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Currently, the sub-60 Hz sensitivity of gravitational-wave (GW) detectors like Advanced

LIGO (aLIGO) is limited by the control noises from auxiliary degrees of freedom which

nonlinearly couple to the main GW readout. One promising way to tackle this challenge is

to perform nonlinear noise mitigation using convolutional neural networks (CNNs), which

we examine in detail in this study. In many cases, the noise coupling is bilinear and can be

viewed as a few fast channels’ outputs modulated by some slow channels. We show that

we can utilize this knowledge of the physical system and adopt an explicit “slow×fast”

structure in the design of the CNN to enhance its performance of noise subtraction.

We then examine the requirements in the signal-to-noise ratio (SNR) in both the target

channel (i.e., the main GW readout) and in the auxiliary sensors in order to reduce the

noise by at least a factor of a few. In the case of limited SNR in the target channel, we

further demonstrate that the CNN can still reach a good performance if we use curriculum

learning techniques, which in reality can be achieved by combining data from quiet times

and those from periods with active noise injections.

Keywords: gravitational-wave detectors, Advanced LIGO, noise regression, machine learning, neural networks

1. INTRODUCTION

Since September 14, 2015 (Abbott et al., 2016), gravitational-wave (GW) observatories including
Advanced LIGO (aLIGO; LIGO Scientific Collaboration, 2015), Advanced Virgo (Acernese et al.,
2015), and KAGRA (Kagra Collaboration, 2019) have achieved great success with dozens of GW
event detected so far (Abbott et al., 2019a, 2020).

While the high-frequency (& 60Hz) part of aLIGO’s sensitivity is steadily approaching its
designed target especially with the implementation of quantum squeezing (Tse and et al., 2019),
there is nonetheless a big gap between the current and the designed sensitivity at lower frequencies
(Martynov et al., 2016; Buikema et al., 2020).

If we can remove the excess contamination in the sub-60 Hz band, it would greatly promote a
wide array of science cases including the early warning of binary neutron star mergers (Cannon
et al., 2012; Abbott et al., 2019b; Chu et al., 2020; Sachdev et al., 2020; Yu et al., 2021), the detection
of intermediate-mass black holes (Mandel et al., 2008; Graff et al., 2015; Veitch et al., 2015; LIGO
Scientific Collaboration and Virgo Collaboration, 2020), the constraining of eccentricities of binary
black holes and hence their formation channels (Abbott et al., 2019; Romero-Shaw et al., 2019), and
many more. Refer also the discussions in, e.g., Yu et al. (2018) and references therein.

The limiting factors to the current sensitivity below 60 Hz are “technical noises” due
to environmental perturbations and control noises of auxiliary degrees of freedom. Unlike
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fundamental noises due to quantum and thermal fluctuations in
the main GW readout channel that cannot be mitigated without
instrumental upgrades, the technical noises can in principle be
removed via regression techniques as their source fluctuations
are also witnessed and recorded by hundreds of auxiliary sensors
(i.e., sensors that do not detect GW signals) employed by aLIGO.
In fact, the linear component of technical noises has successfully
been removed in aLIGO (refer to, e.g., Davis et al., 2019; Driggers
et al., 2019).

The remaining challenge of the regression problem is to tackle
noises that couple to the main GW readout nonlinearly. In fact,
many noise sources in aLIGO couple in a bilinear way to the GW
readout. It happens naturally when the coupling coefficient of an
auxiliary channel is modulated by some slow motion (. 1Hz) in
the interferometer. Themodulation destroys the linear coherence
between the auxiliary channel and the GW readout, forbidding
the use of a standard linear regression technique like the one
employed in Driggers et al. (2019). Moreover, it is typically
challenging to reconstruct the modulation directly because of the
pollution from large ambient motion and cross-couplings from
complicated control feedback loops stabilizing aLIGO at below
1 Hz.

Fortunately, machine learning (ML) techniques, especially
the use of convolutional neural networks (CNNs; Lecun et al.,
2015), offer an attractive potential solution to the nonlinear noise
regression problem (refer to, e.g., Ormiston et al., 2020; Vajente
et al., 2020; Mogushi et al., 2021; Yu et al., 2021). By inputting
to a CNN sufficiently many auxiliary witnesses that contain all
the information about the noise coupling, and utilizing properly
designed network structure and training strategies, we can let
the algorithm figure out the coupling mechanism behind the
noise even it involves nonlinearity and complicated blending
of different sensors. Furthermore, after the training process,
the subsequent predicting of the contamination using CNNs is
highly efficient computationally, allowing the noise cleaning to
be performed in real time (i.e., online). This would be especially
beneficial for searches that require low latency, such as the
early warning of binary neutron star mergers (Baltus et al.,
2021; Yu et al., 2021). Other successful usage of ML techniques
in GW astronomy include the identification of various GW
events (Bayley et al., 2020; Chan et al., 2020; Dreissigacker and
Prix, 2020; Huerta et al., 2020; Krastev, 2020; Schäfer et al., 2020;
Wong et al., 2020; Beheshtipour and Papa, 2021; Chang et al.,
2021; Chatterjee et al., 2021; López et al., 2021; Marianer et al.,
2021; Mishra et al., 2021; Saiz-Pérez et al., 2021; Wei and Huerta,
2021; Yan et al., 2021), source parameter estimations (Gabbard
et al., 2019; Chatterjee et al., 2020; Chua and Vallisneri, 2020;
Green et al., 2020; Talbot and Thrane, 2020; Álvares et al., 2021;
D’Emilio et al., 2021; Krastev et al., 2021; Williams et al., 2021;
Xia et al., 2021), and detector characterization (Biswas et al., 2020;
Colgan et al., 2020; Cuoco et al., 2020; Essick et al., 2020; Torres-
Forné et al., 2020; Mogushi, 2021; Sankarapandian and Kulis,
2021; Soni et al., 2021; Zhan et al., 2021). Besides GW astronomy,
the usage of CNNs has led to breakthroughs in a variety of
topics related to time-series forecasting and classification (e.g.,
Refs. Ahmed et al., 2010; Fawaz et al., 2019; Pavlyshenko,
2019; Lim and Zohren, 2021 and references therein), as well as

image denoising (e.g., Refs. Pravin and Ojha, 2020; Ilesanmi and
Ilesanmi, 2021; Zhou et al., 2021 and references therein).

In this study, we explore in detail how we could use CNNs
to potentially mitigate the angular noise in aLIGO, which is
the limiting noise source of the current sensitivity in the 30Hz
band and is also a classical example of bilinear coupling in
aLIGO. Our implementation utilizes the code Keras (Chollet
et al., 2015), a deep learning application programming interface
written in Python, running on top of the ML platform
TensorFlow (Abadi et al., 2015).

