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A language-independent automatic speech recognizer (ASR) is one that can be used

for phonetic transcription in languages other than the languages in which it was

trained. Language-independent ASR is difficult to train, because different languages

implement phones differently: evenwhen phonemes in two different languages are written

using the same symbols in the international phonetic alphabet, they are differentiated

by different distributions of language-dependent redundant articulatory features. This

article demonstrates that the goal of language-independence may be approximated in

different ways, depending on the size of the training set, the presence vs. absence of

familial relationships between the training and test languages, and the method used

to implement phone recognition or classification. When the training set contains many

languages, and when every language in the test set is related (shares the same language

family with) a language in the training set, then language-independent ASR may be

trained using an empirical risk minimization strategy (e.g., using connectionist temporal

classification without extra regularizers). When the training set is limited to a small number

of languages from one language family, however, and the test languages are not from the

same language family, then the best performance is achieved by using domain-invariant

representation learning strategies. Two different representation learning strategies are

tested in this article: invariant risk minimization, and regret minimization. We find that

invariant risk minimization is better at the task of phone token classification (given known

segment boundary times), while regret minimization is better at the task of phone token

recognition.

Keywords: automatic speech recognition, under-resourced languages, invariant risk minimization, distributionally

robust optimization, regret minimization, domain generalization

1. INTRODUCTION

Speech production is a nonlinear process. Any given articulatory movement—say, a shift of 1cm
in the position of the tongue tip—may cause a huge change in the produced acoustic spectrum,
or a miniscule change, depending on the articulatory position from which the movement started.
Let’s use the words “unstable” vs. “stable,” respectively, to denote articulations from which small
deviations cause large vs. small acoustic consequences. A learner imitating adult speech tends to
have greater success in imitating stable rather than unstable articulations, because stability permits
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accurate acoustic imitation despite imprecise articulatory
imitation. For this reason, phonemes tend to correspond to
stable articulations, and unstable articulations tend to mark the
boundaries between pairs of phonemes (Stevens, 1972). The
number of unstable configurations is larger than the number of
phoneme distinctions in any known language, therefore each
language chooses a subset to use as phoneme boundaries, e.g.,
some languages treat the phones /T/ (as in “thin”) and /s/ (as
in “sin”) as distinct phonemes, while in other languages, they
are both considered to be acceptable pronunciations of the same
phoneme. A language-independent ASR is an automatic speech
recognizer trained to recognize all of the articulatory features
that may be used to signal phoneme distinctions, in any of the
world’s languages.

The relationships among phoneme inventories of different
languages are complicated, however, by tremendous cross-lingual
divergence in the use of redundant features (Stevens et al., 1986).
No language uses all of the available articulatory features to define
phonemes; hence, every language has some extra articulatory
features left over, that can be used to add redundancy to its
phoneme code. In modern English, for example, the feature of
plosive voicing (/d/ vs. /t/) is often enhanced by the feature of
aspiration (/d/ vs. /th/), while the tense-lax vowel distinction
(/i/ vs. /I/) is often enhanced by the feature of lengthening
(/i:/ vs. /I/). In both of these cases, it is possible to identify
one feature as phonemic and another as redundant because,
in each case, the redundant feature can be modified without
changing the meaning of the word (/bi:th/ and /bit/ are both
“beat”). Redundant features add robustness to speech in much
the same way that an error-correcting code adds robustness to
digital communication systems: imprecise production or noisy
perception are less likely to cause communication errors if
every phoneme is redundantly specified. Because redundant
features improve the efficiency of speech communication, they
are ubiquitous.

Because redundant features are defined separately for every
language, however, they cause significant problems for the
training of language-independent ASR. A typical ASR training
corpus is a set of labeled examples, D =

{

(x1, y1), . . . , (xn, yn)
}

,
where xi ∼ X is a speech waveform, and yi ∼ Y
is the corresponding text transcript.1 We can safely assume
that certain transformations are information-preserving, e.g.,
a waveform can be converted to or from a spectrogram
without loss of information (Nawab et al., 1983), therefore
we can consider both to be equivalent representations of the
random variable X. Similarly, in any well-resourced language, a
pronunciation lexicon can be used to convert text transcripts to
phoneme transcripts encoded using the international phonetic
alphabet (IPA Association, 1999), therefore we can consider
text transcripts and IPA phonemic transcripts to be equivalent
representations of the random variable Y . The key obstacle
to language-independent ASR is that phonemic transcripts are
not the same as language-independent phonetic transcripts.
The English word “beat,” for example, has the same phonemic
transcript (yi =[bit]), regardless of whether or not the vowel

1The notation xi ∼ X means that xi is an instance of the random variable X.

is lengthened (/bi:t/ vs. /bit/), and regardless of whether
the final consonant is aspirated, unreleased, glottalized, or
replaced by a glottal stop (/bith/, /bit^/, /bitĳ/, or /biP/). The
phonetic sequences /bi:th@t/ and /biP@t/ are different words in
Arabic (“home” and “environment,” respectively), but an ASR
trained using English data would be unable to distinguish them.
Similarly, a plosive voicing detector trained on English fails to
correctly recognize Spanish unvoiced plosives, which are not
aspirated (Lisker and Abramson, 1964), or Hindi voiced aspirated
and unvoiced unaspirated plosives (Patil and Rao, 2016). A vowel
classifier trained on English is able to recognize the duration
differences of some Japanese vowel pairs, but not others (Nishi
et al., 2008). A Mandarin vowel classifier, applied to English
vowels, finds American English /u/ to be closer to the Mandarin
central unrounded vowel /1/ than to theMandarin /u/ (Shi et al.,
2019).

Apparently, what is needed is some type of intermediate
representation, capable of compensating for language-dependent
differences in the use of redundant features. This article proposes
the use of an invariant embedding, z ∼ Z, defined to be a high-
dimensional signal representation with no information about
the language-dependent redundant articulatory features. The
invariant embedding allows us to train a language-independent
ASR using a large number of language-dependent training
corpora. Each language-dependent training corpus contains a
number of tuples of the form D =

{

(x1, e1, y1), . . . , (xn, en, yn)
}

,
where ei ∈ E specifies the language and dialect being spoken, and
the transcriptions are language-dependent phonemic transcripts
rather than language-independent phonetic transcripts: yi =

f (xi, ei). The invariant embedding is trained to ignore language-
dependent redundant features in X, and to encode only the
features that correspond to Y in a language-independent way,
so that the mapping w :Z → Y is a language-independent ASR
(Figure 1).

