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ADAPT Centre, Technological University Dublin, Dublin, Ireland

This article examines the basis of Natural Language Understanding of transformer based

language models, such as BERT. It does this through a case study on idiom token

classification. We use idiom token identification as a basis for our analysis because of

the variety of information types that have previously been explored in the literature for this

task, including: topic, lexical, and syntactic features. This variety of relevant information

types means that the task of idiom token identification enables us to explore the forms

of linguistic information that a BERT language model captures and encodes in its

representations. The core of this article presents three experiments. The first experiment

analyzes the effectiveness of BERT sentence embeddings for creating a general idiom

token identification model and the results indicate that the BERT sentence embeddings

outperform Skip-Thought. In the second and third experiment we use the game theory

concept of Shapley Values to rank the usefulness of individual idiomatic expressions for

model training and use this ranking to analyse the type of information that the model

finds useful. We find that a combination of idiom-intrinsic and topic-based properties

contribute to an expression’s usefulness in idiom token identification. Overall our results

indicate that BERT efficiently encodes a variety of information from topic, through lexical

and syntactic information. Based on these results we argue that notwithstanding recent

criticisms of language model based semantics, the ability of BERT to efficiently encode a

variety of linguistic information types does represent a significant step forward in natural

language understanding.

Keywords: language model, semantics, idiom token identification, BERT, Shapley value

1. INTRODUCTION

The last 5 years of natural language processing research has been a record of remarkable progress
in the state-of-the-art across a range of tasks (Wang et al., 2019). This progress has primarily
been driven by combining distributional semantics, distributed representations, and deep learning
methods for training large neural language models (Kelleher, 2019). This is most evident in the
success of Transformer based models (Vaswani et al., 2017), the best known being BERT (Devlin
et al., 2018). The dominance of BERT (and other large language models) within NLP has led to
some researchers arguing for a reappraisal of the fields direction in terms of reconsidering the
extent to which distributional analysis can provide a basis for real natural language understanding
(Bender and Koller, 2020). This criticism of distributional semantics and large language models
(such as BERT) is particularly pertinent because although there are a large numbers of experimental
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results that demonstrate the effectiveness of this approach there
is less clarity with regards to why these systems work so well.

One approach to understanding the linguistic capacity of
BERT, and other models that use distributed representations, is
to probe the models performance on a variety of tasks (Conneau
et al., 2018). The standard approach to probing BERT’s capacity
to identify and encode the presence of a linguistic property in
a sentence is to use sentence embeddings generated by BERT to
train a classifier to predict whether the property is present in a
sentence. This approach to probing rests on the assumption that
the classifier’s success at a task indicates to what extent BERT
encodes information on the linguistic property the classifier was
trained to identify. There is a large body of existing work that
is focused on probing BERT representations. This work spans
research on syntactic structures of various kinds, such as parts
of speech, syntactic chunks, and roles (Liu et al., 2019) and
subject-predicate agreement (van Schijndel et al., 2019); and
semantic knowledge, such as semantic roles (Ettinger, 2020),
and entity types and relations (Tenney et al., 2019); and we
direct the reader to Rogers et al. (2020) for a comprehensive
recent overview of this probing work. Within the body of work
on probing BERT’s linguistic capacity the most closely related
work to our own is the work reported in Nedumpozhimana
and Kelleher (2021) on exploring BERT’s ability to identify
the presence of an idiom in a sentence. In this article, we
extend the analysis of BERT’s embeddings to act as a basis for
a general idiom token identification model by benchmarking
BERT’s performance on this task against a non-contextual
embeddings (namely Skip-Thought vectors), and analysing the
types of information (syntactic and lexical fixedness, topic, and
so on) that BERT finds most useful to be present the training data
when learning this task. Furthermore, methodologically we move
beyond the traditional probing framework by adapting the game
theory concept of Shapley value to analyse BERT.

Idioms are commonly used in all natural languages and
text genres (Sag et al., 2002), yet idiomatic expressions
remain a peculiar linguistic phenomenon due to their complex
characteristics, such as: discontinuity, non-compositionality,
heterogeneity and syntactic variability. Consequently, automatic
identification of idiomatic expressions is difficult, and it is
essential for certain natural language processing applications
such as machine translation (Villavicencio et al., 2005; Salton
et al., 2014) and sentiment analysis (Williams et al., 2015;
Spasic et al., 2017). What makes the task even more challenging
is the fact that idiomatic expressions are an open set and
new ones can emerge at any time. This makes creating
an exhaustive list of idiomatic expressions for any language
theoretically impossible (Fazly et al., 2009). Furthermore, not
all occurrences of idiomatic word combinations need to be
idiomatic–in certain contexts an idiom can be used in its literal,
rather than figurative sense. For example, both the sentences
“If you blow your top, they’ll nick you double quick.” and “He
blew the top of his tea and sipped it.” contain the idiomatic
expression “blow top” but only in the first sentence is used
it in its idiomatic sense. Studies show that literal usage of
idiomatic expressions is not uncommon, and disambiguating
literal and idiomatic usage of an idiomatic expression is not at all

straightforward (Fazly et al., 2009; Peng et al., 2014; Salton et al.,
2016).