The rest of the article is organized as follows. In Section 2,
we describe the coupling mechanism behind the angular noise
and how we generate mock data so that our study can be
carried out in a controlled way. The mathematical details will be
supplemented in the Appendix 1. We then explore in Section 3
different CNN structures that can be employed to tackle the
nonlinear noise regression problem, with a focus on a general
deep-filtering structure and one inspired by the physics of
the interferometer. This is followed by Section 4 in which we
compare the performance of the two structures. In Section 5, we
assess the CNN performance as a function of the signal-to-noise
ratio, or SNR, in both the target channel (GW readout) and the
input witnesses. We then demonstrate in Section 6 the effects of
curriculum learning (CL), which may help the convergence of a
CNN when its SNR is low in the target. Finally, we conclude and
discuss the implications for future research in Section 7.

2. SIMULATING THE ANGULAR NOISE IN
THE LIGO SYSTEM

In this study, we will focus on using CNNs to mitigate noise
due to the angular control system, which is one of the major
noise sources limiting the sub-30 Hz sensitivity of aLIGO
currently (Buikema et al., 2020). To make our study controlled,
we will use simulated time series for various channels with
characteristics similar to the real aLIGO system. Throughout this
study, we will use a fixed sampling rate of 128Hz for all the
time series.

In Figure 1 we show a typical plot of the amplitude spectral
density (ASD) of our simulated GW readout including both the
fundamental noise (grey trace; which cannot be further reduced
by offline regression) and the simulated angular noise (red-
dashed trace). Note that the coupling of the angular noise to
the main GW readout is bilinear (which we will describe in
detail shortly). Consequently, a standard linear regression fails
to mitigate its contamination (blue-dotted trace), which thus
motivates us to investigate regression strategies utilizing ML. In
this Section, we sketch out our simulation of the angular noise
(red trace in Figure 1) and present the details in Appendix 1.

At the current power level of aLIGO, the angular control
noise couples to the main GW readout (i.e., the monitor of the
Differential ARM length, or “DARM”) via a geometrical effect. If
the beam spot is not at the center of the rotational pivot of an
aLIGO test mass (which is also a mirror), then an angular motion
will be converted to a length fluctuation bilinearly as Barsotti et al.
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FIGURE 1 | Simulated amplitude spectral density (ASD) of the

gravitational-wave (GW) readout(“Differential ARM length (DARM)”) including

both a fundamental component (grey trace given by the designed sensitivity;

LIGO Scientific Collaboration, 2015) and an extra source of contamination due

to the angular noise (Equation A1). The excess noise is above the fundamental

limit by about an order of magnitude in the 10-25 Hz band, which is the case

for Advanced LIGO (aLIGO) during its third observing run (Buikema et al.,

2020). Because the coupling mechanism is bilinear, a standard linear

subtraction cannot mitigate the contamination as shown in the

dotted-blue trace.

(2010) and Yu (2019).

δx(mir)(t) = x
(mir)
spot (t)θ

(mir)(t). (1)

Here, θ (mir)(t) corresponds to a fast (& 10Hz) angular
perturbation to the mirror, which is further induced by the
sensing noise in the angular control system being fed back to

the mirror. The x(mir)
spot , on the other hand, corresponds to a slow

(. 1Hz) motion of the beam spot on the test mass induced by
the seismic motion.

In reality, the mirrors are not controlled locally (in the “mirror
basis”) but instead on a radiation-torque basis. This choice is
to tackle the Sidles-Sigg effect (Sidles and Sigg, 2006; Hirose
et al., 2010; Dooley et al., 2013): as the alignment changes, it
creates a radiation torque feeding back to the alignment. In
other words, the alignments of the input and end test masses
are no longer independent but coupled together via the radiation
torque. Depending on the sign of the feedback, the radiation
torque either hardens (i.e., makes it stiffer) or softens (makes
it less stiff) the restoring torque of pendulums suspending the
test masses. This allows us to decompose the alignments of
the two test masses into a hard mode and a soft mode. The
angular control is then performed in terms of this radiation
pressure basis.

In aLIGO, the tolerance on the residual hard-mode motion is
more stringent, and therefore, it has a greater control bandwidth
(with a unity-gain frequency UGF ≃ 3Hz) than the soft mode
(with a UGF . 1Hz). As a result, only the hard-mode control
feeds back a significant amount of its sensing noise in the 10 −
30Hz band while the soft mode has negligible motion at high

frequency. Consequently, in our simulation, we only simulate
θ (h) for the high-frequency angular motion and set θ (s) = 0,
where we have used the superscript “h” (“s”) to denote the motion
in the hard (soft) mode. Approximately, the spectral shape of θ (h)

corresponds to the red trace in Figure 1 (refer to also, Martynov
et al., 2016; Yu, 2019; Buikema et al., 2020).

After introducing the high-frequency angular motion θ(t),
we now describe how we simulate the low-frequency spot
motion xspot(t). Here, we simulate directly the motion of each
mirror.1 For an ideal suspension, the mirror should only have
a significant amount of angular motion in pitch because at the
suspension point, the seismic motion is mostly longitudinal and
the suspension should only couple it into pitch but not yaw.
However, in reality, the suspension is not perfectly balanced;
the imperfections in control loops also introduce cross-couplings
between different degrees of freedom. As a result, the total
root-mean-squared (RMS) motions in pitch and yaw can be
comparable. Therefore, in our simulation, we assume they have
similar RMS values of ≃ 1mm. We nonetheless give them
different spectral shapes as shown in the left panel of Figure 2
as a challenge mimicking the real aLIGO system for our CNN
to tackle.

Unlike the high-frequency angular fluctuations that are
directly readout in the control sensors, in aLIGO there are
no sensors that directly probe the low-frequency spot motions
over the entire band of interest. Instead, we would have to mix
different sensors’ outputs in a frequency-dependent way in order
to reconstruct the true spot motion. In fact, the reconstruction
of xspot(t) is the most challenging component in mitigating the
angular noise in the real aLIGO system currently.

In our simulation, we assume the spot motion can be
reconstructed by two sets of sensors. One set senses the spot
motion via a modulation-demodulation technique. Following
LIGO convention, we will refer to these sensors as “ADS” sensors
(with ADS standing for the alignment dithering system; Buikema
et al., 2020). They probe the very low frequency (< 0.1Hz)
portion of the spot motion.