For example, suppose that x1 and x2 are two different
waveforms, each examples of the English word “beat,” meaning
that they both have exactly the same label sequence, y1 =

y2 =[bit]. Suppose that fine phonetic transcriptions of these
two waveforms would detect some differences, e.g., perhaps
x1 sounds like /bi:th/, while x2 sounds like /biP/. The
purpose of the invariant embedding is to eliminate these
fine phonetic differences, so that if one were to convert the
invariant embedding back into an acoustic signal, the language-
independent fine phonetic transcription of that acoustic signal
would be exactly the sequence /bit/. In this way, a language-
independent speech recognizer, capable of mapping f :X → Y , is
decomposed into two subsystems: (1) a feature extraction system
computes features Z = φ(X) such that (2) the mapping w :Z →

Y is independent of the language environment.
Suppose that an ASR is trained using data from several

different training environments D = {e1, . . . , eK} ⊂ E . Recent
survey papers in machine learning and computer vision (Wang
et al., 2021; Zhou et al., 2021) usefully distinguish several different
ways in which the test environment, eK+1 ∈ E , may be
related to the training environments. Multi-task or multi-domain
learning is the task of optimizing f (X) so that it performs
well for all of the languages in the training set (eK+1 ∈ D).
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FIGURE 1 | The phonemic transcript, Y , captures a limited set of information about the speech signal, X. The limits of the transcription process are dependent on the

language environment, E . Language-independent ASR finds a feature embedding, Z = φ(X ), such that the relationship between Z and Y is independent of E .

Transfer learning and domain adaptation assume that the test
language is not in the training set (eK+1 6∈ D), but that a
small quantity of labeled data exist in the test language, and
that these data can be used to adapt f (X). Zero-shot learning
and domain generalization assume that eK+1 6∈ D, and that
furthermore, no data exist for the test environment. Obviously,
zero-shot learning and domain generalization are only well-
defined problems if we make some a priori assumptions about
the test environment. For example, we may assume that the
training and test environments, {e1, . . . , eK , eK+1}, are drawn
i.i.d. from the unknown set of all possible environments (E).
Multi-task learning, transfer learning and zero-shot learning
usually focus on differences between the labels used in training
and test environments (P1(Y|X), . . . , PK(Y|X) 6= PK+1(Y|X)),
while multi-domain learning, domain adaptation and domain
generalization also consider a possible shift between the two
feature distributions (P1(X), . . . , PK(X) 6= PK+1(X)).

A recent survey paper (Wang et al., 2021) categorizes
approaches to domain generalization into three broad categories,
composed of nine subcategories: data manipulation (including
augmentation and generation), learning strategies (including
ensemble learning, meta-learning, gradient operations,
distributionally robust optimization, and self-supervised
learning), and representation learning (including feature
disentanglement and domain-invariant representation learning
strategies). Of these nine, data augmentation (Feng et al.,
2021), self-supervised learning (Conneau et al., 2020), and
domain-invariant representation learning (Swietojanski et al.,
2012) have been used to train ASR for cross-lingual domain
generalization, while data generation (Novitasari et al., 2020),
ensemble learning (Sahraeian and Compernolle, 2018), meta-
learning (Hsu et al., 2020), and gradient operations (Tong et al.,
2018) have been used for cross-lingual domain adaptation.
Distributionally robust optimization (DRO) has been used
to learn ASR that generalizes successfully across gender, age,
education, race, or regional dialect of the speaker (Gao et al.,
2022), while feature disentanglement has been used to generalize
ASR across acoustic domains (Hsu and Glass, 2018), but to our
knowledge, neither DRO nor feature disentanglement has ever
yet been used for cross-lingual ASR.

This article describes a sequence of experiments intended to
test the following hypotheses. Not all of these hypotheses were

experimentally verified; the experimental truth or falsehood of
each hypothesis is noted briefly here, and is supported by the
evidence presented in the remainder of the article.

• H1: Domain-invariant machine learning methods such as
invariant risk minimization (IRM, Arjovsky et al., 2019),
and/or regret minimization (RGM, Jin et al., 2020) can be used
to optimize an end-to-end (E2E) neural network ASR so that
it more effectively generalizes from fifteen training languages
to five novel test languages, as compared to a baseline ASR
trained using a standard training criterion called empirical risk
minimization (ERM). Experimental result: this hypothesis is
demonstrated to be false by the experiments presented here.

• H2: IRM and/or RGM, as compared to ERM, can be
applied to optimize an E2E ASR so that it more effectively
generalizes from training languages in one language family to
test languages in a different language family. Experimental

result: true.
• H3: The optimal training regimen for phone token

classification (given known phone token boundary times) is
different from the optimal training regimen for phone token
recognition (with unknown boundary times). Experimental

result: true. Experiments described in this article find
that either empirical risk minimization (ERM) or regret
minimization (RGM) are optimal for recognition, while
invariant risk minimization (IRM) is optimal for classification.

Section 2 discusses background literature, including the ERM,
IRM and RGM training strategies. Section 3 describes the
adaptation of these training strategies to the task of language-
independent ASR. Section 4 describes experimental methods,
Section 5 presents results, Section 6 discusses our findings, and
Section 7 concludes.

2. BACKGROUND

This section reviews several recent lines of inquiry into the
problem of invariant representations. We will normalize all
discussion into a common notational scheme. We use a random
variable X to represent speech data. Each sample x ∼ X is
a sequence of raw acoustic feature vectors. We use a random
variable Y to represent the phoneme transcriptions of speech
data. Each y ∼ Y is a sequence of IPA symbols. We use
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E to denote the set of environments in the training data. In
this article, each language is viewed as an environment e ∈

E , which determines the distributions of acoustic features and
phonemes. We use f :X → Y to denote the speech recognition
model that takes acoustic features as input and transcribes them
into phoneme transcriptions. The model f can be viewed as a
composition of two parts f : = w ◦ φ, where φ :X → Z : is
the feature extractor that maps the raw acoustic feature X into
a latent representation space Z, and w :Z → Y : is a classifier that
maps the latent representation Z to IPA symbol sequence Y . We
use R to denote the empirical risk over the entire dataset and
use Re to denote the empirical risk over the subset of data from
environment e.

The remainder of this section is organized according to the
three broad categories of domain generalization described in
a recent review article (Wang et al., 2021): data manipulation,
learning methods, and representation learning. The methods
of invariant representation learning, which are the focus of
this article, are described in Section 2.3; baseline methods are
described in Sections 2.1 and 2.2.

