.
When using only evoked responses to people, classification
performance never reaches significance, and is above the chance

baseline only shortly at various time-points (around 300–400 ms,
500 ms, 700 ms, and 800–1,100 ms). On the other end, limiting
the analyses to fine-grained place categories results in better
classification accuracy, reaching statistical significance between
300 and 400 ms (as in Figure 5). These analyses indicate that
fine-grained categories are more easily discriminable in our EEG
dataset in the case of places—in lay terms, that it is harder to
find in the evoked responses separate traces of the semantic
distinctions amongmusicians, writers, politicians and actors than
it is when we consider monuments, cities, countries and bodies
of water.

It is impossible to reach strong conclusions given the
differences in the nature of the fine-grained categories of
people and places (see above and Section 3.1), but it can be
noticed that these results converge with previous results showing
a distinction, within individual entities, between semantic
processing for proper names of conspecifics and other kinds of
entities such as places (Miceli et al., 2000; Lyons et al., 2002;
Caramazza and Mahon, 2003; Mahon and Caramazza, 2009;
Fairhall et al., 2014).

4.3. Decoding to Distributional Word
Vectors
In Figure 8 we report the results obtained when decoding from
evoked responses to word vectors: training and testing is limited
to individual entities only, since we are looking at whether it is
possible to discriminate among individual entities in the brain.

The best average performance, 0.683, is reached by the
largest version of BERT, which in NLP often provides excellent
performances (Rogers et al., 2020). Overall, contextualized
models show higher accuracies (average scores: BERT large =

0.683, BERT base = 0.67, LUKE large = 0.667, LUKE base =
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FIGURE 6 | Classification of fine-grained categories, transferring information from individual entities to categories. This figure is the equivalent of Figure 4, just

referring to the multi-class classification task involving fine-grained categories as labels. The random baseline is set at 0.125, because of the presence of eight

possible classes. Notice that decoding scores follow a very different course with respect to coarse-grained categories. Statistical significance is never reached,

confirming that little discriminative semantic information is shared between responses to individuals and categories.

FIGURE 7 | Classification of fine-grained categories, separately for people and places, considering individuals only. We plot classification scores against time, as

reported above in Figures 3–6, with the exception that here we restrict our analyses to evoked responses for either people or places. Since there are only four

possible classes, random baseline is at 0.25. Interestingly, for people results never reach significance, suggesting that people categories are hard to decode from EEG

data. Instead, when decoding fine-grained semantic categories of places, results are strikingly different: classification reaches statistical significance between 300 and

400 ms.

0.666, ELMO = 0.658), providing better fits than static (average
scores: Wikipedia2Vec = 0.639, Word2Vec = 0.595) and
graph-based models (average score for TransE = 0.622). In
order to test the statistical significance of results, we compare
all possible pairs of models using a two-sided Wilcoxon test with

FDR control of multiple comparisons. All contextualized models
show statistically significant improvement on Word2Vec (in all
cases, p < 0.0005); and very similar results emerge regarding
TransE, since the difference in scores is statistically significant
for all models (BERT base: p = 0.0021, BERT large: p = 0.0004,
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FIGURE 8 | Decoding to word vectors, considering only individual entities. We report the distribution of the scores for 33 subjects when predicting word vector

dimensions from EEG data. In this case, we employ evoked responses and word vectors for individual entities. Evaluation is carried out using the leave-two-out

methodology proposed in Mitchell et al. (2008). For each computational model, we plot the distributions as violin plots, where the white dots indicate the model

average score, and gray bars are used for the 95% confidence interval. We run a one-tailed Wilcoxon statistical significance test against the chance baseline of 0.50.

Stars indicate the resulting p-value. In general, results are well above random performance, providing evidence that it is possible to distinguish representations of

individual entities in the brain, by exploiting computational models of language. Also, contextualized models perform better than their static counterpart.

LUKE base: p = 0.0054, LUKE large: p = 0.0085) but ELMO,
which is approaching significance (p = 0.057). Difference with
Wikipedia2Vec is statistically significant for LUKE base (p =

0.024), BERT base (p = 0.035) and BERT large (p = 0.0054).
When comparing contextualized models with one another,

statistical significance tests do not provide any p-value
below 0.05, indicating that no reliable difference among the
performances of these models exist; nevertheless, it should be
noticed that BERT large is not only the model showing the
best average results, but also the only model to get close to
significance against other contextualized models (against BERT
base: p = 0.064; against ELMO: p = 0.088; against LUKE
large and base: p = 0.132), while the p-values for comparisons
involving the other contextualized models are well above 0.3.
Within static models, statistical significance is only reached when
comparing Wikipedia2Vec and Word2Vec (p = 0.0062). Taken
together, these results also suggest that adding knowledge graph
information to word vectors does not make them better matches
for their brain counterparts, neither for contextualized nor for
static models.