The other set of sensors are known as “optical levers,”
and we will refer to them as OPLEVs following the LIGO
convention (Black et al., 2010). They sense the spot motion in
the 0.1 − 3Hz range. Consequently, we would need to combine
both ADS and OPLEV sensors to reconstruct the spot motion,
as shown in the right panel of Figure 2 where the coherence
between each sensor and the simulated true spot motion is
shown. We use the color orange and blue to, respectively,
represent the coherence with an ADS sensor and a pair of
OPLEVs (as the spot motion on a mirror depends on the angular

1Because the hard-mode and soft-mode control loops have different shapes, the
spot motion in the hard mode and the soft mode in principle will have different
values (similar to the case of high-frequency angular motion). However, subtleties
arise because the spot motion governing the length fluctuation in Equation (1) is
measured with respect to a local rotational pivot, whereas the angular control is
performed relative to an input beam (i.e., a global quantity). At low-frequencies
(< 1Hz), the two reference points drift independently. Our current simulation
does not capture this effect and for simplicity, we treat the spot motion on each
mirror as an independent.
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FIGURE 2 | Left panel: ASDs of the simulated beam-spot motions on one of the test masses. Right panel: the coherence between the true spot motion and the

simulated witness channels. Here, the dotted lines correspond to the coherence using a single set of witness sensors, and the solid curve corresponds to the

multi-input-single-output (MISO) coherence obtained when all the sensors are used. The > 0.1Hz motion can be well sensed by a pair of OPLEVs (for the input and

end test masses) whose outputs are the angular motion relative to the local chamber. We assume that the < 0.1Hz motion is sensed by an alignment dithering

system (ADS) channel that senses the spot by measuring the angle-to-length coupling coefficient.

motion of both mirrors forming the cavity). The multi-input-
single-output (MISO) coherence using all the sensors is shown in
the grey trace. In the legend, we also quote the RMS value of spot
motion that is coherent with the specific set of sensors (the true
spot motion has an RMS of 1mm here). Note that the coherence
is related to the SNR at each frequency bin as

SNR2 =
Coherence

1− Coherence
. (2)

In total, we would need to include at least 16 sensors (8 ADSs +
8 OPLEVs) in order to sense spot motions on the 4 test masses
in both pitch and yaw over the entire band of interest. Together
with 4 fast channels corresponding to the 4 hard mode feedback
(as there are 2 ARM cavities and each cavity can move in both
pitch and yaw), we include 20 auxiliary channels in total in our
simulation of the angular noise.

We note that in reality, more channels may be needed for the
spot motion. In the right panel of Figure 2, while the simulated
OPLEVs have comparable sensitivity to the real ones, we are
nonetheless being optimistic about the SNR of the ADS sensors.
As we will see later in Section 5.2, without sufficient SNR in the
< 0.1Hz band the subtraction performance will be significantly
limited. Therefore, in order to achieve successful noise regression
in reality, we would need either more low-frequency channels
with a more complicated CNN structure or more accurate
sensing schemes for the. 0.1Hz spot motion.

3. GENERAL VS. SPECIFIC CNN
STRUCTURES

Having described our noise simulation, we now discuss the
mitigation of the noise using CNNs. In particular, we discuss the

process by which we explore different CNN structures in order to
optimize the regression performance.

One option is to use a general deep-filtering structure as
illustrated in the left part of Figure 3. Such a CNN should
contain sufficiently many convolutional layers together with
densely connected layers, and at least some of the layers should
involve a nonlinear activation function such as ReLU or ELU
at each layer’s output. The convolutional layers would then
behave similarly to finite-impulse-response filters, enabling the
frequency-dependent blending of different auxiliary sensors’ time
series (i.e., “input” to the CNN).Moreover, with sufficiently many
layers with nonlinear activations, the nonlinearity involved in the
coupling mechanism can be represented in a series-expansion
sense. Such a deep-filtering CNN has the advantage of being
straightforward and general. It requires a small amount of prior
knowledge and, thus, is particularly suitable to handle noise
sources with unknown couplings.

On the other hand, for the bilinearly coupled angular noise
described in Section 2, we nonetheless know how the noise
propagates to the GW readout. The challenging part of its
mitigation is the reconstruction of the spot motion on each test
mass. In this scenario, we can in fact utilize our knowledge
of the coupling mechanism and design a more specific CNN
structure to tackle this problem as shown in the right part of
Figure 3. In particular, we divide the auxiliary channels into
a slow set [ADSs and OPLEVs for the spot motion xspot(t)]
and a fast set [HARD mode control signals for the angular
motion θ (h)(t)]. Each set goes through a CNN (which will
be referred to as “CNN-slow” and “CNN-fast,” respectively)
which requires only linear activation. These CNNs act effectively
as FIR filters to convert linearly (yet in frequency-dependent
ways) the auxiliary witnesses outputs in digital counts into
“super-sensors” that monitor the instantaneous spot positions
and alignments of the LIGO test masses. Once the CNNs have
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FIGURE 3 | Flow charts of a noise regression convolutional neural network (CNN) utilizing a general structural (left; the parameters are detailed in Table 1) and one

that adopts an explicit “slow × fast” structure (right; the parameters are summarized in Table 2).

TABLE 1 | Network using a general structure.

Layer Output dimension Kernel size Activation

General structure Conv1D 32 1,024 Linear

Dropout – – rate = 8× 10−6

Conv1D 128 32 Linear

Conv1D 16 8 Linear

Conv1D 128 16 Linear

Dropout – – rate = 8× 10−6

Dense 128 – ELU

Dense 64 – ELU

Dense 32 – ELU

Dense 8 – ELU

Dense 1 – Linear

All the 20 auxiliary channels (16 slow channels and 4 fast ones) are directly input to the first

layer and the nonlinearity is achieved by a series of Exponential Linear Unit (ELU) activation

in the hidden layers. In this network, there are about 8,63,000 trainable parameters in total.

constructed the super-sensors, the nonlinearity required by this
problem is given by Equation (1) which is made explicit via
a multiplication layer. For the rest of the Section, we will
then demonstrate how the specific structure may improve the
mitigation performance relative to the general one. In aLIGO,
the coupling mechanisms behind many noise sources are in fact
established (refer to, e.g., Martynov et al., 2016 and Buikema
et al., 2020 and references therein; refer to also Section 7).
This Section, thus, serves further as a demonstration of the
benefits of incorporating our knowledge on the instrument when
considering noise regression problems.

TABLE 2 | Network explicitly utilizing the “slow × fast structure.”

Layer Output dimension Kernel size Activation

slow path Conv1D 32 1,024 Linear

Dropout – – rate = 1× 10−8

Conv1D 128 32 Linear

Conv1D 16 8 Linear

Conv1D 128 16 Linear

Dropout – – rate = 1× 10−8

Dense 128 – Linear

Dense 64 – Linear

Dense 32 – Linear

Dense 4 – Linear

fast path Conv1D 16 8 Linear

Dense 64 – Linear

Dense 32 – Linear

Dense 4 – Linear

after the multiply layer Dense 32 – Linear

Dense 8 – Linear

Dense 4 – Linear

Dense 1 – Linear

We input the 16 slow channels to the slow path and use a series of linear operations (signal

filtering and blending) to form 4 super-sensors that effectively monitor the spot position

on each test mass. These super-sensors’ output is then multiplied with the 4 angular

witnesses input to the fast path by a multiply layer to eventually become a length signal.

