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Sharing labeled data is crucial to acquire large datasets for various Deep Learning

applications. In medical imaging, this is often not feasible due to privacy regulations.

Whereas anonymization would be a solution, standard techniques have been shown to

be partially reversible. Here, synthetic data using a Generative Adversarial Network (GAN)

with differential privacy guarantees could be a solution to ensure the patient’s privacy

while maintaining the predictive properties of the data. In this study, we implemented a

Wasserstein GAN (WGAN) with and without differential privacy guarantees to generate

privacy-preserving labeled Time-of-Flight Magnetic Resonance Angiography (TOF-MRA)

image patches for brain vessel segmentation. The synthesized image-label pairs were

used to train a U-net which was evaluated in terms of the segmentation performance

on real patient images from two different datasets. Additionally, the Fréchet Inception

Distance (FID) was calculated between the generated images and the real images to

assess their similarity. During the evaluation using the U-Net and the FID, we explored

the effect of different levels of privacy which was represented by the parameter ǫ. With

stricter privacy guarantees, the segmentation performance and the similarity to the real

patient images in terms of FID decreased. Our best segmentation model, trained on

synthetic and private data, achieved a Dice Similarity Coefficient (DSC) of 0.75 for ǫ = 7.4

compared to 0.84 for ǫ = ∞ in a brain vessel segmentation paradigm (DSC of 0.69 and

0.88 on the second test set, respectively). We identified a threshold of ǫ < 5 for which the
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performance (DSC < 0.61) became unstable and not usable. Our synthesized labeled

TOF-MRA images with strict privacy guarantees retained predictive properties necessary

for segmenting the brain vessels. Although further research is warranted regarding

generalizability to other imaging modalities and performance improvement, our results

mark an encouraging first step for privacy-preserving data sharing in medical imaging.

Keywords: brain vessel segmentation, differential privacy, Generative Adversarial Networks, neuroimaging,

privacy preservation

1. INTRODUCTION

Deep Learning techniques are on the rise in many neuroimaging
applications (Lundervold and Lundervold, 2019; Zhu et al., 2019;
Hilbert et al., 2020). While showing great potential, they also
demand large amounts of data. In medical imaging, data is often
limited and medical experts are often needed to manually label
the images (Willemink et al., 2020). Thus, large datasets are
difficult to acquire. One potential solution would be data sharing.
For this, true anonymization, i.e. verifying that no identifying
information is leaked, is essential to sustain the patient’s privacy
which poses a big challenge, especially for neuroimaging (Bannier
et al., 2021). For example, face-recognition software has recently
identified individuals on medical images (Schwarz et al., 2019)
and even face removal techniques can be partially reversed
(Abramian and Eklund, 2019). Besides that, the brain itself has
a unique structure and cortical foldings can be utilized to identify
individuals even in the developing stage (Duan et al., 2020).
Consequently, it is highly challenging to truly anonymize brain
scans without risking re-identification. A promising remedy is
the generation of synthetic data.

For this purpose, Generative Adversarial Networks (GANs)
have gained a lot of attention in the past years (Yi et al., 2019).
This also holds true for the neuroimaging domain. Here, GANs
have shown promising results for synthesized images for different
types of imaging (Bowles et al., 2018; Foroozandeh and Eklund,
2020; Kossen et al., 2021) as well as for other medical problems
such as segmentation (Cirillo et al., 2020). To ensure the privacy
of the training data, GANs can be combined with differential
privacy (Xie et al., 2018). Differential privacy is a mathematical
framework that provides an upper bound on individual privacy
leakage (Dwork, 2008). This way the maximum privacy leakage
for every individual in the training data can be quantified. There
are extensive studies about GANs with differential privacy for
synthesizing natural images and tabular medical data (Xie et al.,
2018; Torkzadehmahani et al., 2019; Xu et al., 2019; Yoon et al.,
2019, 2020). Recently, Cheng et al. (2021) did a comprehensive
study about synthetic images and classification fairness with a
varying amount of privacy on various types of imaging data.
Among them were also 2D medical datasets such as chest x-
rays and melanoma images. Few other studies generated chest
x-rays with privacy guarantees as well (Nguyen et al., 2021; Zhang
et al., 2021). However, to date, no study has investigated whether
2D synthesized data using a GAN with differential privacy can
be utilized for a 3D medical application. Additionally, to the
best of our knowledge, GANs with differential privacy have

neither been used to synthesize labels for medical images nor the
neuroimaging domain yet.