The task of distinguishing between idiomatic and non-
idiomatic instances of a phrase in context is known as idiom
token identification (Fazly et al., 2009). To date, the most
common approach is to build a separate model for each
expression. Though effective, these expression-specific models
have narrow applicability. Aggregating individual models makes
systems cumbersome, while providing limited capacity to deal
with the problem of disambiguation. Furthermore, an ensemble
of expression specific models does not at all address the problem
of detecting unknown idiomatic expressions; as an answer to this
still open problem, developing a general idiom token identification
model would be the preferred solution. Salton et al. (2016)
demonstrated the feasibility of using a sentence embedding
based approach to the task of building a general idiom token
identification model. Though their work was focused on building
per-expression models, they also report a general classifier using
Skip-Thought (Kiros et al., 2015) sentence embeddings to be as
effective as the state of the art per-expression approach. However,
in the intervening period more rich and advanced embedding
techniques, such as BERT (Devlin et al., 2018), have since been
developed and report vastly improved performance on many
NLP tasks. Therefore it is worth investigating the application of
these new embedding models to the problem of general idiom
token identification.

In this article, we build on the work of Salton et al. (2016)
and look at how well a contemporary sentence embedding model
performs on the task of general idiom token identification, on
the example of English Verb-Noun Idiomatic Combinations
(VNICs). We confirm that distributed representations are
suitable for this task, but we also go beyond improving the state
of the art and perform a variety of experiments designed to
investigate what types of information BERT uses for the task, and
in this way we explore what information is useful for creating a
general idiom token identification model.

Contributions: (a) we report a new state of the art for general
idiom token identification, using BERT sentence embeddings; (b)
we demonstrate that the game theory concept of Shapley values
provides a basis for analysing idiomatic usage; and (c) we explain
the strong performance of BERT embeddings in terms of their
ability to model idiom-intrinsic and topic-based properties.

2. RELATED WORK

Most previous work on idiom token identification deals with
building separate models for each given expression, rather than a
single general model that could handle all expressions. Early work
focused on Japanese idioms revealed that features normally used
in word sense disambiguation worked well, while idiom-specific
features were not as helpful (Hashimoto and Kawahara, 2008,
2009). By contrast, concurrent work on English idioms by Fazly
et al. (2009) argued that each idiomatic expression has a distinct
canonical form when used idiomatically, defined in terms of local
syntactic and lexical patterns, and these intrinsic properties of the
expression can be leveraged for idiom token identification.
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A significant body of research explored discourse and topic-
based features, instead of idiom-specific ones. Approaches based
on how strongly an expression is linked to the overall cohesive
structure of the discourse showed that figurative language
exhibits less cohesion with the surrounding context than literal
language (Sporleder and Li, 2009; Li and Sporleder, 2010a,b).
A related approach was also explored by framing idiomatic
expressions as semantic outliers in topic models (Feldman and
Peng, 2013; Peng et al., 2014), thus leveraging an idiom’s
incongruity with its context.

Some of the per-expression literature also describes work
using distributed representations. Peng and Feldman (2017)
use word embeddings to analyze the context that a particular
expression is inserted in, and predict if its usage is literal
or idiomatic. They report significant improvements over their
previous work. Meanwhile, Salton et al. (2016) use Skip-Thought
Vectors to create distributed sentence representations and show
that classifiers trained on these representations have competitive
performance compared with the state of the art per-expression
idiom token classification.

In this article, we emphasise the merit of a general model,
i.e., a single idiom token identification model that can work
across multiple idioms, as well as generalise to unseen idioms.
Little work has been done on such a model aside from Li and
Sporleder (2010a) who, alongside building their per-expression
models, also investigated general models, and found that global
lexical context and discourse cohesion were the most predictive
features, and (Salton et al., 2017), who demonstrated the viability
of building such amodel using features based on lexical fixedness.
Finally, Salton et al. (2016) use distributional embeddings for
their representations to build a general model: similar to their
per-expression models, they use distributed sentential semantics
generated by Skip-Thought to train a general classifier that can
take any sentence containing a candidate expression and predict
whether its usage is literal or idiomatic. To the best of our
knowledge, this is the current state of the art in sentence-level
general idiom token identification, and this is the approach that
we base our work on.