Note that all the activations are linear as the only nonlinearity is explicitly incorporated by

the multiplied layer. This network has about 7,36,000 trainable parameters in total.

To compare the performance of the two structures, we
consider CNNs with hyper-parameters listed in Tables 1, 2,
respectively for the general and the “slow×fast” structures. Note
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here the input is a 3-dimension array. The first dimension
corresponds to the batch dimension (i.e., different realization
of the simulated data). The second dimension corresponds to
the number of input channels. This is the dimension that
is densely connected to allow the CNNs to recognize the
correct combinations of different channels as required by,
e.g., the underlying cavity geometry. It starts as 20 for the
general structure, 16 for CNN-slow, 4 for CNN-fast, and its
shape changes according to the “output dimension” column
in Tables 1, 2 in subsequent layers. Note that for the final
layer it should be 1 corresponding to the main GW readout
(i.e., the target of the training). Finally, the final dimension
corresponds to the temporal dimension and it is the axis
along which the convolution is performed to achieve frequency-
dependent filtering.

In LIGO, the spot position is not directly sensed but it has to
be reconstructed from different sets of sensors. Therefore, most
of the trainable parameters are in the CNN-slow path which
contains 4 convolutional layers followed by 4 densely connected
layers. In the first convolutional layer, we further choose a kernel
size of 1,024 (corresponding to 8 s of data) such that the CNN
can achieve low- and high-passing at ∼ 0.1Hz (Figure 2). Other
hyperparameters are tuned empirically at the current stage. It
is possible to enhance the network’s performance further with
more educated and exhaustive tuning, though we defer this
optimization to future studies.

The fast angular motions, on the other hand, are directly
sensed in aLIGO. Therefore, the CNN-fast path requires only a
small number of trainable parameters. In fact, if the fast sensors
are properly preconditioned to physical angles θ (h)(t) (by filtering
them with the aLIGO suspension model), they can be directly fed
to the multiplication layer. Here, we nonetheless leave a small
CNN-fast network in the path so that the preconditioning does
not need to be exact.

To make fair comparisons, we intentionally keep the CNN
using the general structure (Table 1) to be similar to CNN-
slow with comparable numbers of trainable parameters. We
empirically choose ELU activations in the hidden, densely
connected layers to achieve the nonlinear operation in
Equation (1).2

We employ a custom loss function L based on the band-
limited PSD of the GW readout as

L = k

∫ f2

f1

Sn(f )

S
(0)
n (f )

(

f

f1

)α

df , (3)

where Sn is the PSD of the GW readout (i.e., the target channel)

after the subtraction it is normalized by S
(0)
n , the original PSD

before noise subtraction (which is fixed during the training).
We have additionally included a power-law weighting with an
index α; we empirically set α = −1 in our case. The loss
is computed over the frequency band [f1, f2], and we tune the
overall gain k such that the initial loss is about order unity.

2In our case, we empirically find that having nonlinear activations in the
convolutional layers does not significantly enhance the subtraction performance
but makes the convergence slower. Therefore, we apply only the linear activation
to the convolutional layers.

Note that Equation (3) does not constrain the DC value of the
GW readout. While such a DC offset in the GW readout does
not directly affect the sensitivity to astrophysical sources, we
nonetheless choose to avoid introducing any DC offsets during
noise regression. This is achieved by adding the regular mean-
square error together with Equation (3) to form our final loss
function used during the training process. The relative weights
are tuned such that the mean-square error contributes about 10%
to the total loss initially.

Because the RMS value of the spot motion contains physical
information, we do not normalize each channel by its variance
[which may be different for different datasets as the RMS of
xspot(t) varies over time]. Instead, we want each channel to be
always normalized by the same constant. For this purpose, we
calibrate the ADS channels to be in [mm], OPLEVs in [mrad],
and the main GW readout (“DARM”) in [fm]. For the HARD-
mode error signals, we calibrate them to [pm] and further
multiply them by the open-loop gain to precondition them to be
proportional to the physical θ (h)(t).

To train the CNNs to recognize the underlying physical
coupling mechanism in Equations (1) and (A1), we simulate
1,536 s of data for the main GW readout channel (target) and
another 20 time series of the same length for the auxiliary witness
channels (inputs to the CNNs). Out of the 20 auxiliary channels,
16 are used for the construction of the spot positions, and 4
are used for the fast angular perturbations. All the channels are
sampled at the same rate of 128Hz. During the training, we
further divide the time series into 8 batches, each containing 192
s of data. Besides the training data, we additionally prepare 256 s
of data for validation and 256 s for testing. We train each CNN
until the loss on the validation data plateaus.

4. COMPARING THE EXTRAPOLATION
PERFORMANCE

After describing the two network structures in the previous
section, we now compare their performance.

One interesting comparison is the convergence speed which
we examine in Figure 4 by showing the loss and the validation
loss as functions of the training epoch. Because the “slow×fast”
CNN employs our knowledge of the noise coupling mechanism,
it naturally converges faster than the regular CNN assuming little
prior knowledge. Eventually the training loss for the two CNNs
plateaus at similar values, yet for the specific one, the validation
loss follows the loss more closely than the regular one, indicating
that the specific structure is less subject to over-fitting.

More importantly, we can examine the subtraction results on
the testing data in Figure 5. Here, the brown trace is the ASD
including both the fundamental noise and the bilinear noise. The
ASD of the fundamental noise is also shown separately in the grey
trace; in the ideal case, a CNN should use the information stored
in the auxiliary channels to reduce the brown ASD to the grey
one. The ASDs of residual time series cleaned with our CNNs
are shown in the dotted traces. Here, we use the color orange
and blue to respectively represent the results obtained from the
general (Table 1) and the “slow×fast” (Table 2) CNNs.
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One question we want to address is how well each
CNN extrapolates. Particularly, one quantity we extrapolate is
frequency. While during the training we would like to focus
on the frequency band where the noise contamination is the
highest to get the best mitigation there, we also want to avoid
injecting excess noise outside this band during the subtraction
process. To test this point, we, thus, set the training band (i.e.,
the band where we compute the loss function in Equation 3)
to be [f1, f2]=[10, 20]Hz, corresponding to the two red-vertical
lines in Figure 5. As shown in the figure, inside the [10, 20]Hz

FIGURE 4 | Loss and validation loss [evaluated according to Equation (3)] as

functions of the training epoch. We use the colors blue and orange to

represent the loss for the CNN using the “slow×fast” structure and the one

using the regular structure, respectively. For the test data (corresponding to

the left panel of Figure 5), the loss is 0.40 (0.45) for the CNN with the

“slow×fast” (regular) structure.

band both the general and the “slow×fast” CNNs have decent
and comparable subtraction performance (about a factor of 10 at
10Hz; the “slow×fast” CNN has a slightly better performance at
other frequencies). The losses are 0.45 and 0.40 for the general
and the “slow×fast” CNNs, respectively. Outside the training
band, on the other hand, the “slow×fast” CNN significantly
outperforms the general one. Whereas, the general CNN starts
to inject excess noise into the GW readout almost immediately
outside the training band, the one adopting the “slow×fast”
structure continues to reduce the noise for the entire band from
6Hz to 30Hz where the angular noise is above the fundamental
limit. Above 30Hz, the “slow×fast” CNN also avoids making the
noise worse than the fundamental limit. We, thus, see that by
utilizing our knowledge of physical systems, we can achieve good
extrapolation properties with respect to frequency.