2.1. Data Manipulation for Domain
Generalization
Risk is defined to be the expected value of loss (Vapnik, 1998).
The loss we incur when the utterance (xi, yi) is (mis)recognized
as f (xi) is measurable using a loss function L(f (xi), yi). Risk is
therefore computed as the average over all (x, y) ∼ (X,Y):

R(f (X),Y) = E[L(f (X),Y)]. (1)

Empirical risk minimization (ERM) minimizes the average loss
on the training set, with the goal of achieving high accuracy
on an independent and identically distributed test set. ERM is
formulated as follows:

fERM = argmin
f

R(f (X),Y) (2)

In the limit of infinite training data, ERM provably minimizes the
expected risk on the test corpus, provided that the test corpus and
training corpus are drawn from the same distribution (Vapnik
and Chervonenkis, 1971). In many practical settings, however,
the test corpus and training corpus are not drawn from the same
distribution. For example, available ASR training corpora are
heavily biased in favor of a few well-resourced languages. During
testing, the mixture of languages may be quite different: some
languages that were badly under-represented during trainingmay
be somewhat more frequent during testing. We can characterize
the problems with ERM by separately measuring the risk for each
language, e ∈ E , as

R
e(f (X),Y) = Ee[L(f (X),Y)],

where Ee[·] denotes expectation over data drawn from
environment e.

The error rate of a classifier trained to perform in
one environment, then adapted to another environment,
has been extensively studied. For example, it is known
that knowledge transfer from a source environment to a
target environment is beneficial if knowledge of the source
environment reduces the Vapnik-Chervonenkis (VC) dimension
of the hypothesis space in which the target environment
is known to exist (Vapnik, 1998). The VC dimension of a
deep network is O

{

WL log(W)
}

, where W is the number
of weights, and L is the number of layers (Harvey et al.,
2017), therefore the benefit of transfer learning can be
measured by the number of layers in the deep network
that are transferred from the source environment to the
target environment without retraining. One of the reasons
for the deep learning revolution was early experimental
evidence supporting the claim that, for many common
transfer learning tasks, most of the layers can be transferred
without retraining (Bengio, 2012); for many tasks it has been
reported that pre-training using an unsupervised learning
criterion (Salakhutdinov andMurray, 2008) or using a supervised
criterion such as ERM (Yosinski et al., 2014) may be
remarkably effective.

Several recent papers have demonstrated that domain
generalization can be achieved by training a machine learning
algorithm using ERM on a sufficiently diverse set of training
environments. Many classic papers on domain generalization
assume that the set of environments, E , can be neither
parameterized nor bounded, but several recent empirical papers
have pushed back against that assumption by collecting a very
large number of environments, and by training a deep network
that shows remarkable empirical ability to generalize to unseen
test environments. In one paper (Gulrajani and Lopez-Paz,
2020), a number of domain generalization tasks previously
described in the computer vision literature (digit, object and
scene recognition tasks with train-test mismatch in terms of
object category, color, rotation, environment, obstruction, and
rendering style) were attacked using deeper networks, and
using modern data augmentation strategies. Results suggest
that the deeper network, trained using ERM with random
data augmentation during training, performs as well as a
comparably deep network trained using any of a large number of
learning algorithms or data representations designed to explicitly
encourage domain invariance. Similarly, a large experimental
study of domain generalization for ASR (Narayanan et al.,
2018) collected data from six training domains (Voicesearch,
Dictation, Other search, Farfield, Call-center, YouTube) and one
test domain (Telephony), and augmented the training data by
randomizing the size of the room, reverberation time, position
of the microphone, number of background noise sources (0-
4), type of background noise sources (randomly drawn from
a large dataset), signal to noise ratio, sampling frequency, and
codec. The experimental result was that multi-domain training
improves cross-domain generalization. Data augmentation using
various noises and codecs harmed the ability of the system
to generalize to a noise-free test domain; no experimental
result was reported for cross-domain generalization to a noisy
test domain.

Frontiers in Artificial Intelligence | www.frontiersin.org 4 May 2022 | Volume 5 | Article 806274

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Gao et al. Domain Generalization

2.2. Learning Strategies for Domain
Generalization
ERM minimizes the expected loss, with expectation computed
over the joint distribution P of the random variables X and
Y ; this is a form of optimization sometimes called “stochastic
optimization” (Rahimian and Mehrotra, 2019). Stochastic
optimization is often contrasted with robust optimization (RO),
which minimizes the worst-case error:

fRO = argmin
f

max
y∈Y(x)

L(f (x), y), (3)

where Y(x) is called the uncertainty set: it is the set of all possible
phonemic transcriptions of the utterance x. The problem with
RO is that it is excessively conservative. For example, if Y(x) is
the set of all phoneme transcripts shorter than some predefined
maximum length, and if L measures the string edit distance
between f (x) and y, then the solution to Equation (3) is an ASR
that generates an empty transcript, regardless of x.

Distributionally robust optimization (DRO; Rahimian and
Mehrotra, 2019) is a hybrid of stochastic optimization and robust
optimization. Rather than minimizing the worst loss over a set of
transcripts, DRO minimizes the worst expected loss over a set of
distributions. Let e ∈ E specify an environment, e.g., a language
being spoken. The environment specifies a joint distribution
between X and Y , and a corresponding environment-dependent
stochastic optimization problem; DRO minimizes the worst-case
expected loss over all environments in the environment set E :

fDRO = argmin
f

max
e∈E

R
e(f (X),Y) = argmin

f

max
e∈E

Ee[L(f (X),Y)],

(4)

2.3. Representation Learning for Domain
Generalization
This article studies two representation learning strategies:
invariant risk minimization and regret minimization. Invariant
risk minimization (IRM) seeks explicitly to learn a feature
representation that is invariant to changes in the environment.
Regret minimization (RGM) assumes that completely invariant
risk is impossible, and seeks, instead, to minimize the regret
incurred by training on the wrong environments.

2.3.1. Invariant Risk Minimization

DROmay be inefficient if one of the environments is intrinsically
more difficult than the others, e.g., if one language is intrinsically
more difficult to transcribe. For example, suppose that

f1 = argmin
f

R
1(f (X),Y),

and suppose that Re(f1) ≤ R1(f1) for all e 6= 1; then the DRO
solution is nothing other than the optimal ASR for language
1, and we might as well discard the rest of the training data.
Invariant risk minimization (Arjovsky et al., 2019) seeks to find a

better balance among themany different languages in the training
corpus by computing an invariant embedding Z = φ(X) such
that the optimal speech recognizer, Y = w(Z), is the same in
all languages.

Invariant risk minimization finds an environment-dependent
classifier f = w ◦ φ that is the composition of a feature extractor,
φ :X → Z, and a classifier, w :Z → Y . The feature extractor
is judged to achieve invariant risk if the minimum-risk classifier
sets for all of the environments, argminRe(w), overlap by at least
one element: there is at least one classifier that is simultaneously
optimal in all environments. Invariant risk minimization finds
(w,φ) that minimize the overall risk, subject to the constraint that
φ achieves invariant risk:

fIRM = argmin
w,φ

∑

e∈E

R
e(w ◦ φ(X),Y), (5)

s.t. w ∈ argmin
w̄

R
e(w̄ ◦ φ(X),Y) ∀e ∈ E .