In this study, we utilized a Wasserstein GAN (WGAN) with
and without differential privacy guarantees to synthesize
anonymously and labeled 2D Time-of-Flight Magnetic
Resonance Angiography (TOF-MRA) image patches for
brain vessel segmentation. The generated labeled image patches
were evaluated in terms of the segmentation performance by
training a U-Net and in terms of image quality using the Fréchet
Inception Distance (FID). The trained U-Net was further tested
on a second dataset. Overall, we investigated the effect of different
levels of privacy. Additionally, we visualized generated images
with and without privacy together with the real patient images
using t-distributed stochastic neighbor embedding (t-SNE).

In summary, our contributions are:

1. To the best of our knowledge, we are the first to
synthesize images with differential privacy guarantees in the
neuroimaging domain.

2. We also generate the corresponding segmentation labels to
evaluate the image-label pairs in an end-to-end brain vessel
segmentation paradigm on 3Dmedical data for different levels
of privacy.

3. For evaluation, we compare the distances between the
generated data and both the training and test data
to investigate the similarity of the synthesized to the
original data.

4. We visualize our generated images with and without
differential privacy and the original data using t-SNE.

2. RELATED STUDY

For the synthesis of medical images, deep generative models
have demonstrated promising results. Among them, especially
GANs and variational autoencoders (VAE) have shown good
performance in tasks such as data augmentation (Bowles
et al., 2018), image-to-image translations (Isola et al., 2018),
or reconstruction (Tudosiu et al., 2020). For the purpose
of synthesizing privacy-preserving images, VAE has two
disadvantages compared to GANs: First, they produce blurrier
images (Wang et al., 2020), and second, the training images are
directly fed into the network which makes them more vulnerable
to membership inference attacks (Chen et al., 2020).

Hence, in this context, GAN architectures with differential
privacy have been used in many previous studies to synthesize
non-medical images (Xie et al., 2018; Torkzadehmahani et al.,
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2019; Xu et al., 2019) and medical tabular data (Yoon
et al., 2019, 2020). However, only few studies have applied
GANs with differential privacy to medical images. Additionally,
these were restricted to chest x-rays (Cheng et al., 2021; Nguyen
et al., 2021; Zhang et al., 2021). So far in the neuroimaging
domain, the application of GANs remained without differential
privacy (Bowles et al., 2018; Foroozandeh and Eklund, 2020;
Kossen et al., 2021).

In the present study, we propose a GAN architecture with
differential privacy in the neuroimaging domain. Along with
our synthesized images, we generate the segmentation labels for
testing our differentially private patches in an end-to-end brain
vessel segmentation paradigm.

3. MATERIALS AND METHODS

3.1. Data
In total, 131 patients with cerebrovascular disease from the
PEGASUS study (N= 66) and the 1000Plus study (N= 65) were
utilized in this study. All patients gave their written informed
consent and the studies have been authorized by the ethical
review committee of Charité–Universitätsmedizin Berlin. More
details on both datasets can be found inMutke et al. (2014) for the
PEGASUS study and Hotter et al. (2009) for the 1000Plus study.

The brain scans were conducted on a clinical 3T whole-
body system (Magnetom Trio, Siemens Healthcare, Erlangen,
Germany) utilizing a 12-channel receive radiofrequency coil
(Siemens Healthcare) for head imaging. For both studies the
parameters were: voxel size = (0.5 x 0.5 x 0.7) mm3; matrix size:
312 x 384 x 127; TR/TE = 22 ms/3.86 ms; acquisition time: 3:50
min, flip angle= 18◦.