In order to better understand how each type of semantic
organizational principle (person or place, individual or category)
affects decoding scores, and how semantic representations may
differ or converge across the various categorizations, we exploit
our full set of evoked responses, including both individual entities
and categories for training and testing. Doing so while using the
leave-two out evaluation of Mitchell et al. (2008), gives us the
possibility to break down scores into separate bins, depending on

the two evoked responses which compose the test set. We could
further subdivide results into accuracies when both test samples
are individual entities, or categories, or mixed; and even further,
into separate scores for test instances having words referring to
two people, or two places, or a mixture of the two. We report
in Figure 9 a breakdown of the results, when using BERT large,
our best model (results with other models are strongly correlated,
on average ρ = 0.93), on the full dataset of individual entities
and categories.

As is to be expected, better scores are obtained when
comparing, in the pairwise evaluation, one person and one place,
with just one exception: representations for people’s categories
and entities are easiest to discriminate when compared with one
another. High performances, well above 0.7, are reachedwhen the
test instances are one category and one entity—confirming that
representations of entities and categories seem to be segregated
in the brain. The worse results come from decodings of categories
alone, rather surprisingly given that previous literature has shown
that common nouns can be decoded successfully. Importantly,
in these cases the 95% confidence intervals always include the
random baseline, a sign that, even in the only case where a
significant p-value is reached (p < 0.05, people against places),
performance cannot reliably be said to be above chance. In
this respect, we are not able to draw conclusions given that
our set of categories is small (8 in total). However, we can
point out that, when considering that most of the training set
is made of individual entities, these results seem to suggest that
the decoder could not find much information that could be
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FIGURE 9 | Breakdown of results when decoding to word vectors, considering both individuals and categories. Making the most of the leave-two-out evaluation

methodology, which allows to split results according to the semantic and ontological category of the two words, we break down the results for the model with the

highest average score, which is BERT large. Each violin plots the distribution of scores for a given combination of categories across subjects. Scores are statistically

significant in all cases, except for the case when only categories are used. There, only one set of scores is statistically significant at p < 0.05, and the 95% confidence

interval always include the baseline, indicating that performance is not reliably above chance. Confirming that individual entities and categories are easiest to

discriminate, scores improve dramatically when an individual entity and a category are left out for testing.

transferred between the representations of individual entities and
their categories.

5. DISCUSSION

5.1. The Advantages of Bringing Together
Two Approaches
Some of the results of our work are primarily of interest
from a cognitive neuroscience perspective, whereas others are
of interest mainly to practitioners of computational linguistics,
NLP and artificial intelligence. Nevertheless, each of these
perspectives should be of interest to the other side, and in our
experiments we brought them together in order to maximize the
reciprocal relevance of, on the one hand, brain data, and on the
other, distributional models of word meaning. This interplay of
cognitive neuroscience and computational linguistics in our work
can be seen in many directions.

First of all, we did not employ specialized experimental
tasks, such as semantic priming. These may induce task-related,
strategic biases in the results, as argued separately in Wiese
and Schweinberger (2011), Wiese (2011), and Adorni et al.
(2014), which makes them harder to use for artificial intelligence
research. Instead, we aimed to capture snapshots of brain signals
for semantic processing of names and their categories that
could be aligned with representations of the same names and
nouns obtained frommodels of meaning in artificial intelligence.
We achieved this by using a nested set of stimuli and a
paradigm which motivates the participants to retrieve and focus

mentally on their representations of individual entities and the
respective categories.

We then carried out two types of machine learning-
based analysis of the relationship between the representation
individual entities and that of categories. The first group
of analyses, summarized in Figures 3–7, focuses on brain
data only, but with results that should have an import on
computational models–namely, that categories are represented
at a separate level from entities. These constraints should
be taken into account when developing computational
models of individual entities. In a second set of analyses,
reported in Figures 8, 9, we directly aligned brain data and
distributional models, using the latter to isolate pieces of
semantic information in the brain with great precision, by
way of decoding. In this case the connection between the
two approaches is particularly evident: computational models
find traces of semantic processing of individual entities in
the brain, as it can be captured by word distributions in text,
without confounds from other linguistic processes such as
orthography and morphology; and conversely, measures of
the fit of each model with brain data quantify the amount of
cognitively-relevant information contained in each distributional
semantics model.

5.2. Decoding Individual Entities Using
Word Vectors
The aspect of this work that is likely to be of the greatest interest
to the NLP and AI communities are our results regarding the
decoding of responses to individual entities to word vectors.
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First of all, we have shown that it is possible to map from
brain representations of individual entities to their distributional
vectors. So far, this had only been achieved for common nouns
(Mitchell et al., 2008; Anderson et al., 2017; Pereira et al.,
2018).