Equation (5) defines IRM, but is difficult to implement. The
constrained optimization in Equation (5) requires that, in order
to update the feature extractor, one must determine the update’s
effect on the set of optimal classifiers in every environment.
Arjovsky et al. (2019) propose that finding w ∈ argminRe is
equivalent to minimizing the L2-norm of the gradient, ‖∇wR

e‖2,
for every environment, which can be performed using a multi-
task learning framework with a weighting coefficient of λ:

fIRM = argmin
w,φ

∑

e∈E

R
e(w(φ(X)),Y)+ λ‖∇wR

e(w(φ(X)),Y)‖22.

(6)

The division of f into two subsystems, φ and w, is somewhat
arbitrary; in an end-to-end neural network, any particular layer
could be arbitrarily chosen to be trained as the invariant
embedding. Arjovsky et al. (2019) take inspiration from the
observation that, when the loss function is either mean squared
error or cross entropy, the optimal classifier is the conditional
expectation of Y given φ(X) (Bishop, 1996). In this case, the
feature extractor φ is optimal across environments if and only
if we have:

Eei [Y|φ(X) = z] = Eej [Y|φ(X) = z] ∀ei, ej ∈ E , (7)

Arjovsky et al. (2019) observe that Equation (7) is most simply
satisfied if φ(x) = z = y. In order to guarantee that φ(x) = y
satisfies the condition in Equation (6), they propose fixingw(z) =
w · z, and fixing the coefficient to w = 1.0, thus:

fIRM = argmin
φ

∑

e∈E

R
e(φ(X),Y)+ λ‖∇w :w=1.0R

e(w · φ(X)),Y)‖22.

(8)
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2.3.2. Regret Minimization

The framework of regret minimization was originally proposed
in economics, in order to explain the tendency of human actors
to consistently make choices that lead to suboptimal expected
rewards (Bell, 1982). The framework of regret minimization
proposes that rational actors have reason to doubt their own
estimates of the probabilities of future events. One way to
compensate for lack of knowledge is by minimizing expected
regret, where regret is an increasing convex function of
foregone income, such that potential events that lead to a
great deal of foregone income are overweighted relative to their
estimated probability. Jin et al. (2020) proposed applying regret
minimization to the task of domain adaptation in machine
learning. They proposed that the distribution of environments
in a test corpus is often badly matched to the distribution of
environments in a training corpus, and that it is therefore rational
to learn a classifier that minimizes the regret incurred by training
on the wrong subset of environments.

Denote Re(w ◦ φ) as the risk computed over environment e,
andR−e(w◦φ) as the risk computed over all environments other
than environment e, i.e.,

R
−e(w ◦ φ) = Ee′ 6=e[L

e′ (w ◦ φ)] (9)

Further, define we and w−e as the minimizers of the
corresponding risks

we = argmin
h

R
e(h ◦ φ), w−e = argmin

h

R
−e(h ◦ φ) (10)

The regret minimization criterion proposed by Jin et al. (2020) is
then

fRGM = min
w,φ

R(w ◦ φ)+ λ
∑

e

[Re(w−e ◦ φ)−R
e(we ◦ φ)] (11)

The first term in Equation (11) is the empirical risk averaged over
all environments. The second term measures the sum, across all
environments, of the regret, Re(φ), that would be incurred by
training and testing on different environments:

Re(φ) = R
e(w−e ◦ φ)−R

e(we ◦ φ) (12)

Since w−e and we are minimizers, Re(φ) is a function of φ. Since
we is the minimizer ofRe(w ◦ φ), Re(φ) is guaranteed to be non-
negative. The minimizer of Re(φ), therefore, is a feature extractor
that eliminates all information about the environment, in the
sense that the cross-environment classifier,w−e, performs exactly
as well as the optimum environment-dependent classifier, we.

IRM (Section 2.3.1) requires that the globally optimum
classifier, w, must also be a minimizer of the environment-
dependent risk for every particular environment: Re(w ◦ φ) =

Re(we ◦ φ). If the constrained optimization of Equation
(5) is solved using a Lagrangian optimization technique, the
Lagrangian form is

fIRM = min
w,φ

R(w ◦ φ)+ λ
∑

e

[Re(w ◦ φ)−R
e(we ◦ φ)] (13)

The similarities and differences between IRM and RGM
may be understood by comparing Equations (11 and 13).
Like IRM, regret minimization uses a Lagrangian constraint
term to enforce invariance. Unlike IRM, the classifier w−e

is trained without access to samples in environment e, so
that RGM in theory enforces a stronger invariance constraint
on the feature extractor φ than IRM: in the terminology
of Żelasko et al. (2020), IRM minimizes the difference
between multilingual and monolingual error rates, while RGM
minimizes the difference between cross-lingual and monolingual
error rates.

The procedure for regret minimization is schematized in
Figure 2. As shown, even with only two distinct training
environments (X1 andX2), five distinct classifiersmust be trained
(the globally optimum classifier w, the environment-dependent
classifiers w1 and w2, and the cross-environment classifiers w−1

and w−2).

3. ALGORITHMS

Language-independent ASR was trained using empirical risk
minimization (ERM), distributionally robust optimization
(DRO), and invariant risk minimization (IRM) using exactly
the algorithms described in Equations (2), (4), and (8),
respectively, where e ∈ E is the language identifier, x ∼ X is a
sequence of acoustic feature vectors, and y ∼ Y is a phonemic
transcription represented using the symbols of the international
phonetic alphabet.

The regret minimization method proposed in Equation (11)
is computationally impractical for ASR, because it requires
optimizing an ASR separately for every leave-one-language-
out subcorpus, w−e = argminh R

−e(h ◦ φ); doing so is
impractical when the subcorpus for each training language
contains many hours of labeled speech. In order to make
regret minimization practical for ASR, we modify Equation
(11) into

min
w,φ

R(w ◦ φ)+ λ
∑

e,e′ : e 6=e′

[Re(we′ ◦ φ)−R
e(we ◦ φ)] (14)

which is essentially replacing the leave-one-out classifier with the
single-language classifier on a different language. This leaves us
with one feature extractor, φ(X), |E| different single-language
phone token classifiers we(Z), and one language-agnostic phone
token classifier w(Z), as shown in Figure 3. Figure 3 compares
empirical risk minimization (ERM), which trains only the
language-agnostic classifier, to the modified RGM of Equation
(14), which also trains language-specific phone token classifiers
for each language in the training corpus. Each iteration of
training consists of three steps:

1. Feed {Xe} into the single-language classifier, and perform K
steps of gradient descent to find we = argminRe(w ◦ φ).
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FIGURE 2 | How to compute the risk for regret minimization in a two-environment setting. In addition to the ERM risk calculated on inputs from both environment

under the shared feature extractor and classifier, regret minimization inserts an additional regret term for each environment into the total risk. The regret for

environment 1, for example, can be calculated by first feeding the inputs from environment 1 into the feature extractor, and then into the classifier trained on

environment 1, as well as the classifier trained on all environments except environment 1. The difference calculated from the corresponding loss term for the

out-of-environment classifier and the within-environment classifier is the regret. The same calculation can be done to calculate the regret for environment 2.