The PEGASUS dataset was split into a training (41 patients),
validation (11 patients), and test (14 patients) set. The training
set was utilized for training the GANs (refer to Figure 1),
whereas the validation and test set were utilized for the
parameter selection of the U-Net and assessing the generalizable
performance of the U-Net, respectively. Additionally, the 65
patients from the 1000Plus dataset were used as a second test set.

For each patient of the training set 1,000 2D image patches and
corresponding segmentation masks of size 96x96 were extracted.
This patch size has been shown to be the most suitable patch
size for Wasserstein based GAN architectures for this use case
(Kossen et al., 2021). Due to the overemphasis of background
compared to brain vessels, 500 patches showing a vessel in the
center were extracted. The remaining 500 patches were extracted
randomly. It was verified that all patches were only selected at
most once.

3.2. Differential Privacy
To account for the level of privacy of the generated data and
provide theoretical privacy guarantees, differential privacy was
implemented (Dwork, 2008). A randomized algorithm f : d →

R satisfies (ǫ, δ)-differential privacy if for any two databases
d1, d2 ∈ d that differ from each other by a single sample, the
following holds:

Pr[f (d1) ∈ S] ≤ exp(ǫ) ∗ Pr[f (d2) ∈ S]+ δ (1)

where f (d1) and f (d2) denote the output of f and Pr the
probabilities and with S ⊂ R. δ is the probability that the value
of ǫ holds true. With a probability of 1 − δ this equation is
equivalent to:

log

(

Pr[f (d1) ∈ S]

Pr[f (d2) ∈ S]

)

≤ ǫ. (2)

Thus, differential privacy holds true if the algorithm’s output for
d1 and d2 is very similar to each other. In other words, one sample
should not have a big impact on the algorithm’s output. This way
the privacy of each possible datapoint is preserved. The maximal
deviation between the outputs is given by exp(ǫ). In this way, ǫ
can quantify the level of privacy with small values of ǫ indicating
stricter privacy guarantees.

Mironov (2017) proposed Rényi differential privacy, a natural
relaxation of differential privacy built upon Rényi divergence.
Rényi divergence of order α > 1 of two probability distributions
P and Q is defined as:

Dα(P‖Q) : =
1

α − 1
logEx∼Q

(

P(x)

Q(x)

)α

, (3)

where P(x) is the probability density of P at point x. A
randomized algorithm f : d → S is (α, ǫ)-Rényi differentially
private for any adjacent d1, d2 ∈ d if the Rényi divergence Dα

is not larger than ǫ:

Dα(f (d1)‖f (d2)) ≤ ǫ. (4)

The advantage of Rényi differential privacy is that it provides
a tight composition for Gaussian mechanisms while preserving
essential properties of differential privacy. This means that (α, ǫ)-
Rényi differential privacy for composed mechanisms add up: the
composition of f (d1) satisfying (α, ǫ1)-Rényi differential privacy
and f (d2) satisfying (α, ǫ2)-Rényi differential privacy satisfies
(α, ǫ1 + ǫ2)-Rényi differential privacy. Moreover, (α, ǫ)-Rényi
differential privacy has been shown to provide a tighter bound
on the privacy budget of compositions compared to (ǫ, δ)-
differential privacy (Mironov, 2017). (α, ǫ)-Rényi differential
privacy can also be translated back into (ǫ, δ)-differential privacy.
Balle et al. (2019) has proven that (α, ǫ)-Rényi differential privacy
also satisfies (ǫ′, δ)-differential privacy for any 0 < δ < 1.
According to Balle et al. (2019) ǫ′ is then defined as:

ǫ′ = ǫ + log
α − 1

α
−

log δ + logα

α − 1
. (5)

The most data sensitive part when training the proposed
GAN architecture is the gradient update of the discriminator
after training samples are presented. For that, the differentially
private stochastic gradient descent algorithm proposed by Abadi
et al. (2016) can be utilized. Here, differential privacy was
implemented by clipping these gradients and adding Gaussian
noise to avoid the memorization of single samples. Additionally,
Rényi differential privacy was then used to analyze the privacy
guarantees. In the last step, (α, ǫ)-Rényi differential privacy
is translated back to (ǫ, δ)-differential privacy. The parameter
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FIGURE 1 | Study overview. Generative Adversarial Networks (GANs) with different levels of privacy guarantees are trained to synthesize labeled Time-of-Flight

Magnetic Resonance Angiography (TOF-MRA) patches. These are evaluated in a brain vessel segmentation paradigm and are compared to a segmentation network

trained on real patient image-label pairs. DP = Differential Privacy; DSC = Dice Similarity Coefficient.