The literature reveals a split between research on features
that are intrinsic to idioms (e.g., fixedness) and more general
approaches (e.g., cohesion). There is also evidence that it is
possible to create general idiom token identification models
using distributed representations. This motivates the question
of whether embeddings encode idiom-specific information or
incongruity with the context.

3. GENERAL IDIOM TOKEN
IDENTIFICATION MODEL AND
COMPARISON WITH STATE OF THE ART

The task of idiom token identification is to decide given a
sentence whether any of the expressions in that sentence are used
idiomatically. Within the work on idiom token identification
a distinction can be made between work that focused on
developing models that were able to perform idiom token
identification for a specific set of expressions (which are known

to have an idiomatic sense associated with them, and that the
model was trained to process), and work which attempted to
create models that were able to identify idiomatic usage of any
expression in a sentence. In this article, we use the term general
idiom token identification to indicate this second strand of
research. Our model for this general idiom token identification
task is inspired by Salton et al. (2016), who demonstrate the
feasibility of using Skip-Thought embeddings (Kiros et al., 2015)
for general idiom token identification. We build on their work
and apply the same methodology, but instead we use BERT
embeddings (Devlin et al., 2018) of a candidate sentence to
detect the presence of idiomatically used expressions. We used
bert-base-uncased pretrained BERT model1 to generate a 768
dimensional embedding for each sentence in our dataset. It is
calculated as the average of the final layer word embeddings of the
words in the sentence. This sentence embedding is used as input
to a simpleMulti-Layered Perceptron (MLP)model to classify the
sentence embedding as idiomatic or non-idiomatic. The model
has one hidden layer of 100 ReLUs and an output layer with a
single neuron using a logistic activation function2.

Our model differs from the model by Salton et al. (2016)
both in terms of the embeddings used (BERT rather than Skip-
Thought) and the classifier (MLP rather than SVM). The switch
in embedding type was motivated by an interest in testing
whether the contextually specific embeddings generated by BERT
could better capture idiomatic semantics, for example by more
efficiently encoding textual cohesion. We used an MLP instead
of an SVM because results from the prior literature indicate that
an MLP is a suitable classifier to extract information from BERT
sentence embedding (Conneau et al., 2018).

As the first stage of experimentation, we compared our
general idiom token identification model (BERT MLP) with
the state of the art model described by Salton et al. (2016),
which used Skip-Thought sentence embeddings and a different
classifier: a Linear-SVM classifier (Skip-Thought LinSVM). In
what follows we will use this Skip-Thought LinearSVM classifer
as the state-of-the-art baseline and provide both the performance
results report by Salton et al. (2016) and the results we
obtained using our re-implementation of this architecture. We
are specifically interested in comparing the effect of using BERT
versus Skip-Thought embeddings in modeling idiomatic usage.
Consequently, in order to isolate the contribution of the BERT
embeddings from the confounding factor of the classification
algorithm, we also developed a third model, an MLP trained on
Skip-Thought embeddings (Skip-Thought MLP).

112-layer, 768-hidden, 12-heads, and 110M parameters, trained on lower-cased

English text.
2The scikit-learn library (Pedregosa et al., 2011) is used for training the MLP

classifier with the Adam solver (Kingma and Ba, 2014) with learning rate 0.001.We

trained the model with a maximum of 200 epochs. Note that the embedding of the

sentences into vector representations is done using off-the shelf BERT embeddings.

Consequently, the training aspect of our experiments is restricted to just the MLP

classifier which has around 77K parameters, so the model training is not complex.

The time taken for any of our training instances was less than 2 min on a Macbook

Pro machine. All our experimentation codes are available in https://github.com/

vasudev2020/Shapley.
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In this first experiment, we trained and evaluated the
performance of our BERT MLP model on the dataset used
by Salton et al. (2016) to compare with the state of the art
performance on general idiom token identification. For a direct
comparison of the performance scores of our model with the
reported state of the art performance scores we followed the
procedure set-out by Salton et al. (2016) to create training
dataset and testing dataset. They used the VNC-Tokens dataset3