Meanwhile, we would also like to assess how the CNNs
perform at different values of RMS of the spot motion. This is
because in the real aLIGO system the spot motion is induced
by the < 1Hz seismic motion which varies over time, and the
CNN’s performance would, thus, need to be robust against the
variation in the spot motion. We address this point by simulating
an additional 256 s of data with an RMS spot motion of 3mm and
then testing our CNNs on this dataset with 3 times higher spot
motion than the training dataset. The result is summarized in the
right panel in Figure 5. While the fractional noise reduction at
10Hz degrades for both CNNs, the degradation is less if one uses
the “slow×fast” structure than the general structure.

5. SNR REQUIREMENTS

In the section above, we have considered a simple case where
the total GW readout contains only a fundamental component
and all the excess contamination is due to the angular noise. In
reality, there are many other types of excess noise in the low-
frequency part of the aLIGO sensitivity band whose information

FIGURE 5 | Comparison of the noise subtraction results using the “slow×fast” structure vs. the general structure with the ELU activation. In the left, the spot motion

has an RMS value of 1mm, which is the same as the training data set. The two vertical lines indicate the band used for computing the loss (i.e., the training band).

Using the “slow×fast” structure, we not only achieve a better subtraction in the training band but also avoid injecting extra contamination outside the band. In the right

panel, we extrapolate the results on testing data with spot motion 3 times higher than the one used for training. The performance of the “slow×fast” degrades less

compared to the general one.
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FIGURE 6 | Examining the subtraction performance at different levels of signal-to-noise ratio (SNR) in the GW readout (i.e., “DARM”). Here, “SNR” means the ratio of

the angular noise to the other, non-angular noises in DARM (including the fundamental noise and other technical noises whose summed ASD is denoted by
√
Soth). In

the left panel, we show the DARM spectra at different values of
√
Soth (dotted lines), while holding the angular noise fixed at the brown-solid trace. In the right panel,

we show the subtraction residual of the angular noise (the lower the better). The color coding of each dotted trace is the same as in the right panel. We see that the

subtraction has similar performance when the SNR & 1 (blue and orange traces), while it degrades quickly when SNR < 1 (green and red traces).

is not captured in the auxiliary channels we input to the CNN.
Effectively, the presence of other contamination reduces the
angular noise’s SNR in the GW readout (i.e., the target channel;
note, here, we treat the angular noise as the signal because it is
what we want to remove by the CNN). We, thus, explore how
the CNN’s performance varies with respect to the GW readout in
Section 5.1.

Another thing we would like to explore is the SNR of ADS
sensors for the very low frequency (. 0.1Hz) spot motion. The
coherence level shown in the right panel of Figure 2 is likely
to be an optimistic estimation for the . 0.1Hz band because
sensing the spot motion in this band is intrinsically challenging.
Not only do the ADS sensors have high sensing noise as described
in Section 2, but also the spot estimation could be biased by
other contamination mechanisms.3 Therefore, we also assess the
CNN’s performance with respect to the SNR in the ADS sensors
in Section 5.2.

5.1. In the GW Readout
To modify the SNR of the simulated angular noise in the main
GW readout, we simulate the total length fluctuation δxtot in the
GW readout as

δxtot(t) = δxfun(t)+ δxang(t)+ δxoth(t), (4)

where δxfun corresponds to the fundamental noise component
(grey trace in Figure 1), δxang is the angular noise we want to

3For example, the power circulating in the arm cavity may be modulated by
θ (mir)(t) due to both the residual angular motion at < 1Hz and/or imperfections
in the mirror coating. The power fluctuation could further lead to a longitudinal
perturbation mitigated by radiation pressure in addition to the geometrical effect
Equation (1). Thus, the effective spot position inferred at a given dithering
frequency could be a biased estimation for another frequency.

subtract remove (red trace in Figure 1), and δxoth are other types
of contamination to DARM whose information is not contained
in the auxiliary channels we input. For the other contamination,
we further assume that it has an ASD given by

√

Soth(f ) ∝ f−3.

This way, we can control the SNR[=
√

Sang(f )/
√

Sfun(f )+ Soth(f )]
of the bilinear noise by changing the overall magnitude of the
other noise’s ASD.

In the left panel of Figure 6, we show the ASDs of the total
DARM displacement, now including the contribution from other
contamination simulated according to Equation (4). We use
dotted lines with different colors to indicate different levels of
the other noise while the angular noise is held fixed as shown
in the solid-brown trace in this section. For each level of SNR,
we regenerate 2,048 s of data (1,536 s for training, 256 s for
validation, and 256 second for testing). We then train our
CNN on the new data and check how much it could mitigate
the bilinearly coupled angular noise (solid-brown trace in the
left panel of Figure 6). Here, we focus on the CNN with the
“slow×fast” structure (Table 2) as it has a better performance
than the general one (Section 3). The auxiliary channels are still
assumed to have good sensitivity as shown in the right panel
of Figure 2. The training strategy follows the one outlined in
Section 3 except for that we now evaluate the loss, Equation (3),
over a broader band of [f1, f2] = [8, 40]Hz.

In the right panel, we show the ASDs of the residual time series
after noisemitigation by our CNN. For presentation purposes, we
show specifically the residual angular noise component in each
dotted line. This is obtained by subtracting from the residual [i.e.,
the difference between the original δxtot(t) and the one predicted
by our CNN] further the δxfun(t) and δxoth(t) components when
generating the plot, which is possible as we are dealing with the
simulated data. Different colors correspond to different levels of
SNR and the correspondence is the same as in the left panel.
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FIGURE 7 | Examining the subtraction performance at different levels of SNR in the low-frequency ADS channels (which probes the true beam spot motion . 0.1Hz).