δ is typically chosen to be the inverse of the dataset size
(Torkzadehmahani et al., 2019). Thus, throughout this study, it
was set to 1/41, 000 = 2.44e− 5.

3.3. Network Architecture
The GAN architecture was based on the WGAN by Arjovsky
et al. (2017) and extended by inserting different amounts of noise
into the gradients of the discriminator in the training process
for differential privacy. Two neural networks were trained: the
generator G and the discriminator D. The generator synthesized
data samples that were then assessed with respect to their realness
by the critic or discriminator. The discriminator was fed both
real and synthesized data and assigned a critic score for each
sample. The score of the synthetic data xgen was used to train the
generator. For the generator the overall training loss was:

lossG = −D(xgen). (6)

This way the generator aimed to maximize the realness of the
generated samples. In contrast to that, the discriminator intended
to minimize the scores for generated samples xgen and maximize

them for patient samples xreal:

lossD = D(xgen)− D(xreal) (7)

To enforce a Lipschitz constraint and, thus, put a bound on
the gradients, the discriminator’s weights were clipped after
each backpropagation step. This is a simple way to stabilize the
training (Arjovsky et al., 2017).

The architecture of the generator and discriminator is shown
in Figure 1. The generator took a noise vector sampled from
a Gaussian distribution of size 128 as input. This was then fed
through 1 linear layer and 6 upsampling convolutional layers as
shown in Figure 1. The generator outputs 2 96 x 96 images -
1 channel for the image and 1 for the segmentation label. The
discriminator’s input was 2 images: either the real patient image-
label pair or the generated one. These were then fed through
6 layers of downsampling convolutional layers as depicted in
Figure 1. The slope of the LeakyReLU activation was 0.2.

The GANs were implemented in PyTorch 1.8.1 using the
library opacus 0.14.0 for the differential privacy guarantees. Our
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code was built upon the official GAN example by opacus1 and
is publicly available2. The learning rate for both discriminator
and generator was 0.00005 using the RMSprop optimizer.
The kernel size was 4 with strides of 2. In each epoch, the
discriminator was updated 5 times. The network was trained
for 50 epochs. To randomly sample the training images, the
UniformWithReplacementSampler from the opacus package was
used. The sampling rate was the batch size of 32 divided
by the number of samples (41,000). The clipping parameter
for the WGAN was set to 0.01 and the clipping parameter
for the differential privacy was 1. In total, 8 different GANs
were trained with varying values of ǫ (noise multiplier was
set to {∞, 2, 1.5, 1.2, 1, 0.8, 0.725, 0.65}). Each GAN trained with
additional noise was trained 5 times for robust results.

All hyperparameters mentioned in the last paragraph were the
result of a tuning process and all models were trained on a Tesla
V100. The training time of one GAN including evaluation took
∼ 1.4 days.

3.4. Performance Evaluation
Among the many metrics to evaluate synthetic data (Yi et al.,
2019), we selected three to estimate the quality of our synthesized
images. First, we evaluated our synthesized image-label pairs
by visual inspection, and second, using the downstream task of
segmentation as suggested by Yi et al. (2019). Additionally, we
compared the images using the FID as proposed in previous
studies (Haarburger et al., 2019; Coyner et al., 2022).