(Cook et al., 2008), which is a collection of sentences containing
expressions called Verb-Noun Combinations (VNC). The VNC-
tokens dataset contains a total 2984 sentences with 56 different
expressions. Each sentence in the dataset is labeled as Idiomatic
usage, Literal usage, or Unknown. Sentences with the Unknown
label are of little use to the general idiom token identification
model, so those sentences were not considered. Out of the 56
different idiomatic expressions, 28 idiomatic expression have a
skewed ratio of idiomatic usages and literal usages. Salton et al.
(2016) used the remaining 28 idiomatic expressions that have a
relatively balanced label distribution for their experiment. For
each expression, they maintained the same ratio of idiomatic and
literal usage in both train and test set. While maintaining this
ratio of idiomatic usage they split the full dataset into a training
set containing roughly 75% of the data and a test set containing
roughly 25% of the data. By following this procedure we created
a training set with 929 sentences (62.43% idiomatic usage) and a
test set with 276 sentences (61.23% idiomatic usage). We trained
state of the art models and our BERTMLPmodel on this training
set and reported the performance measures on the test set. Note
that this training set and test set are only used in this experiment,
which compares the proposed model with state of the art model.
Later in this article, we report a number of other experiments
which are designed to understand the behavior of the proposed
model, and for these experiments we also use the VNC-tokens
dataset however the data preparation process is different (details
given in relevant sections below).

We report bothmacro average F1 andmicro average F1 scores.
To calculate a macro average F1 score we first calculate an F1
score per expression and then average these F1 scores. We use
macro average F1 scores because (a) Salton et al. (2016) also
reported macro average F1 scores, and (b) macro averaging has
the advantage that each expression will have an equal impact on
the overall score, irrespective of the number of examples in the
test set that contain that expression. Its disadvantage is that it
does not weight each example in the test set equally. For example,
in this experiment the expression make scene has 10 sentences
whereas the expression hit roof only has 5 sentences in our test
set. As such, the performance of a model on a test sentence with
hit roof will have a bigger impact on the overall F1 score than
the performance of the model on a sentence containing make
scene. To account for this, we also report the micro average F1
score. In micro averaging, instead of separately calculating an F1
measure for each expression, the total counts of true positives,
false positives, and false negatives from all sentences in the test
set (irrespective of expression) are calculated, and the combined
F1 score is calculated based on these totals. As a result, all test

3https://people.eng.unimelb.edu.au/paulcook/English_VNC_Cook.zip

sentences have equal weighting toward the final F1 score. We
find the micro average F1 score reliable, as each test sentence
equally contributed in its calculation. We report the macro and
micro average F1 scores for each model in Seen Idiom column
of Table 1. Note this column is labeled Seen Idiom to mark the
fact that in the creation of the training and test split for this
experiment the examples for each expression in the dataset are
split across the training and test set, and so the model has seen
examples of literal and idiomatic usages of each expression in
the test set during training. Importantly, however, the actual
sentences in the test set do not occur in the training set. This is
the experimental design followed by Salton et al. (2016). Below
we also report model performance when the training and test set
split is created so that no examples of usage of the expressions
in the test set are included in the training set, a scenario not
examined by Salton et al. (2016). It is noteworthy that in the Seen
Idiom experimental setup our re-implementation of the Skip-
Thought LinearSVM architecture of Salton et al. (2016) (row 2
of Table 1) achieved the same macro F1 score of 0.83 that was
reported by Salton et al. (2016) for this architecture (row 1 of
Table 1), which validates that the dataset and experiment setup
we used is consistent with the reported one.

We have also evaluated the ability of the model to identify
idiomatic usage of idiomatic expressions not in the training set.
To do this we created a test set by randomly choosing 6 idiomatic
expressions from 28 idiomatic expressions in the dataset used
in the previous experiment. We then trained a model on the
training samples with remaining 22 idiomatic expressions and
evaluated the model on test samples with 6 idiomatic expressions
in the test set and calculated both micro and macro F1 scores.
We repeated this process 50 times to reduce the effect of bias in
random selection of 6 idiomatic expressions and in the Unseen
Idiom column of Table 1 we report the average micro and macro
F1 scores across these experiments (along with the standard
deviation of these results).

Examining the results we observe that MLP models
consistently outperform SVM models, irrespective of input
representation. Second, we see that the BERT MLP model
obtains the best scores for both micro and macro average,
thereby setting a new state of the art on this task. Furthermore,
the performance of the BERT MLP model on Unseen Idioms
is comparable with that of the Skip-Thought based models on
Seen Idioms. However, perhaps most importantly, the gap in
performance between BERT MLP and other models is larger
in the Unseen Idiom setting than in the Seen Idiom setting,
indicating that the BERTMLPmodel generalizes more effectively
to unseen idioms than the Skip-Thought based models. Taken
together these results indicate that BERT is a more effective
encoder than Skip-Thought of information that is useful for the
task of general idiom token identification.