In the left, we show the coherence between an ADS channel (solid traces) and the true spot motion on one of the test masses in pitch. As a reference, the total MISO

coherence using two OPLEVs and one ADS as the witnesses is shown in the dotted traces. In the legend, we show the RMS of the spot motion coherent with the

witnesses (either a single ADS or further combined with two OPLEV sensors; the total spot RMS is 1mm in all cases). On the right, we show the subtraction residual

of the angular noise with the color of each dotted trace corresponding to the same level of sensor SNR as in the left. While we can reconstruct & 95% in the power of

the true spot motion even in the red traces (the worst case considered), the subtraction degrades significantly as the SNR in the ADS channels reduce. It, thus,

indicates the necessity of having good sensors covering the entire frequency band of interests.

As shown in the plot, when the angular noise has an SNR & 1
at each frequency bin in the GW readout, the CNN can achieve
decent and consistent subtraction performance as shown by the
blue and orange traces. At 10Hz, the angular noise could be
reduced by about an order ofmagnitude. However, when the SNR
drops below unity as shown in the green trace (with an SNR of
about 0.5 at 10 Hz), the CNN could only marginally reduce the
angular noise in the 10-20 Hz band, and it starts to inject excess
contamination at higher frequencies.

Therefore, for the CNN to be able to recognize the correct
noise coupling mechanism, it would typically need an SNR of
unity in the target channel. Nonetheless, we note that it is not a
necessary condition. As we will discuss later in Section 6, we may
still be able to remove contaminations in DARMwith a sub-unity
SNR if we utilize active injection and CL.

5.2. In the Witness Sensors
So far we have assumed the ADS sensors have good SNR of
the true spot motion below 0.1Hz as indicated in the left panel
of Figure 2. This may be an optimistic assumption in reality as
discussed at the beginning of Section 5. We, thus, explore here
how does the SNR in the ADS channels (i.e., inputs or witnesses)
affects the performance of the CNN.

For this purpose, we vary the sensing noise in each ADS
channel to modify its coherence with the true spot motion. This
is indicated in the left panel of Figure 7. We use the solid trace
to represent the coherence between an ADS’s output and the true
spot motion it senses, and the dotted trace the MISO coherence if
we further include a pair of OPLEVs. In the legend, we quote the
RMS value of the spot motion that is coherent with the sensors

(the true spot motion has an RMS of 1mm). Note the coherence
is related to the SNR via Equation (2).

We repeat the training process now on data with noisy ADS
sensors and the subtraction result is summarized in the right
panel of Figure 7. The color coding of each curve has the same
meaning as in the left panel. We see that as the ADS sensors’
sensitivity decreases, the noise subtraction performance degrades
significantly. Take the green trace as an example. Even the MISO
coherence is greater than at least 0.7 over the entire band of
interest and the RMS of the spot motion coherent with the
sensors (ADS + OPLEVs) almost matches the RMS of the true
value, the amount of noise the CNN can subtract reduces by a
factor of 2 compared to the blue trace. Our study, thus, suggests
that the high-accuracy reconstruction of the beam spot on each
test mass over the entire < 1Hz band is crucial for the success of
the mitigation of the angular noise. In fact, spot reconstruction
should be a topic deserving dedicated studies in its own right.

6. CURRICULUM LEARNING

As discussed in the previous section, in order for the CNN to
be able to remove the angular noise, we would need to have
good SNRs in both the target (the main GW readout) and
the witness sensors (the ADS sensors). On the other hand, the
difference exists between the two scenarios. If the SNR is low in
the witnesses (Section 5.2), it means that we do not have enough
information to recover the noise coupling and the only solution is
to incorporate more sensors to recover the missing information.
If the SNR is low only in the target (Section 5.1), then the fact that
the CNN does not achieve a good subtraction is simply due to it
not converging to the right physics during the training process.

Frontiers in Artificial Intelligence | www.frontiersin.org 9 March 2022 | Volume 5 | Article 811563

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Yu and Adhikari Nonlinear Noise Cleaning in aLIGO

FIGURE 8 | Examining the subtraction performance with or without curriculum

learning (CL). Here, we consider the same dataset as shown in the red traces

in Figure 6. That is, while the angular noise (subtraction target) is high

compared to the fundamental DARM noise, it is buried by other technical

noises (i.e., the SNR of the angular noise is less than unity). Without CL, no

mitigation of the angular noise is achieved (as in Figure 6). Using CL, on the

other hand, allows the network to achieve better performance. This suggests

that in reality, we can use active noise excitation and CL training to enhance

the performance of noise subtraction on the quiet-time data.

All the necessary information to predict the angular noise is still
available. In this case, we show in this section that we can still
have decent mitigation if we utilize CL techniques (George and
Huerta, 2018a,b).

The key idea behind CL is the following. We can first train the
CNN on datasets with a high SNR in the target channel, which
can be produced in reality with active injections. A high-SNR
dataset is a simple task to be tackled and it helps the CNN to
converge to the right physics initially. We can then gradually
increase the task’s difficulty by incorporating data with lower
excitation levels, and eventually the quiet-time data (i.e., data
without any active injections). Since the CNN is guided through
the training process, it stays close to the true physics and can
thus predict the desired target even using quite-time data. This
process is especially suitable to be combined with a physically-
inspired CNN structure (such as the “slow×fast” one) that has a
good extrapolation property.

We demonstrate this point, here, by first training our CNN
on data corresponding to the blue traces in Figure 6.4 After its
convergence, we then incorporate into the training set the data
corresponding to the orange traces (as different “batches”) and
continue training the CNN obtained from the first step until
its validation loss plateaus. In the last step, we further include
data corresponding to the red trace (with the lowest SNR in
the GW readout) and retrain the CNN from the previous step
to convergence.

4In reality,
√
Soth is approximately fixed and to create high-SNR data we should

instead inject excess motion to, e.g., θ (h). Nonetheless, since what matters most is
the SNR of the bilinear noise in the GW readout, here, we simply reuse the existing
data.

After the CL training, we test the resultant CNN on the 256-
s testing data for the red trace in Figure 6 and the result is
presented in Figure 8 in the dotted-blue trace. As a comparison,
we also showed the subtraction result without CL in the dotted-
orange trace (using the CNN obtained in Section 5.1). Whereas
the CNN could not mitigate any of the angular noise without
CL, we see that with the help of CL the CNN can reduce the
noise by a factor of 2 at around 10 Hz. It, thus, demonstrates that
CL could be a useful training strategy to help the CNN remove
noise that has a low SNR in the GW readout (yet it can still
be high compared to the fundamental limit and, thus, needs to
be tackled).