The generated image-label pairs were evaluated by a U-Net for
brain vessel segmentation adapted from Livne et al. (2019). After
training the GANs, 41,000 image-label pairs were generated.
These were used to train 8 U-Net with different hyperparameter
settings varying in learning rates, dropout, and classical data
augmentation. The best U-Net was then selected based on the
best Dice Similarity Coefficient (DSC) on the validation set that
included real patient images. The final performance was then
evaluated in terms of DSC and balanced average Hausdorff
distance (bAHD) on the test set. The DSC that evaluated the
segmented voxels is defined as:

DSC =
2TP

2TP+ FP+ FN
(8)

where TP are the true positives, FP are the false positives, and
FN are the false negatives. As the DSC quantifies the overlap of
the ground truth and prediction scaled by the total number of
voxels in ground truth and prediction, it is a robust performance
measure for imbalanced segmentations, i.e., images contain more
background than segmented area. The bAHD is a newly proposed
metric for evaluating segmentations (Aydin et al., 2021):

bAHD =





1

NG

∑

g∈G

min
s∈S

d(g, s)+
1

NG

∑

s∈S

min
g∈G

d(s, g)



 /2 (9)

where NG is the number of ground truth voxels, G is the set of
voxels belonging to the ground truth, and S is the set of voxels

1https://github.com/pytorch/opacus/blob/master/examples/dcgan.py
2https://github.com/prediction2020/Labeled-TOF-MRA-with-DP

of the predicted segmentation. In other words, the bAHD is the
average of the directed Hausdorff distance from the ground truth
to the segmentation and the directed Hausdorff distance from the
segmentation to the ground truth both scaled by the number of
ground truth voxels.

Additionally, the DSC and bAHD of the U-Net models were
assessed on the 1000Plus dataset. The GAN and U-Nets were
implemented in an end-to-end pipeline. To calculate both DSC
and bAHD, we used the EvaluateSegmentation tool by Taha and
Hanbury (2015).

As an additional metric, the image quality was measured by
the FID (Heusel et al., 2018). The FID is a distance that measures
the similarity between images by comparing the activations of a
pre-trained Inception-v3 network. Here, the difference between
the activations in the pool3 layer of the generated images in
contrast to the real images is measured.

FID =
∥

∥µreal − µgen

∥

∥

2
+ Tr

(

σreal + σgen − 2
(

σrealσgen
)1/2

)

(10)
with N (µreal, σreal) and N (µgen, σgen) as the distributions
of the features of the pool3 layer of real and synthesized
data, respectively.

To explore to which degree the generated images reproduced
the training set, the FID between the synthetic data and both the
training and test data was calculated and compared for different
levels of privacy.

Finally, we measured the similarity between the images
synthesized by the GANs to check whether a model suffered
from mode collapse. For each model, we generated 1,000 images
and calculated the Structural Similarity Index Measure (SSIM)
between them and averaged the values. We repeated this analysis
for all 5 runs for each ǫ value, for the model with ǫ = ∞ and the
real images. The SSIM between two images x and y is defined as a
product of luminance, contrast, and structure according toWang
et al. (2004):

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
, (11)

where µx is the average of x, σx is the variance, and σxy is the
covariance of x and y. c1 = (k1L)

2 and c2 = (k2L)
2 are for

stabilization with L being the dynamic range of the pixel values
and k1 ≪ 1 and k2 ≪ 1 small constants.

3.5. Visualization Using t-SNE
Finally, the generated images with and without differential
privacy and the real patient images were visualized using a
t-SNE (Maaten and Hinton, 2008). t-SNE is an approach to
reducing dimensionality while preserving the structure of the
high dimensional data points. First, all data points are embedded
into an SNE which computed the pairwise similarities utilizing
conditional probabilities. For points xi and xj the conditional
probability pj|i of xi choosing xj as its neighbor is defined as

pj|i =
exp(−

∥

∥xi − xj
∥

∥

2
/2σ 2

i )
∑

k 6=i exp−‖xi − xk‖
2 /2σ 2

i )
(12)
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FIGURE 2 | Synthetic TOF-MRA patches (top row) and corresponding segmentation labels (bottom row) with different values of ǫ compared to real patient data (first

column). A lower ǫ (i.e., more privacy) leads to more noisy images.

and the symmetrized similarity as:

pij =
pj|i + pi|j

2N
(13)

with N being the dimensionality of the data. Then the
algorithm aims to learn a lower dimensional representation
of the similarities. In order to get distinct clusters and
avoid overcrowding, a Student’s t distribution that reflects the
similarities pj|i is used (Maaten and Hinton, 2008):

qij =
(1+

∥

∥yi − yj
∥

∥

2
)−1

∑

k 6=m(1+
∥

∥yk − ym
∥

∥

2
)−1

(14)

Starting from random initialization, the locations of the points
in the lower dimensional space yi are shifted so that a cost
function was minimized using a gradient descent method.
Instead of the Kullback-Leibler divergence, we here chose the
Wasserstein metric due to its success in GAN applications
(Arjovsky et al., 2017).