4. ANALYSIS OF IDIOMATIC EXPRESSIONS

In Section 2, we highlighted a distinction between prior work
that focused on features that are intrinsic to idioms, such as
fixedness, and contextual features, such as cohesion with the
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TABLE 1 | Performance of General Idiom Token Identification Models: seen idiom scores are the micro and macro F1 scores on the test set composed of sentences

sampled from all 28 expressions in the VNC-tokens dataset; unseen idiom scores are the average micro and macro F1 scores (along with standard deviations) across 50

runs of model training where each model is tested on a random selection of 6 idioms held out from training and trained on the sentences containing the other 22

expressions in the VNC-tokens dataset.

Seen Idiom Unseen Idiom

Model Macro F1 Micro F1 Macro F1 Micro F1

Avg Stdev Avg Stdev

Skip-Thought LinearSVM

(Salton et al., 2016)

0.83 - - - - -

Skip-Thought LinearSVM

(re-implementation)

0.83 0.87 0.76 0.0579 0.79 0.0550

Skip-Thought MLP 0.85 0.88 0.76 0.0761 0.80 0.0726

BERT MLP 0.88 0.90 0.83 0.0690 0.85 0.0497

Bold values indicate the best performance scores (highest values) of each columns.

surrounding context. Furthermore, our results show that BERT
embeddings are more effective than Skip-Thought for general
idiom token identification. This links with the discussion in
related work that BERT embeddings are designed to capture
contextual information, which further indicates that contextual
cohesion is an important property for the creation of a general
idiom token identification model.

In the remaining parts of this article our overall goal is
to better understand what types of information that are most
informative of idiomatic usage. In other words, we wish to
analyse the relative strength of association between each different
linguistic phenomena (syntactic and/or lexical fixedness, topic,
and so on) and idiomatic usage in general. One complicating
factor for this analysis is that there is variation across idiomatic
expressions with respect to these different forms of information.
For example, the idiomatic usage of some expressions is
more lexically fixed than others, whereas for other expressions
idiomatic usage may be more syntactically fixed (Fazly et al.,
2009). Consequently, in what follows we will first analyse which
expressions in the dataset are most useful in terms of their
inclusion in a training dataset contributing to the accuracy of
a general idiom token identification model, and then analyse
the strength of correlation between this ranking of expression
usefulness with other properties of these expressions.

The experimental design we use for the analyses reported in
this section involves stratified 5 fold cross validation. However,
the dataset used in the previous experiment contains some
idiomatic expressions that have less than 5 idiomatic or literal
usage samples. Continuing to include these expressions in the
dataset poses difficulties for standard stratified 5 fold cross
validation. Therefore we further filtered the dataset used in the
previous experiments and selected the 26 idiomatic expressions
from the VNC-tokens dataset (see Table 2) which have at least
5 idiomatic usages and 5 literal usages. From each of these
26 idiomatic expressions we selected all samples with labels
Idiomatic usage or Literal usage. The total number of samples and
the percentage of idiomatic usages from each of these expressions
are shown in the Size and Ratio columns of Table 2. For example,
there are 28 example sentences containing the expression blow

top and of these 82% are labeled as Idiomatic usage. Samples
from these 26 idiomatic expressions have very unbalanced label
distributions, as many expressions have more idiomatic usages
(positive label) than literal usages. Therefore it is crucial to select
a suitable performance metric for our analyses. The AUC-ROC
andMathew correlation coefficient (MCC) metrics consider both
positive and negative classes and are also suitable for imbalanced
datasets. We thus considered both of these as suitable evaluation
metrics for the VNC dataset. Reviewing previous literature on
these metrics we found an empirical comparative study by
Halimu et al. (2019) which showed that both AUC-ROC and
MCC are statistically consistent with each other, however, AUC-
ROC is more discriminating than MCC. Therefore we selected
the AUC-ROC as the metric for our analyses and used a stratified
5-fold cross validation for evaluating the performance metric
of models.

4.1. Shapley Value Analysis
We develop a method to measure the usefulness of an idiomatic
expression to build a general idiom token identification model
by adopting the concept of Shapley value from cooperative
game theory (Shapley, 1953). In an n-player cooperative game,
the Shapley value of any player is a number describing the
contribution of that player to the performance of the team.
The higher the Shapley value of a player the greater the
contribution the player made to the team’s performance. In
our case, general idiom token identification is the cooperative
game and the idiomatic expressions used for training are the
players. In this context, the Shapley value of an expression is a
measure of the information it contributes (usefulness) toward
training a general idiom token identification model. In principle,
to calculate the Shapley value of an idiomatic expression we
should train a separate idiom token identification model for each
possible subset of idioms in the set. We would then compare the
performance of the models where the expression was included
in the training set with the models where the expression was
excluded from the training set. Idioms whose inclusion in the
training set results in better model performance relative to the
models where they are excluded are considered useful and have
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TABLE 2 | The 26 idiomatic expressions used in the second experiment along with summary statistics of their distribution in the dataset, their Shapley values, single

expression model performance (SE), SE for seen expressions (SeenSE), SE for unseen expressions (UnseenSE), ease of prediction (Easiness), Fixedness, Topic

Distributional Similarity (TDS), and Idiom Literal Divergence (ILD).