2. Feed {X} into the language-agnostic classifier, and perform K
steps of gradient descent to find w = argminR(w ◦ φ).

3. Append a fake language label, e′ 6= e, to each utterance. Train
φ by performing 1 step of gradient descent on

R(w ◦ φ)+ λ[Re(we′ ◦ φ)−R
e(we ◦ φ)] (15)

When the classifier f = w◦φ is used as a phone token recognizer,
its per-frame softmax outputs are scored using connectionist
temporal classification (Graves et al., 2006); when used as a
phone token classifier, its per-frame logits are mean-pooled
and then passed through a softmax nonlinearity, as stated in
Figure 3.

4. EXPERIMENTAL METHODS

4.1. Phone Token Recognition
We use ESPnet (Watanabe et al., 2018) as our ASR framework
which offers a complete ASR pipeline including data

preprocessing, transformer network implementation (Vaswani
et al., 2017), network training and decoding. We choose 15
languages as the multilingual set and an additional 5 languages
as the cross-lingual set. Models are trained, validated, and
tested using languages in the multilingual set; languages in the
cross-lingual set are used only for testing. The details of our
dataset are listed in Table 1.

Data are extracted from three publicly available corpora:
GlobalPhone (Schultz, 2002), the corpus of spoken
Dutch (Schuurman et al., 2003), and Babel (Andrus et al.,
2016, 2017; Bills et al., 2016a,b, 2019, 2020; Benowitz
et al., 2017; Adams et al., 2019). The former two corpora
contain read speech, while Babel contains primarily
spontaneous speech.

Due to the sampling rate differences among corpora, we
first upsample all audio signals to 16kHz. Using Kaldi, we then
extract 80-dimensional log Mel spectral coefficients with 25 ms
frame size and 10 ms shift between frames, and augment the
frame vectors with 3 extra dimensions for pitch features. The
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FIGURE 3 | The modified architecture for regret minimization (RGM) vs. the original architecture for empirical risk minimization (ERM). Both methods train a

language-agnostic phone token classifier; RGM also trains language-specific phone token classifiers.

transcriptions are converted to IPA symbols using LanguageNet
grapheme-to-phone (G2P) models (Hasegawa-Johnson et al.,
2020). Following (Żelasko et al., 2020), ASR is trained end-to-
end with an output vocabulary consisting of phone tokens instead
of phones. A phone token is defined to be any single character
in the IPA transcription, including base phones, diacritics, and
tone symbols; the Cantonese syllable nucleus [a:

Ě
£], for example,

is decomposed into four phone tokens: /a/, /:/, /
Ă
£/, and /

Ă
£/.

The resulting phone token inventory contains the 95 distinct IPA
characters present in phoneme transcriptions of the 15 training
languages. IPA characters present in the test languages, but not
in the training languages, are mapped to the out-of-vocabulary
(OOV) symbol UNK.

The encoder part of our Transformer network starts with two
2D convolutional layers with a subsampling factor of 4, followed
by 12 self-attention encoder layers, each having 4 heads, an
attention dimension of 256 and a 2, 048-dim position-wise feed-
forward layer. The encoder output is passed through a dense layer
to compute frame-wise phone token posteriors, which are scored
using connectionist temporal classification (CTC, Graves et al.,
2006).

For the experiments involving the Slavic subset, we chose
the four Slavic languages (Bulgarian, Czech, and Polish for
multilingual training and Croatian for cross-lingual testing) out
of the 20-language set. The features used are the same as those
from the 20-language experiment, but the label set contains only

the phone tokens from the three multilingual training languages.
This results in a total of 46 phonetic tokens. For recognition
scoring purposes, OOV IPA characters in Croatian are each
mapped to the closest token in the phone token inventory. Two
additional test languages, French and German, are also used
for further evaluation, but any OOV tokens are mapped to
UNK instead.

4.2. Phone Token Classification
In addition to recognition experiments, we also tested all
training algorithms in a phone token classification experiment,
using training and test data from only Polish, Bulgarian,
Czech, Croatian, French and German. Grapheme-to-phoneme
transducers were first applied to the original text transcriptions
to obtain IPA transcriptions. IPA transcriptions were then split
into individual phone tokens. There are no lexical tones in
these six languages, but several of them use other diacritics:
the IPA lengthening symbol (/:/) composed 3.2% of all phone
tokens, and other diacritics composed 2.3% of the remaining
phone tokens (0.3–0.6% each). Triphone hidden Markov models
(HMMs) were trained for each language individually, with phone
tokens as targets; for example, the triphone /a-:+p/ denotes the
sound made by the IPA lengthening symbol (/:/) when it follows
the vowel /a/, and precedes the consonant /p/. Kaldi was used to
train and cluster the triphones, and to force-align them to audio,
in order to find physical segment boundaries for each triphone.
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TABLE 1 | Sources of data used in our cross-lingual experiment.

Language Abbr Corpus Type Family Len

Portuguese por GP Read Romance 26

Turkish tur GP Read Turkic 17

German deu GP Read Germanic 18

Bulgarian bul GP Read South Slavic 21

Thai tha GP Read Tai 22

Mandarin cmn GP Read Sinitic 31

French fra GP Read Romance 25

Czech ces GP Read West Slavic 29

Dutch nld CGN Read Germanic 64

Georgian kat Babel Sp. Kartvelian 190

Javanese jav Babel Sp. Austronesian 204

Amharic amh Babel Sp. Ethiopic 204

Zulu zul Babel Sp. Bantu 211

Vietnamese vie Babel Sp. Vietic 215

Bengali ben Babel Sp. Indo-Aryan 215

Croatian hrv GP Read South Slavic 16

Polish pol GP Read West Slavic 24

Spanish spa GP Read Romance 22

Lao lao Babel Sp. Tai 207

Cantonese yue Babel Sp. Sinitic 215

The upper part is the multilingual set and the lower part is the cross-lingual set. “Corpus”

is GlobalPhone, corpus of spoken Dutch, or Babel. “Type” column denotes whether the

corpus contains spontaneous (Sp.) or read speech. “Len” column shows the total duration

of all utterances in hours. “Family” column shows the language family.

Based on the forced alignment, we then segmented variable-
length phone token utterances from the audio to construct a
multilingual phone token classification dataset. The training set
was further subsampled by a factor of 3, leading to 688 k training
pairs. We then trained a model consisting of six transformer
encoder layers (instead of 12 as in the previous experiments;
all other architectural details are the same when applicable) and
mean-pooled the time steps to obtain phone token logits, which
are fed forward to a single softmax nonlinearity for the entire
phone token segment. Phone tokens that appear in the test
languages (Croatian, French and German) but not in the training
languages (Czech, Bulgarian and Polish) were excluded from the
evaluation corpus.