T-distributed stochastic neighbor embedding was
implemented using the sklearn package (Pedregosa et al.,
2011). The perplexity parameter reflecting the density of the
data distribution was chosen to be 30 which is in the suggested
range by Maaten and Hinton (2008). The images of the best
performing GAN with and without differential privacy, as
well as the real images were projected, onto 2 dimensions for
visualization purposes.

4. RESULTS

Visually, the synthetic image-label pairs appeared noisier
with decreasing ǫ, i.e., with stricter privacy guarantees
(Figure 2). Differentially private images with ǫ = 1.3 show
almost only noise. The visual results corresponded to the
segmentation performance when training a U-Net on the
generated image-label pairs with different values of ǫ (Figure 3).
In Figure 3A, the averaged DSC over U-Net models that
were trained on synthetic data from five different GANs for
each ǫ is plotted. With decreasing ǫ, the DSC decreased and
got more unstable, i.e., more variation between the different
models for the same ǫ. In particular, models with ǫ > 5

showed increased stability compared to models with lower
ǫ. When considering only the best run of the five models
(Figures 3B,C) the performance again dropped for decreasing
ǫ. This was reflected by a lower DSC and a higher bAHD.
The corresponding segmentation error maps are shown
in Figure 4.

When testing the best U-Net models on the 1000Plus dataset,
a similar trade-off between privacy and utility can be seen
(Figure 5). Here, the U-Net performance in terms of DSC
decreased more rapidly in comparison to the performance on
the PEGASUS dataset, starting at ǫ = 8 with DSC ≈ 0.69
(Figure 5A). The bAHD showed instability in performance for
ǫ < 3 (Figure 5B).

The FID between the training data and the generated data
overall showed a similar trend: Less privacy led to a smaller
distance to the training data (Figure 6A). The generated data
trained without differential privacy (ǫ = ∞) showed an FID
of 62 compared to an FID of 244 and 228 for the images with
ǫ = 5.7 and ǫ = 10.2, respectively. The distance to the
test data was similar for different ǫ values. Figure 6B shows
the difference between the distances to the training images and
test images for different values of ǫ. Here, the differences were
increasing for higher ǫ values with ǫ = ∞ showing the largest
difference, at least twice as large compared to all models trained
with privacy guarantees.

Evaluating GAN models during training, we found the
best performing image-label pairs when training with a noise
multiplier of 0.65 for 29 epochs. This resulted in ǫ = 7.4. The
U-Net trained on these synthetic image-labels showed a DSC of
0.75 on the test set (Table 1). The segmentation of an example
patient is shown in Figure 7. The big vessels are segmented
reasonably well while a lot of errors occur when smaller vessels
are segmented.

The similarity between the images is shown in Figure 8. For
ǫ < 2, high SSIM values were observed (SSIM > 0.98). In
contrast, higher ǫ values led to less similar images produced by
one model.

Figure 9 shows the t-SNE embedding of the best performing
GAN with and without differential privacy and the real patient
images. The synthetic images without privacy guarantees are
overall close to the real images. The images with differential
privacy cluster at the edges far away from the real images.
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FIGURE 3 | Test segmentation performance of U-Nets trained on generated data with different values of ǫ (PEGASUS dataset). (A) shows a boxplot showing the DSC

over 5 runs for each value of ǫ. In (B), only the run with the best DSC is shown. (C) shows the balanced average Hausdorff distance (bAHD) in voxels for the best run

for each ǫ. The errorbar depicts the SD between patients. For ǫ < 5, the performance becomes unstable and worse compared to higher ǫ values.