Expressions Shapley SE SeenSE UnseenSE Gap Easiness Size Ratio Fixedness TDS ILD

blow top 0.0293 0.6735 0.9600 0.6709 0.2891 0.9600 28 0.8214 0.589 0.5452 1.4403

blow trumpet 0.0419 0.7800 1.0000 0.7762 0.2238 0.9750 29 0.6552 0.594 0.5401 1.4646

blow whistle 0.0534 0.8289 0.9920 0.8062 0.1858 0.9633 78 0.3462 - 0.5603 0.5798

cut figure 0.0346 0.6982 1.0000 0.6783 0.3217 0.8714 43 0.8372 0.325 0.4743 1.9835

find foot 0.0374 0.6980 0.9333 0.6897 0.2436 0.8533 53 0.9057 0.568 0.3883 0.6422

get sack 0.0283 0.6814 0.9625 0.6619 0.3006 0.9056 50 0.8600 0.450 0.4569 2.5113

get wind 0.0342 0.7187 1.0000 0.7066 0.2934 0.9000 28 0.4643 0.290 0.4172 0.5921

have word 0.0335 0.6727 0.9875 0.6502 0.3373 0.8625 91 0.8791 0.220 0.5700 0.9830

hit road 0.0365 0.7447 0.9600 0.7511 0.2089 0.9000 32 0.7813 0.414 0.5260 0.9252

hit roof 0.0418 0.7488 0.7500 0.7449 0.0051 1.0000 18 0.6111 0.414 0.5920 1.6725

hit wall 0.0458 0.7883 0.9818 0.7611 0.2208 0.9818 63 0.1111 0.322 0.5699 1.6975

hold fire 0.0401 0.8258 1.0000 0.8301 0.1699 0.9667 23 0.3043 0.277 0.4148 1.6287

kick heel 0.0349 0.7461 0.8833 0.7422 0.1411 0.9500 39 0.7949 0.718 0.4417 1.5495

lose head 0.0209 0.6032 0.8217 0.5977 0.2239 0.6567 40 0.5250 0.363 0.4341 1.5564

make face 0.0288 0.5860 0.9556 0.5536 0.4019 0.8144 41 0.6585 0.254 0.4479 0.0201

make hay 0.0345 0.7287 1.0000 0.7178 0.2822 1.0000 17 0.5294 0.406 0.5304 2.2987

make hit 0.0338 0.7175 0.9000 0.7315 0.1685 0.9000 14 0.3571 0.302 0.5007 1.7473

make mark 0.0436 0.7914 0.9667 0.7746 0.1921 0.9857 85 0.8471 0.399 0.7204 1.2531

make pile 0.0346 0.7765 1.0000 0.7610 0.2390 1.0000 25 0.3200 0.258 0.5927 2.2402

make scene 0.0280 0.6321 0.9083 0.6061 0.3022 0.8583 50 0.6000 0.276 0.5914 1.2209

pull leg 0.0353 0.7281 0.9750 0.7125 0.2625 0.9333 51 0.2157 0.302 0.4918 1.0784

pull plug 0.0466 0.8157 0.9826 0.8056 0.1770 0.9889 64 0.6875 0.431 0.7237 1.0397

pull weight 0.0449 0.7983 1.0000 0.7935 0.2065 1.0000 33 0.8182 0.478 0.4518 1.4496

see star 0.0201 0.5392 0.9818 0.4815 0.5003 0.8227 61 0.0820 0.307 0.4491 1.2043

take heart 0.0368 0.7255 0.9340 0.7063 0.2277 0.8846 81 0.7531 0.300 0.5685 0.6763

take root 0.0359 0.7082 0.9417 0.7014 0.2403 0.9542 97 0.8454 - 0.8751 3.0104

Correlation with Shapley 0.9017 0.2276 0.8619 -0.6161 0.7153 0.1711 0.0235 0.2020 0.3359 -0.1036

a high Shapley value. For our dataset with 26 expressions there
are 226 = 67, 108, 864 possible combinations of expressions, so
this would entail training 226 models and then to calculate the
Shapley score for each expression comparing the performance of
the 225 models where the expression was included in the training
to the performance of the 225 models where the expression was
not in the training set. Clearly this full Shapley value analysis
is not feasible due to this combinatorial explosion of expression
subset, and below we describe howwe approximated this process.