5. RESULTS

Table 2 lists phone token error rates (PTER, %) of an ASR trained
using 15 languages, and tested on five additional languages.
The 15 training languages were chosen to span 10 language
families; the five test languages were chosen to be members of
five of the same families. Parameters of the ASR were trained
using training data in the 15 languages shown in the left
column. Each neural network was trained until PTER reached a
minimum on development test data in the 15 training languages
(a strategy sometimes called early stopping Prechelt, 1998).
Other hyperparameters, including multi-task training weights

TABLE 2 | Phone token error rates (PTER, %) of an ASR trained on 15 languages,

tested on 5 additional languages.

Training languages Test languages

Language ERM DRO IRM RGM Language ERM DRO IRM RGM

Portuguese 18.4 22.6 20.5 22.1 Croatian 47.8 48.9 49.3 50.9

Turkish 21.3 23.0 24.0 25.0 Polish 62.5 62.2 63.7 65.5

German 26.1 28.4 27.2 29.4 Spanish 38.1 39.8 39.6 40.6

Bulgarian 27.0 30.0 30.1 30.2 Lao 78.2 78.2 79.0 78.8

Thai 26.1 30.0 31.3 34.5 Cantonese 77.0 78.0 78.4 77.7

Mandarin 30.0 38.5 33.8 46.3 - - - - -

French 13.7 19.1 16.3 16.8 - - - - -

Czech 11.0 15.6 12.8 13.7 - - - - -

Dutch 21.3 28.7 28.3 27.6 - - - - -

Georgian 38.0 43.9 46.6 41.5 - - - - -

Javanese 47.0 54.4 55.6 49.6 - - - - -

Amharic 44.7 52.2 53.0 49.7 - - - - -

Zulu 42.4 48.9 48.9 46.3 - - - - -

Vietnamese 52.3 59.1 63.1 58.5 - - - - -

Bengali 40.2 47.0 47.4 43.4 - - - - -

Average 30.6 36.1 35.9 35.6 Average 60.7 61.4 62.0 62.7

Early-stopping epoch and other hyperparameters of each algorithm were selected based

on development test data in the training languages. Numbers reported are from the

evaluation test data in each language. Bold denotes lowest error in each row.

for IRM and RGM, were also optimized for minimum error
on development test data in the training languages. The results
reported in Table 2 were then measured using evaluation test
data in both training and test languages. As shown, ASR trained
using empirical risk minimization (ERM, Equation 2) gave the
best results for every training language, with a large relative
advantage. For languages that were not part of the training set,
ERM is still better than other training methods, but its advantage
is much smaller.

Table 3 lists PTER (%) of an ASR trained using three
languages from the Slavic language families. The ASR was also
tested on one Slavic test language (Croatian), and two non-
slavic Indo-European languages (French and German). Early
stopping and hyperparameter optimization were performed
using development test data in the training languages. Table 3
reports PTER measured using evaluation test data in all six
languages. The results are quite different from those shown in
Table 2. ERM achieves the lowest error rates on the three training
languages, and on the test language that is drawn from the same
language family (Croatian), but both French and German achieve
lower error rates using regret minimization.

Table 4 lists phone token classification error rates (PTCER)
for the same six languages listed in Table 3. As described in
Section 4.2, these experiments were performed by segmenting
each audio file using forced alignment with a monolingual
phone-token HMM ASR. The resulting phone token segments
were then classified using a Transformer-based phone token
classifier, whose parameters, hyperparameters, and early-
stopping schedule were optimized using training data and
development test data from Bulgarian, Polish, and Czech.
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TABLE 3 | Phone token error rates (PTER, %) of an ASR trained on three Slavic languages (Czech, Bulgarian and Polish).

Training languages Test languages

Algorithm Czech Bulgarian Polish Average Croatian French German Average

ERM 26.4 41.7 44.9 37.7 56.4 71.5 65.4 64.4

DRO 37.2 49.7 51.1 46.0 60.6 75.0 67.8 67.8

IRM 34.0 47.3 50.2 43.8 57.7 70.3 66.7 64.9

RGM 32.3 46.0 48.2 42.2 57.1 69.2 65.3 63.9

Early-stopping and other hyperparameters of each algorithm were selected based on development test data in the three training languages. Numbers reported are from the evaluation

test data in each of the three training languages, and in each of three previously unseen test languages. Bold denotes lowest error in each column.

TABLE 4 | Phone token classification error rates (PTCER, %) of an ASR trained on three Slavic languages (Czech, Bulgarian and Polish).

Training languages Test languages

Algorithm Czech Bulgarian Polish Average Croatian French German Average

ERM 29.7 46.2 42.9 39.6 48.3 56.6 59.3 54.7

DRO 40.7 51.5 46.1 46.1 50.7 55.6 60.1 55.5

IRM, λ = 0.001 34.6 49.9 43.5 42.7 49.0 57.6 59.8 55.5

IRM, λ = 0.01 34.7 49.6 43.3 42.5 48.2 57.4 59.3 55.0

IRM, λ = 0.1 34.8 49.8 43.3 42.6 48.2 57.3 59.1 54.9

IRM, λ = 1 35.6 50.8 43.5 43.3 49.1 57.1 60.1 55.4

IRM, λ = 10 30.7 45.6 41.3 39.2 46.2 55.8 59.1 53.7

IRM, λ = 100 41.1 51.5 48.6 47.1 47.6 55.9 58.7 54.1

RGM 32.0 49.0 45.7 42.2 48.8 57.3 64.3 56.8

Early-stopping and other hyperparameters of each algorithm were selected based on development test data in the three training languages. Numbers reported are from the evaluation

test data in each of the three training languages, and in each of three previously unseen test languages. Bold denotes lowest error in each column.

TABLE 5 | Phone token classification error rates (PTCER, %) of an ASR trained on

three Slavic languages (Czech, Bulgarian and Polish) and tested on one Slavic

language (Croatian) and two other Indo-European languages (French and

German).

Early-stopping Eval languages

Algorithm language Croatian French German

ERM Croatian 46.6 59.4 63.4

RGM Croatian 44.9 56.2 57.2

ERM French 46.8 58.4 60.6

RGM French 47.5 56.0 60.5

ERM German 48.9 62.2 59.3

RGM German 44.9 56.2 57.2

In this table, the epoch for early stopping was chosen using development-test data from

one of the three test languages: Croatian in rows 1–2, French in rows 3–4, German in

rows 5–6. PTCER was then measured using evaluation-test data from each test language.