FIGURE 4 | Error maps of one example test patient for U-Nets trained on either real image-label pairs or generated image-labels with different values of ǫ. True

positives are shown in red, false positives in green, and false negatives in yellow. For lower ǫ, more errors occur.

5. DISCUSSION

In the present study, we generated differentially private TOF-
MRA images with corresponding labels and explored the trade-
off between privacy and utility on two different test sets. We

proposed different evaluation schemes including training a
segmentation network and identified a threshold of ǫ < 5
with DSC < 0.61 for which the segmentation performance
became unstable and not usable. Our best segmentation model
trained on synthetic and private data achieved a DSC of 0.75 for
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FIGURE 5 | Segmentation performance in terms of (A) DSC and (B) bAHD in voxels of the best performing model for each ǫ evaluated on a second dataset

(1000Plus). The DSC shows a decreasing performance starting for ǫ < 8.

FIGURE 6 | Comparison of Fréchet Inception Distance (FID) between the synthetic images with different ǫ values and both the real training data (light green squares

and light blue dotted line) and the real test data (dark green triangles and dark blue dashed line). (A) shows the absolute values for the 5 runs per ǫ whereas (B) shows

the difference between the distances from synthetic to training and synthetic to test. The higher the value of ǫ, the closer the images are to the training set. The

distance to the test set remains stable for different ǫ values. The difference shown in (B) is the highest for the model trained without differential privacy.

TABLE 1 | Overview of segmentation performances in terms of DSC and bAHD for a U-Net trained on real patient images and generated with and without

differential privacy. The best of the three U-Net models is shown in bold for each metric and dataset. The best U-Net with differential privacy guarantees has an ǫ of 7.4.

SD stands for standard deviation.

PEGASUS 1000Plus

U-Net trained on Mean DSC (SD) Mean bAHD (SD) Mean DSC (SD) Mean bAHD (SD)

Real images 0.89 (0.02) 0.33 (0.11) 0.90 (0.02) 0.69 (0.47)

Generated

images (ǫ = ∞)
0.84 (0.02) 0.61 (0.12) 0.88 (0.02) 0.58 (0.32)

Generated

images (ǫ = 7.4)
0.75 (0.04) 2.49 (1.96) 0.69 (0.04) 2.87 (1.25)
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FIGURE 7 | Segmentation error maps of one test patient by the best U-Net model using differential privacy (ǫ = 7.4). Red indicates the true positives, green stands for

false positives, and yellow for false negatives. (A) shows a slice containing big vessels, (B) small ones, and (C) the whole vessel tree. The segmentation works

reasonably well with errors occurring particularly when segmenting small vessels.

FIGURE 8 | Mean Structural Similarity Index Measure (SSIM) between 1,000 generated images for differential ǫ values. The errorbar shows the standard deviation

over the 5 different runs for each ǫ value. For ǫ < 2, the similarity between images is high, whereas it decreases for higher ǫ values.

ǫ = 7.4 in a brain vessel segmentation paradigm. Our results
mark the first step in data sharing with privacy guarantees for
neuroimaging problems.

Since differential privacy is based on introducing noise, a
decrease in utility is expected with the introduction of differential
privacy. Our results confirm this notion. For ǫ = ∞, we achieved
a DSC of 0.84 which is comparable to the literature (Kossen
et al., 2021). Stricter privacy constraints indicated by a lower ǫ

led to worse visual results as well as poorer segmentation results
(Figures 2–5). This also corresponds to findings in previous
studies on differential privacy (Xie et al., 2018; Xu et al., 2019;
Yoon et al., 2019). The increasing amount of noise might also
be the reason for the instability of the GAN training for lower
ǫ values, especially for ǫ < 5 (Figure 2A). A performance
drop could also be observed for testing the U-Nets trained
on differential private image-label pairs on a second dataset
(Figure 5). In comparison to the first test set, the performance
drop occurred already for higher values of ǫ (ǫ < 8 compared
to ǫ < 5). Thus, models with fewer privacy guarantees showed

better generalizability. A reason for that might be again the
lower amount of noise and, therefore, fewer restrictions during
training. This is also in line with our findings in Figure 8. Here,
images generated from models with lower ǫ (ǫ < 2) values
showed more similarities between each other, thus indicating
more mode collapse compared to models with higher ǫ values.
This could be another reason for the performance drop for
models with stricter privacy guarantees.