These results are all the more surprising because individual
entities are semantically much more fine-grained than generic
entities, and their meaning is traditionally taken to be determined
to a much greater extent by their real world reference, rather than
their distributional behavior (Kripke, 1972). Other proposals
argue that the meaning of proper names is determined socially
(Jeshion, 2009). Neither type of information is easy to extract
from text alone, although much research on multimodal models
can be seen as providing a framework for the direct reference
issue (Bruni et al., 2014), and selected types of text, such as
social media posts and novels, may provide enough data for the
extraction of social networks from word distributions (Dunbar
et al., 2015; Hutchinson and Louwerse, 2018).

Another result of interest to the community of computational
linguistics and NLP is the fact that our decoding results, and
the associated statistical significance tests, provide some evidence
that contextualized models represent individual entities in a way
that is closer to what the brain does, compared with statistical
distributional models or knowledge-graph methods (see Section
4.3). These results add to a recent body of work which also
finds this advantage for contextualized models for both sentence
processing decoding and common noun decoding (Jat et al.,
2019; Schwartz and Mitchell, 2019; Sun et al., 2020a; Anderson
et al., 2021), and worse performance for category-based models
(Sassenhagen and Fiebach, 2020). However, we did not intend
to provide an in-depth evaluation of distributional models
with respect to their ability to capture semantic information
about individual entities. Extensive evaluations of distributional
models regarding their knowledge of entities are becoming
increasingly important in NLP, testing the models’ abilities
to capture factual and relational knowledge (Petroni et al.,
2019), similarity among entities (Newman-Griffis et al., 2018),
information about entity types (Choi et al., 2018), or co-
reference (Sorodoc et al., 2020) and disambiguation (He et al.,
2013) phenomena (for a comprehensive set of tests, see Chen
et al., 2019). In this work, however, we only used widely
adopted models, whose performance rank among the best in
their family (although not necessarily the best), making as
clear as possible their theoretical assumptions with respect to
cognitive theories of representations of entities. We assume
that the core result patterns would translate also to the
other models in the family. In this respect, the most similar
approach to ours is that of Westera et al. (2021), where
the authors show, by using just one model, Word2Vec, that
better representations for categories of entities can be obtained
by averaging exemplars instead of acquiring separate vectors
for the categories, by evaluating the vectors on a set of
human judgments.

One surprising result is that the decoding performance for
common nouns referring to categories, that we reported in
Figure 9 in the second, third and fourth violin plots from the

left, is low. Decoding is statistically significant only when the
categorical distinction between people and places makes the
task easier—but even in that case, the 95% confidence interval
includes the baseline, indicating that performance is not reliably
above chance.

Part of the reason is clearly that much lower accuracy is
obtained for decoding from EEG than for decoding from fMRI.
Also, we do not have many categorical stimuli. This leaves
unanswered whether our conclusions would apply also to other
kinds of categories often employed in computational linguistics.
To our knowledge, only one other kind of individual entities
has been studied in cognitive neuroscience—brand names,
whose closest notion in computational linguistics is that of
organizations. Although very few studies exist (Gontijo et al.,
2002; Crutch andWarrington, 2004; Cheung et al., 2010), proper
names of brands seem to have similar brain processing to those
of famous people; if this is the case, then we would expect that,
in principle, the two should behave similarly in an experimental
setup like ours.

A different question is why should categories of people be
harder to decode than categories of places in classification
analyses (Figure 7). We do not have a full story here, but we
will just point out that social concepts are an idiosyncratic type
of category, falling in between abstract and concrete concepts
(Anderson et al., 2014; Rice et al., 2018; Conca et al., 2021), and
that we found, consistently with the literature (Westera et al.,
2021), a similar pattern of results in our clustering analysis for
distributional models (Figure 2).

5.3. Methodological Innovations
From a methodological point of view, it is important to notice
that we always employed a zero-shot paradigm: i.e., we always
used as test samples the evoked response to stimuli not seen
at training time, a procedure which ensures that we were not
overfitting (Varoquaux et al., 2017; McCartney et al., 2019). As
argued in Mitchell et al. (2008) and Pereira et al. (2018), this
approach results in robust model which is expected to generalize
well to other unseen stimuli with similar semantic properties–
common nouns in their case, proper names of invididual entities
in ours.

A second important characteristic of our approach is that
we did not employ images as stimuli–the most common choice
in EEG research for decoding studies– but words. We did this
knowing that using written words results in lower classification
scores compared to either spoken words or images (Simanova
et al., 2010). The advantage of written words is that we could
compare individual entities belonging to different coarse-grained
categories (people and places), avoiding confounds such as face
recognition processes (Rossion, 2014) or low-level image features
(Rossion and Caharel, 2011). The fact that we nevertheless
achieved above chance discrimination can be explained by
the fact that we made sure to engage semantic processing by
adding two experimental tasks: the mental imagery task, and the
categorical question.