7. SUMMARY AND DISCUSSION

In this study, we explored how we may use CNNs to improve the
sub-60 Hz sensitivity of aLIGO. Here, we focused specifically on
the bilinearly-coupled angular noise which is one of the limiting
noise sources in the 10-30 Hz band. Using simulated data with
characteristics similar to the real aLIGO system (Section 2),
we explored various factors affecting a CNN’s performance.
One of the most critical factors is to utilize our knowledge
in the design of CNN structures (Section 3). Specifically, a
“slow×fast” structure is suitable to mitigate the angular noise
as it incorporates the nonlinearity involved in the problem in
an explicit way, which leads to good extrapolation properties
(Section 4). We further explored the SNR requirements in
both the target (GW readout; Section 5.1) and the witness
sensors (ADS sensors; Section 5.2) for the CNN to converge.
To overcome the lack of SNR in the witnesses, it would
require improving the sensing technology and/or including
more sensors to recover the information. On the other hand,
when the SNR is only low in the target, we demonstrated
in Section 6 that CL training can be used to facilitate the
CNN’s convergence.

While in this study, we focused on the angular noise that
couples to DARM according to Equation (1), we note that the
coupling mechanisms of many other noises in LIGO share the
same bilinear structure and can be modeled as a fast channel
modulated by a slow one (i.e., the product of the two). For
example, the signal-recycling cavity’s length fluctuation (a fast
channel) couples to DARM with a slow modulation due to
low-frequency variations in the DARM offset. Other noise like
light scattering, when expanded into a Taylor series, will also
have terms similar to Equation (1) serving as the lowest-order
nonlinear terms. Therefore, the “slow×fast” CNN structure we
present in Section 3 will have broad applications in LIGO noise
mitigation beyond just the angular noise. We plan to explore this
point more in future studies.

We note that the CL result shown in Figure 8, while having
an improved performance compared to the case without CL,
has not yet reached a level comparable to the case where it
converges to the right physics (e.g., the blue and orange traces
in the right panel of Figure 6). It, thus, indicates that the detailed
CL steps have rooms for further optimization, which we defer to
be explored by future studies.
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Throughout the analysis, we have focused on using simulated
data. As we have mentioned in the main text, mitigating the
angular noise in the real aLIGO system is more challenging.
This is because there are many other noise sources in the same
frequency band (including ones that are not yet captured by
the current noise budgeting; Martynov et al., 2016; Buikema
et al., 2020), limiting the SNR of the angular noise in the GW
readout. Moreover, to reconstruct xspot(t), it is likely requiring
more sensors than just the ADSs and OPLEVs. We also ignored
potential transients (“glitches”) in both the GW readout and
witness sensors, which is another crucial application of ML in
GW astrophysics in its own right (refer to, e.g., Cuoco et al.
(2020) and references therein). On the real data, our CNN has
not yet achieved a significant broadband reduction of nonlinearly
coupled noises, yet it shows promising signs such as removing
sidebands around dithering lines that are used to create the ADS
signals (Yu and Adhikari, 2021). We plan to investigate this
further in future studies, especially combining it with a fine-tuned
CNN hyper-parameter set and an optimized CL training strategy.
Meanwhile, LIGO has released a 3-h data stretch in its second
observing run including major auxiliary channels5. We would,
thus, like to encourage interested readers to use either the CNN
structures we proposed in this study or original CNN structures
to help the further improvements of aLIGO’s sensitivity.

5The data can be downloaded at https://www.gw-openscience.org/auxiliary/
GW170814/.
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et al. (2021). Optimization of model independent gravitational wave search for
binary black hole mergers using machine learning. Phys. Rev. D 104, 023014.
doi: 10.1103/PhysRevD.104.023014

Mogushi, K. (2021). Reduction of transient noise artifacts in gravitational-wave
data using deep learning. arXiv preprint arXiv:2105.10522.

Mogushi, K., Quitzow-James, R., Cavaglià, M., Kulkarni, S., and Hayes,
F. (2021). NNETFIX: An artificial neural network-based denoising
engine for gravitational-wave signals. arXiv e-prints arXiv:2101.04712.
doi: 10.1088/2632-2153/abea69

Ormiston, R., Nguyen, T., Coughlin, M., Adhikari, R. X., and Katsavounidis, E.
(2020). Noise reduction in gravitational-wave data via deep learning. Phys. Rev.
Res. 2, 033066. doi: 10.1103/PhysRevResearch.2.033066

Pavlyshenko, B. M. (2019). Machine-learning models for sales time series
forecasting. Data 4, 15. doi: 10.3390/data4010015

Pravin, C., and Ojha, V. (2020). “A novel ecg signal denoising filter selection
algorithm based on conventional neural networks,” in 2020 19th IEEE

International Conference on Machine Learning and Applications (ICMLA)

(Miami, FL: IEEE), 1094–1100.
Romero-Shaw, I.M., Lasky, P. D., and Thrane, E. (2019). Searching for eccentricity:

signatures of dynamical formation in the first gravitational-wave transient
catalogue of LIGO and Virgo. Mon. Notices R. Astron. Soc. 490, 5210–5216.
doi: 10.1093/mnras/stz2996

Sachdev, S., Magee, R., Hanna, C., Cannon, K., Singer, L., SK, J. R., et al. (2020).
An early-warning system for electromagnetic follow-up of gravitational-wave
events. Apj 905, L25. doi: 10.3847/2041-8213/abc753

Saiz-Pérez, A., Torres-Forné, A., and Font, J. A. (2021). Classification of the
core-collapse supernova explosion mechanism with learned dictionaries. arXiv
e-prints, arXiv:2110.12941.

Sankarapandian, S., and Kulis, B. (2021). β-Annealed variational autoencoder for
glitches. arXiv e-prints, arXiv:2107.10667.

Frontiers in Artificial Intelligence | www.frontiersin.org 12 March 2022 | Volume 5 | Article 811563

https://doi.org/10.1017/pasa.2021.17
https://doi.org/10.1103/PhysRevD.104.064046
https://doi.org/10.3847/1538-4357/ab8dbe
https://keras.io/getting_started/faq/#how-should-i-cite-keras
https://keras.io/getting_started/faq/#how-should-i-cite-keras
https://doi.org/10.1103/PhysRevLett.124.041102
https://doi.org/10.1103/PhysRevD.101.102003
https://doi.org/10.1088/2632-2153/abb93a
https://doi.org/10.1088/1361-6382/ab01c5
https://doi.org/10.1093/mnras/stab2623
https://doi.org/10.1364/JOSAA.30.002618
https://doi.org/10.1103/PhysRevD.102.022005
https://doi.org/10.1103/PhysRevD.99.042001
https://doi.org/10.1088/2632-2153/abab5f
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevD.92.022002
https://doi.org/10.1103/PhysRevD.102.104057
https://doi.org/10.1364/AO.49.003474
https://doi.org/10.21203/rs.3.rs-138409/v1
https://doi.org/10.1007/s40747-021-00428-4
https://doi.org/10.1038/s41550-018-0658-y
https://doi.org/10.1016/j.physletb.2020.135330
https://doi.org/10.1016/j.physletb.2021.136161
https://doi.org/10.1038/nature.14539
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1103/PhysRevD.103.063011
https://doi.org/10.1086/588246
https://doi.org/10.1093/mnras/staa3550
https://doi.org/10.1103/PhysRevD.93.112004
https://doi.org/10.1103/PhysRevD.104.023014
https://doi.org/10.1088/2632-2153/abea69
https://doi.org/10.1103/PhysRevResearch.2.033066
https://doi.org/10.3390/data4010015
https://doi.org/10.1093/mnras/stz2996
https://doi.org/10.3847/2041-8213/abc753
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Yu and Adhikari Nonlinear Noise Cleaning in aLIGO