One of the difficulties with the computation of Shapley
values is that the execution time increases exponentially with
the number of players in the game. In this case, we have 26
players and therefore the computation of a Shapley value for
each of the 26 players is practically impossible (requiring 226

models to be trained). So we used a randomized approximation
algorithm with structured random sampling proposed by van
Campen et al. (2017). Using this algorithm, the Shapley value
for an expression is calculated by first randomly sampling a
fixed number n of combinations of expressions from the 225

combinations that include an expression, and then for each
of these selected combination constructing a corresponding
combination of expressions that does not include the expression

by removing the target expression from the original combination.
This process results in 2n combinations of expressions being
selected, n including an expression and n with the expression
removed. Then for each of these 2n expression combinations a
model is trained and evaluated and then the Shapley value for
an expression is the difference between the average performance
of the n models trained with the expression in their training
data and n models with the expression removed from the
training data. In our experiments, we applied this algorithm
within a 5-fold cross-validation process so that the validation
set was resampled for each fold that the algorithm was applied
within. Each of these 5-folds generated a Shapley value score
per expression and the final Shapley score for an expression
was calculated as the average Shapley score across the 5-folds.
Within each fold we set n equal to 2 resulting in 4 models
being trained per expression (2 trained with the expression
and 2 trained without the expression). This process resulted
in a total of 26 × 4 × 5 = 520 models being trained.
Using this algorithm, approximate Shapley values for all 26
expressions were estimated and these values are listed in the
second column of Table 2. The Shapley values vary from 0.0201
(interpreted as a contribution of 2% AUC-ROC toward overall
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performance) to 0.0534 (a contribution of 5% AUC-ROC toward
overall performance), indicating that not all expressions are
equally useful for the task. The expression blow whistle makes
the greatest contribution to model performance when it is
included in the training set, and see star makes the least
contribution.

4.2. Why Are Some Idioms More Useful?
Our observation that there is variation in terms of the usefulness
of different expressions with respect to the training of a general
idiom token identification model naturally raises the question:
why are some expressions more useful than others? Answering
this question is both theoretically interesting, as it may provide
a basis for a better understanding of properties of idioms, as
well as practically relevant for selecting sentences with idiomatic
expressions for inclusion in training in order to create better
classification models.

Initially, we investigated whether expressions with a relatively
large Shapley value (i.e., that perform well in combination with
other expressions) are also more useful when used in isolation.
For each individual expression we trained a separate single
expression idiom token identification model (SE) by using the
samples for that expression in the training folds and evaluated
the model performance on test folds of all 26 expressions. We
report the average AUC-ROC score from stratified 5-fold cross
validation of SE models in the SE column of Table 2. We found
a very strong positive correlation (0.9017) between SE scores
and Shapley values. This is an interesting finding because the
Shapley value for a given expression is a function of the change
in performance of models after removing the target expression
from each subsets of the training set. Consequently, it would
be possible that an idiomatic expression that in isolation results
in weak model performance may provide useful interactions
when combined with other expressions in a training set. If these
types of interactions were present in this task then we would
expect the correlation between the Shapley values and the single
expression performance to be lower. We, therefore, take this
strong correlation to indicate that the strength of a group of
expressions primarily comes from individual expressions, rather
than from the interactions between groups of (potentially weak)
expressions. In other words, for the task of training a general
idiom token identification model a weak expression will not
become strong in combination with other expressions. The
implication of this is that to build a good model, we want
expressions which have good individual performance.

The individual performance of an expression (i.e., the SE
score) is a combination of the performance on samples of that
expression (which is seen during training) and on samples from
other expressions which are not seen during training. We further
investigated whether the Shapley value analysis found some
expressions to be useful (i.e., returned a high Shapley score for
these expressions) because of their impact on helping a model
to learn how to predict the idiomatic usage of these expressions
themselves or the idiomatic usage of other expressions. To do
this, for each expression we trained one model by using a
training set containing only that single expression (as in SE
above). We then calculated a seen and unseen score for each

of these 26 models. The seen score for an expression’s model
was calculated by testing the model on a hold-out test set of
examples that contained that expression. The unseen score for
an expression’s model was calculated by testing the model on a
test-set of examples from all the remaining 25 expressions and
reported in Table 2. (Note that the newly calculated seen scores
and unseen scores are the decomposition of SE scores, because
the SE score is calculated by testing models that are trained on
individual expressions on test sets that contain all expression both
the seen and the unseen expressions.) We observed that there is
a strong positive correlation between Shapley values and unseen
score (0.86) compared to the correlation with seen score (0.23).
We also got a negative correlation (-0.62) between the Shapley
values and the gap between seen and unseen, indicating that the
gap between seen and unseen is less for expressions with high
Shapley value. These results indicate that the Shapley value of
an expression is a reflection of the usefulness of that expression
for the prediction of samples containing other expressions rather
than samples containing the same expression.