Regarding the mental imagery task, results in Figures 3, 5,
8, 9 suggest that it can be used, when induced by written
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stimuli, as a reliable way to capture semantic processing in
the brain. In previous work (Shatek et al., 2019), decoding
from mental imagery proved difficult to accomplish. An
explanation for this variability in results, also discussed in
Shatek et al. (2019), could be that whereas stimulus (word
or image) processing is tightly time- and phase-locked to
the stimulus presentation (it is strictly speaking “evoked”
Bastiaansen et al., 2011), the mental imagery task is less
bound to the stimulus presentation: the subjects do not
have a clear cue or stimulus to constrain them, and the
recorded signals are therefore potentially prone to showing
more variance across subjects, which could ultimately make
aggregated accuracies lower (Dijkstra et al., 2018; Shatek
et al., 2019). Our results suggest that it is possible to induce
mental imagery from written words and successfully decode
it; however, how to most effectively time-lock mental imagery
to experimental stimuli, as well as its temporal dynamics
and the effect of imageability (Rofes et al., 2018) remain
open questions.

An important feature of our experiment is that, by using
written stimuli, we could directly compare semantic processing
for individual entities and categories. Nevertheless, our results
with transfer classification analyses (Figures 4, 6) should be
interpreted with caution, because of two reasons: first, the fact of
having used written words as stimuli may still induce differences
in representations; second, the two levels of semantic specificity
and social relevance may inherently involve different brain
processing (Ross and Olson, 2012).

Regarding the former, we believe that we were able to mitigate
the confounding effects of written stimuli through our control
procedure for word length in the classification analyses (see
Sections 3.4, 4.1), and by using machine learning algorithms
which can isolate semantic processing beginning immediately
after visual word recognition (Hauk et al., 2006; Penolazzi et al.,
2007) and running in parallel to visual word processing. With
respect to the latter, we notice that such an issue is inevitable
in a setup like ours where we wanted to directly compare
two inherently different levels of representation (Dehaene, 1995;
Proverbio et al., 2009)—but also that, in cognitive neuroscience,
this has been shown to be an approach which can reveal
common representational properties across disparate kinds of
brain responses (e.g., mapping between visual and auditory
modalities King and Dehaene, 2014; Leonardelli et al., 2019).
A different experimental paradigm could have avoided this
concern; however, our analysis, due to its straightforwardness,
at least suggests quite clearly that strong commonalities are
not present.

5.4. Structural Properties of the
Representations of Individual Entities in
the Brain
From a neuroscientific point of view, throughout our analyses,
we have shown that the evoked responses to individual
entities and categories were consistently both hard to bring
together when it came to find similarities (Figures 4, 6), and
easy to tease apart when the goal was that of distinguishing

them in pairs (Figure 9). These results suggest that the
representations of individual entities and those of the
categories involve limited common semantic processing
and information—a position advocated in the past by, among
others, Young et al. (1994), Barry et al. (1998), Carson
and Mike Burton (2001), Turk et al. (2005), and Germain-
Mondon et al. (2011). It remains an open question whether
using a different experimental paradigm, and less noisy
brain data acquisition methods such as fMRI, may shed
some more light over the extent, as well as the location,
of the interactions between these two interrelated pieces of
semantic knowledge.

6. CONCLUSION

In this paper we explored the representation of individual
entities—entities referred to by proper names—both from the
point of view of cognitive neuroscience (acquiring data about
their representation in the brain and investigating the structure
of these representations) and from the point of view of
computational linguistics and NLP (investigating the extent to
which distributional representations of individual entities can be
aligned to their brain representations).

More precisely, we tackled four research questions. First
of all, we were able to isolate, for each individual entity,
distinctive signatures in the brain (Section 4.3), and to classify
them according to both their coarse and fine-grained categories
(Sections 4.1, 4.2). We also found that it is difficult to transfer
representational information learnt from the evoked responses
to individual entities (e.g., Johnny Depp) to (the nouns for) the
categories to which they belong (e.g., actor; Sections 4.2, 4.3).
Finally, we provided evidence that distributional models can
be mapped with statistically significant performance onto brain
representation of individual entities (Section 4.3). Crucially,
we were able to obtain these results using EEG, which has
inherently lower signal-to-noise ratio than fMRI, but is cheaper
and much more portable. This suggests that EEG can act as a
useful source of data to investigate jointly brain and artificial
intelligence models of language, even for extremely fine-grained
semantic processes.
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