Images with larger ǫ values also showed greater similarity
in terms of FID to the training images than those with stricter
privacy guarantees. This indicates that more specific features of
the training set can be memorized for less noisy models. The
FID between test images and synthetic images (FIDtest) stayed
constant for different values of ǫ (Figure 6A). The difference
between the FIDtrain and FIDtest can be seen as a measure of
the degree to which the images overfit the training set. Even for
the model with our largest ǫ = 10.2, the difference between
FIDtrain and FIDtest was only half compared to the difference
of the model without any privacy constraints. This shows that
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FIGURE 9 | Visualization of real and generated images with and without differential privacy in a t-SNE embedding. Each point represents an image. The distribution of

real images and generated images without privacy almost entirely overlap. In contrast, the images with privacy guarantees are only partially overlapping and cluster at

the edges, distant from the real images. The embedding showing the specific image instead of a point can be found in the Figure S1 in the supplementary material.

differential privacy substantially contributed to the prevention
of the memorization of the training set. Those findings are
also in line with the embedding shown in Figure 9 in which
the differentially private images are further away from the
training images compared to the images generated without any
privacy guarantees.

Machine learning models including GANs are susceptible
to so-called membership inference attacks (Shokri et al., 2017;
Hayes et al., 2019; Chen et al., 2020). Here, an attack model is
trained to predict whether a sample was part of the training set. If
these attacks are successful, the privacy of the training samples is
jeopardized. Differential privacy has been shown to decrease the
model’s vulnerability to privacy attacks (Shokri et al., 2017; Hayes
et al., 2019). While there is no consensus about an exact value
of ǫ, studies such as Hayes et al. (2019) and Bagdasaryan and
Shmatikov (2019) consider a value of ǫ < 10 acceptable. In this
study, we were able to synthesize image-label pairs with single-
digit ǫ (i.e., ǫ = 7.4) that still show reasonable performance in
the segmentation task. Naturally, further research is necessary
to validate that our models would successfully defend against
membership inference attacks.

Whereas, the segmentation performance in terms of DSC
showed a consistent trend, this was not always true for the
bAHD. Figure 3C shows overall comparable results to the DSC
performance with some fluctuations. These fluctuations can be
explained by selecting the best model based on the best validation
DSC and not bAHD. In Figure 5B, however, the segmentation
model for ǫ = 1.3 seemed to perform better compared to
models with ǫ = 1.9 and ǫ = 2.7. An explanation for
this might be the number of false positives and false negatives
in the segmentations. For ǫ = 1.3, barely any voxel was
identified as belonging to a vessel which resulted in many false

negatives. For the other two models, there were many false
positives with a large distance to the ground truth. The bAHD
considers these models to be worse although none of the three
models show a good segmentation performance (see Figure S2

in the supplementary material). The characteristic of penalizing
especially false positives should be taken into consideration in
future studies when using the bAVD as a metric.

The main limitations of the present study are the
computational restrictions. Due to that only 2D patches
were used. Additionally, more complex GAN architectures
consisting of multiple generators and/or discriminators such
as PrivGAN (Mukherjee et al., 2021) or PATE-GAN (Yoon
et al., 2019) could not be implemented. Especially PrivGAN
appears to be an interesting direction for future research
since it does not only implement differential privacy but also
aims to reduce vulnerability toward membership inference
attacks directly.

6. CONCLUSION

In the present study, we synthesized differentially private
TOF-MRA images and segmentation labels using GANs
for a neuroimaging application. We proposed different
evaluation metrics including the performance of a trained
neural network for vessel segmentation. Even with privacy
constraints, we could train a segmentation model that
works reasonably well on real patient data. This is a crucial
step toward synthesizing medical imaging data that both
preserves predictive properties and privacy. Nonetheless,
further studies should be conducted to evaluate if our findings
generalize to other types of medical imaging data and to
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further improve performance. Our synthetic data is available
upon request.
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