Schäfer, M. B., Ohme, F., and Nitz, A. H. (2020). Detection of gravitational-
wave signals from binary neutron star mergers using machine
learning. Phys. Rev. D 102, 063015. doi: 10.1103/PhysRevD.102.06
3015

Sidles, J. A., and Sigg, D. (2006). Optical torques in suspended fabry perot
interferometers. Phys. Lett. A 354, 167–172. doi: 10.1016/j.physleta.2006.
01.051

Soni, S., Berry, C. P. L., Coughlin, S. B., Harandi, M., Jackson, C. B., Crowston, K.,
et al. (2021). Discovering features in gravitational-wave data through detector
characterization, citizen science and machine learning. Class. Quant. Gravity
38, 195016. doi: 10.1088/1361-6382/ac1ccb

Talbot, C., and Thrane, E. (2020). Fast, flexible, and accurate evaluation of
gravitational-wave Malmquist bias with machine learning. arXiv e-prints,
arXiv:2012.01317.

Torres-Forné, A., Cuoco, E., Font, J. A., and Marquina, A. (2020). Application of
dictionary learning to denoise LIGO’s blip noise transients. Phys. Rev. D 102,
023011. doi: 10.1103/PhysRevD.102.023011

Tse, M., and et al. (2019). Quantum-enhanced Advanced LIGO detectors
in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107.
doi: 10.1103/PhysRevLett.123.231107

Vajente, G., Huang, Y., Isi, M., Driggers, J. C., Kissel, J. S., Szczepańczyk, M.
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A. DETAILS OF NOISE SIMULATION

In this Appendix, we supplement details of our simulation of the
angular noise presented in Section 2.

Note that Equation (1) describes the local length fluctuation
of a single mirror [and hence a superscript “(mir)” is added
to each quantity]. A physical interest is the length fluctuation
of an ARM cavity formed by an input test mass and an
end test mass. In other words, we want to measure the
relative distance between the two test masses (which are also
mirrors) as the GW signal is readout via the differential-ARM
(DARM) length. Therefore, the angular noise affects the cavity
length as

δx(t) =
[

x
(e)
spot(t) x

(i)
spot(t)

]

[

θ (e)(t)
θ (i)(t)

]

, (A1)

where the superscript “(e)” [“(i)”] stands for the end
(input) test mass. Its contamination to DARM is further
obtained by first incoherently simulating each cavity’s
length according to Equation (A1) and then taking
the difference.

As we described in Section 2, the real angular control
is performed on a radiation pressure basis (Sidles and Sigg,
2006; Yu, 2019), which can be understood as the following.
Mathematically, we note that the radiation torque depends on
the spot motions on the test masses, which further relate to the
alignment of the test masses via the cavity geometry. For pitch
motion (yaw motion is similar), this is given by Sidles and Sigg
(2006), Barsotti et al. (2010), and Yu (2019).

[

x
(e)
spot

x
(i)
spot

]

=
L

g(e)g(i) − 1

[

g(i) 1
1 g(e)

] [

θ (e)

θ (i)

]

≡ Ma2s

[

θ (e)

θ (i)

]

, (A2)

where L is the length of the ARM cavity, and g(e) = 1 − L/R(e)

[and similarly g(i) = 1 − L/R(i)] with R(e) [R(i)] the radius
of curvature of the end (input) test mass. For aLIGO, we have
L = 3, 995m, g(e) = −0.779, and g(i) = −1.065 (Barsotti
et al., 2010). The hard (soft) mode then corresponds to the
eigenvector of the Ma2s matrix associated with a positive
(negative) eigenvalue. The conversion between the mirror basis

(
[

θ (e), θ (i)
]T

) and the radiation-torque basis (
[

θ (h), θ (s)
]T

) is

given by

[

θ (h)

θ (s)

]

= Mm2r

[

θ (e)

θ (i)

]

=
[

0.756 −0.655
0.655 0.756

] [

θ (e)

θ (i)

]

, (A3)

where in the second equality, we have plugged in numerical
values for the aLIGO interferometer. In our simulation, we set
θ (s) = 0 and simulate only θ (h) as only the hard mode has a
significant control bandwidth and feeds back its sensing noise
in the 10–30 Hz band. Above the UGF, the physical θ (h) is the
product between a white sensing noise with a typical ASD of
∼ 5 × 10−14 radHz−1/2 and the open-loop gain of the angular
control loop (Martynov et al., 2016; Yu, 2019; Buikema et al.,
2020). Once we have θ (h), it can then be converted back to the
mirror basis by inverting Equation (A3).

To sense the low-frequency spot position motion xspot(t),
we simulate two sets of sensors similar to the realistic aLIGO
system. One set corresponds to the ADS sensors. Specifically, we
intentionally excite each mirror in angle at a known frequency
and then demodulate the length readout (i.e., DARM output)
at the same frequency. From Equation (1) we see that the
demodulated signal is directly proportional to the spot motion on
the test mass. However, this technique has a limited SNR because
only a weak excitation is allowed in order to avoid saturation
of actuators and sensors as well as up-conversion of the low-
frequncy noise into the sensitivity (> 10Hz) band. Consequently,
the ADS sensors are sensitive to only the very low frequency
(< 0.1Hz) portion of the spot motion.

To probe the spot position in the 0.1-3 Hz band, we employ
the OPLEV sensors. An OPLEV probes a mirror’s alignment
locally, which then allows us to infer the spot motion using
Equation (A2). However, the reference point drifts slowly, and
thus, an OPLEV can only probe spot motion in the & 0.1Hz
band. One of the main challenges to the CNN in our study is,
thus, to recognize the frequency-dependent blending of the ADS
and OPLEV sensors according to the right panel of Figure 2.

Finally, we point out that the channels we simulate
are in fact based on real LIGO auxiliary channels.
The fast angular motion θ (h)(t) are contained in
channels like L1:ASC-CHARD_P_IN1_DQ. The slow
channels are designed to mimic auxiliary channels like
L1:ASC-ADS_PIT4_DOF_OUT_DQ for the ADS sensors,
and L1:SUS-ITMX_L3_OPLEV_PIT_OUT_DQ for the
OPLEVs.
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