Numbers reported using early-stopping on the test language are considered oracle;

boldface shows the lowest non-oracle error rate.

Results are shown for a range of values of the IRM multi-task
learning weight, λ (see Equation 8) for precise definition of
this hyperparameter). It is shown that the optimal value of
λ calculated using the training languages (λ = 10) is also
optimal for the test language that is a member of the same
language family (Croatian), and is optimal on average across
all three test languages, but is not optimal for either French or
German individually.

Table 5 lists phone token classification error rates (PTCER)
for Transformer-based phone classifiers trained exactly as in

Table 4, except that training is stopped in a different manner. In
Table 4, training was stopped when PTCER reached a minimum
on development test data in the training languages. In Table 5,
however, training was stopped when PTCER reached a minimum
on development test data in one of the test languages. Numbers
in boldface in Table 5 highlight the best results achieved when
parameters are trained in (three) training languages, early-
stopping is timed using a (fourth) development-test language,
and then the system is evaluated in a (fifth) evaluation-test
language. As shown, early-stopping using a development-test
language outperforms early-stopping using a training language
in two of the three languages.

6. DISCUSSION

Empirical risk minimization (ERM) is provably optimal, in the
limit of infinite training data, if the test data are drawn from
the same distribution as the training data, e.g., when training
and test data are drawn from the same set of languages. DRO,
IRM, and RGM each seek to compensate, during training,
for possible differences between the training languages and
the test languages. DRO seeks to enforce generalizability by
minimizing the maximum error rate, where maximization is
performed across all training languages. IRM seeks to enforce
generalizability by forcing the ASR to find a solution that is
simultaneously optimal in all training languages; in order to
find a solution that is optimal in all training languages, the
ASR may be forced to discard information that would make the
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optimal classifier different in one language or another. RGM
seeks to enforce generalizability by minimizing the differences
between crosslingual and monolingual error rates (termed
the “regret”).

Three hypotheses were proposed in Section 1; this section
discusses the status and interpretation of those hypotheses, in
light of the experimental results in Section 5.

• H1: Domain-invariant machine learning methods such as
DRO, IRM, and/or RGM can be used to optimize E2E ASR so
that it generalizes from 15 training languages to five novel test
languages more effectively than if it were trained using ERM.
Status: False.

Hypothesis H1 is falsified by the experimental results in
Table 2. The conclusion suggested by this result is that the
training data and the test data are drawn from the same
distributions. For example, we might (speculatively) conclude
that the distribution of speech sounds in these five test
languages is reasonably well represented by the set of 15
training languages.

• H2: DRO, IRM, and/or RGM, as compared to ERM, can be
applied to optimize an E2E ASR so that it more effectively
generalizes from training languages in one language family to
test languages in a different language family. Status: True.

Experimental results in Table 3 suggest that hypothesis H2 is
true. In the experiment described in Table 3, regret minimization
(RGM) is used to minimize the difference between crosslingual
and monolingual error rates of languages in the same family
(Slavic). The resulting trained parameters can be applied to
languages from other language families (French and German)
with better results than the results achieved using ERM.

• H3: The optimal training regimen for phone token
classification (given known phone token boundary times) is
different from the optimal training regimen for phone token
recognition (with unknown boundary times). Status: True.

Experimental results in Tables 4, 5 suggest that hypothesis H3 is
true. The recognition error rates shown in Table 3 are optimized
by ERM (if the test language is in the same family as the training
language) or RGM (otherwise). The classification error rates in
Table 4, on the other hand, are optimized using IRM. IRM forces
the recognizer to discard some of the information from the input,
so that the scale of the output softmax layer is simultaneously
optimal in every training language. It is possible that forcing
language-invariance of the output layer, as performed by IRM
[Equation (8)], is effective when there is a single output layer
computing classification results for the entire segment, but is
ineffective in an ASR system in which the output layers of
multiple frames are combined using CTC (Graves et al., 2006).
This conclusion is supported by the results in Table 5, in which
the early-stopping schedule was governed by a test language
rather than by the training languages. Test-based early-stopping
improved the performance of RGM, relative to Table 4, and was
able to outperform the best IRM results in two of the three
test languages.

7. CONCLUSIONS

Empirical risk minimization (ERM) is asymptotically optimal
when the training data and test data are drawn from the same
distribution, e.g., when training and test data are drawn from
the same languages. When training and test data are drawn from
different languages, the optimal training regimen depends on the
number of training languages, the existence or absence of familial
relationships between training and test languages, and the type of
recognition algorithm.

An ASR trained using 15 training languages from 10 language
families, and tested using other languages from the same
families, can be effectively trained using ERM. Apparently, in this
situation, the distribution of speech sounds in the test languages
is reasonably well represented by the distribution of speech
sounds in the training languages.

An ASR trained using three languages from one language
family, and tested using a fourth language from the same family,
can be effectively trained using ERM.When the test languages are
drawn from other language families, however, the generalization
ability of the recognizer can be enhanced by a method called
regret minimization. Regret minimization trains the recognizer
tominimize the difference between crosslingual andmonolingual
error rates.

Cross-lingual phone token classification is optimized using
a method called invariant risk minimization. IRM forces the
classifier to generate an output softmax layer whose scale is
simultaneously optimal in all training languages. Speculatively,
it is possible that IRM is optimal for phone token classification,
but not for phone token recognition, because the softmax-
normalization step in IRM is poorly matched to the CTC training
criterion used in ASR.
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Feng, S., Żelasko, P., Moro-Velázquez, L., Abavisani, A., Hasegawa-Johnson, M.,

Scharenborg, O., et al. (2021). “How phonotactics affect multilingual and zero-

shot ASR performance,” in ICASSP 2021-2021 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (Toronto, ON: IEEE),

7238–7242.

Gao, H., Wang, X., Kang, S., Mina, R., Issa, D., Harvill, J., et al. (2022). Seamless

equal accuracy ratio for inclusive CTC speech recognition. Speech Commun.

136, 76–83. doi: 10.1016/j.specom.2021.11.004

Graves, A., Fernandez, S., Gomez, F., and Schmidhuber, J. (2006). “Connectionist

temporal classification: Labelling unsegmented sequence data with recurrent

neural networks,” in International Conference Machine Learning (ICML)

(Pittsburgh), 369–376.

Gulrajani, I., and Lopez-Paz, D. (2020). In search of lost domain generalization.

Technical Report 2007.01434, arxiv.

Harvey, N., Liaw, C., and Mehrabian, A. (2017). “Nearly-tight vc-dimension

bounds for piecewise linear neural networks,” in Proceedings of the 2017

Conference on Learning Theory (ICLR), Vol. 65. (Toulon), 1064–1068.

Hasegawa-Johnson, M., Rolston, L., Goudeseune, C., Levow, G.-A., and

Kirchhoff, K. (2020). Grapheme-to-phoneme transduction for cross-language

asr. Lecture Notes Comput. Sci. 12379, 3–19. doi: 10.1007/978-3-030-

59430-5_1

Hsu, J.-Y., Chen, Y.-J., and Lee, H.-,y. (2020). “Meta learning for end-to-end

low-resource speech recognition,” in ICASSP 2020-2020 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP) (Barcelona:

IEEE), 7844–7848.

Hsu, W.-N., and Glass, J. (2018). “Extracting domain invariant features by

unsupervised learning for robust automatic speech recognition,” in Proccedings

of ICASSP (Calgary), 5614–5618.

Jin,W., Barzilay, R., and Jaakkola, T. (2020). Enforcing predictive invariance across

structured biomedical domains. arXiv preprint arXiv:2006.03908.

Lisker, L., and Abramson, A. S. (1964). A cross-language study of

voicing in initial stops: acoustical measurements. Word 20, 384–422.

doi: 10.1080/00437956.1964.11659830

Narayanan, A., Misra, A., Sim, K. C., Pundak, G., Tripathi, A., Elfeky, M.,

et al. (2018). “Toward domain-invariant speech recognition via large scale

training,” in Proceedings of IEEE Workshop on Spoken Language Technology

(SLT) (Athens: IEEE), 441–7.

Nawab, S. H., Quatieri, T. F., and Lim, J. S. (1983). Signal reconstruction from

short-time fourier transform magnitude. IEEE Trans. Acoustics Speech Signal

Process. 31, 986–998. doi: 10.1109/TASSP.1983.1164162

Nishi, K., Strange, W., Akahane-Yamada, R., Kubo, R., and Trent-Brown, S. A.

(2008). Acoustic and perceptual similarity of Japanese and American English

vowels. J. Acoust. Soc. Am. 124, 576–588. doi: 10.1121/1.2931949

Novitasari, S., Tjandra, A., Sakti, S., and Nakamura, S. (2020). “Cross-lingual

machine speech chain for javanese, sundanese, balinese, and bataks speech

recognition and synthesis,” in LREC 2020 Workshop Language Resources and

Evaluation Conference 11-16 May 2020 (Marseille), 131–138.

Patil, V. V., and Rao, P. (2016). Detection of phonemic aspiration for

spoken Hindi pronunciation evaluation. J. Phonetics 54, 202–221.

doi: 10.1016/j.wocn.2015.11.001

Prechelt, L. (1998). Early stopping - but when? Lecture Notes Comput. Sci. 1524,

55–69. doi: 10.1007/3-540-49430-8_3

Rahimian, H., and Mehrotra, S. (2019). Distributionally robust optimization: A

review. arXiv [Preprint]. arXiv: 1908.05659. doi: 10.48550/arxiv.1908.05659

Sahraeian, R., and Compernolle, D. V. (2018). Cross-entropy training of dnn

ensemble acoustic models for low-resource asr. IEEE/ACMTrans. Audio Speech

Lang. 26, 1991–2001. doi: 10.1109/TASLP.2018.2851145

Salakhutdinov, R., and Murray, I. (2008). “On the quantitative analysis of

deep belief networks,” in Proceedings of International Conference on Machine

Learning (ICML) (Helsinki), 872–879.

Schultz, T. (2002). “GlobalPhone: a multilingual speech and text database

developed at Karlsruhe University,” in Proceedings of Interspeech (Denver),

345–348.

Schuurman, I., Schouppe, M., Hoekstra, H., and van der Wouden, T.

(2003). “CGN, an annotated corpus of spoken Dutch,” in 4th International

EACL Workshop on Linguistically Interpreted Corpora (LINC-03) (Budapest),

101–108.

Shi, S., Shih, C., and Zhang, J. (2019). “Capturing l1 influence on l2 pronunciation

by simulating perceptual space using acoustic features,” in Proceedings of

Interspeech (Graz), 2648–2652.

Stevens, K. N. (1972). “The quantal nature of speech: evidence from articulatory-

acoustic data,” in Human Communication–A Unified View, eds P. B. Denes and

E. E. David (New York, NY: McGraw-Hill), 51–56.

Stevens, K. N., Keyser, S. J., and Kawasaki, H. (1986). “Toward a phonetic and

phonological theory of redundant features,” in Invariance and Variability in

Speech Processes, eds J. S. Perkell and D. H. Klatt (Hillsdale, NJ: Lawrence

Erlbaum Associates), 426–463..

Swietojanski, P., Ghoshal, A., and Renals, S. (2012). “Unsupervised cross-lingual

knowledge transfer in dnn-based lvcsr,” in 2012 IEEE Spoken Language

Technology Workshop (SLT), (Miami, FL: IEEE), 246–251.

Tong, S., Garner, P. N., and Bourlard, H. (2018). Cross-lingual adaptation

of a ctc-based multilingual acoustic model. Speech Commun. 104, 39–46.

doi: 10.1016/j.specom.2018.09.001

Vapnik, V. (1998). Statistical Learning Theory. New York, NY: Wiley.

Vapnik, V., and Chervonenkis, A. (1971). On the convergence of relative

frequencies of events to their probabilities. Theory Probab. Appl. 16, 264–280.

doi: 10.1137/1116025

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et

al. (2017). “Attention is all you need,” in Advances in Neural Information

Processing Systems, eds I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.

Fergus, S. Vishwanathan, and R. Garnett (Red Hook, NY: Curran Associates

Inc.), 5998–6008.

Wang, J., Lan, C., Liu, C., Ouyang, Y., Zeng, W., and Qin, T. (2021). Generalizing

to unseen domains: A survey on domain generalization. arXiv preprint

arXiv:2103.03097. doi: 10.24963/ijcai.2021/628

Frontiers in Artificial Intelligence | www.frontiersin.org 12 May 2022 | Volume 5 | Article 806274

https://doi.org/10.1016/j.specom.2021.11.004
https://doi.org/10.1007/978-3-030-59430-5_1
https://doi.org/10.1080/00437956.1964.11659830
https://doi.org/10.1109/TASSP.1983.1164162
https://doi.org/10.1121/1.2931949
https://doi.org/10.1016/j.wocn.2015.11.001
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.48550/arxiv.1908.05659
https://doi.org/10.1109/TASLP.2018.2851145
https://doi.org/10.1016/j.specom.2018.09.001
https://doi.org/10.1137/1116025
https://doi.org/10.24963/ijcai.2021/628
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Gao et al. Domain Generalization

Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., et al.

(2018). Espnet: End-to-end speech processing toolkit. Proc. Interspeech 2018,

2207–2211. doi: 10.21437/Interspeech.2018-1456

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). “How transferable

are features in deep neural networks?” in Advances in Neural Information

Processing Systems, Vol. 27 (Montreal), 3320–3328.
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