The Shapley value of an expression may be related to how easy
it is to predict the idiomatic versus non-idiomatic usage of the
expression. We trained our general idiom token identification
model on all 26 expressions, but test it separately on each of the 26
individual expressions in the test set. Such per-expression scores
give us an idea of how good our model is at predicting instances
of that particular expression or, in turn, how easy that expression
is to predict. We include this AUC-ROC score from stratified
5-fold cross validation in the Easiness column of Table 2. We
have also tested the correlation between easiness of prediction
with Shapley values and got a strong correlation with correlation
coefficient 0.7153. This strong correlation suggests that useful
idioms are easier to predict.

Themetrics described above–Shapley values, SE and Easiness–
are all performance-based metrics that give us an idea of how
individual expressions behave and how useful they are during
model training. We interpret them as informing us about the
usefulness of individual expressions. However, we are conscious
that this descriptor “the usefulness of an individual expression” is
somewhat opaque, because it depends on a number of different
factors, potentially not even related to the individual expressions
themselves, but rather the subsamples of data that contain them.
In order to better understand which property of an expression
makes it useful, we investigate the contribution of different
features of an idiomatic expressions [namely: Fixedness, Topic
Distributional Similarity (TDS) and Idiom Literal Divergence
(ILD)] and the properties of the data sample associated with
an expression toward its usefulness. We included two topic-
related features (TDS and ILD) in our analysis because topic
based models are widely used in the literature on idiom token
identification, and so these topic features enabled us to investigate
whether topic information helps an expression be more useful.

4.2.1. Fixedness
Fazly et al. (2009) proposed two forms of fixedness in their
work, lexical, and syntactic fixedness. Fazly et al. (2009) illustrate
the concept of lexical fixedness by comparing the idiomatic
expressions spill the beans and blow one’s trumpet. Spill the beans
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is given as an example of a lexically fixed expression, for example
the lexical variants spill the peas and spread the beans do not have
idiomatic senses associated with them. By comparison toot one’s
horn can be understood as a lexical variant of the idiom blow
one’s trumpet. So given these examples one might judge blow one’s
trumpet to be less lexically fixed as compared with spill the beans.
Similarly the syntactic fixedness of idiomatic expressions can be
illustrated by comparing the expressions keep one’s cool with spill
the beans. In the case of keep one’s cool, consider the following
syntactic variants: Vasu kept cool and Vasu kept his cool, both of
these examples have an idiomatic sense. However, in the case of
similar syntactic variation for examples with containing spill the
beans, Vasu spilled the beans has a possible idiomatic sense but
the most likely sense of Vasu spilled his beans is literal. These
examples suggest that keep one’s cool can retain its idiomatic sense
under greater syntactic variation than spill the beans; i.e., keep
one’s cool is less more syntactically fixed than spill the beans.

Fazly et al. (2009) propose fixedness measures for each of
these forms of fixedness (lexical and syntactic) that are specifically
designed for verb-noun combinations. Lexical fixedness scores
are calculated as the point-wise mutual information between a
verb and noun asmeasured across a corpus. To calculate syntactic
fixedness Fazly et al. (2009) define 11 syntactic patterns, involving
verbs and nouns. For each verb-noun pair in the corpus they
calculate the probability distribution across these 11 syntactic
patterns of the verb-noun pair occurring in that pattern as
measured by normalized counts of occurrences in the corpus.
The syntactic fixedness of a verb-noun pair is then calculated
as the divergence between it’s syntactic behavior (probability
distribution across the 11 predefined syntactic patterns) from
the typical syntactic behavior of verb-noun pairs (the average
probability distribution across the 11 syntactic patterns of all
verb-noun pairs in the corpus). In this article, we use the overall
fixedness which is a linear combination of both lexical fixedness
and syntactic fixedness

Fazly et al. (2009) based their approach to idiom token
identification on the assumption that idiomatic usages of an
expression are more likely to appear in fixed/canonical forms
than non-idiomatic usages. Inspired by this work we considered
fixedness as a potential feature which helps an expression to be
more useful than others. Fixedness scores of each expression
as per the definition of Fazly et al. (2009) were calculated
and are shown in the Fixedness column of Table 2. We
calculated their correlation with Shapley values and found a
correlation coefficient of 0.2020. This weak correlation suggests
that fixedness, an intrinsic property of idioms, does not define the
usefulness of an expression, although it does have some influence.

4.2.2. Topic Distributional Similarity
The first topic feature we used is the similarity between the
topic distribution of samples belonging to one expression and the
topic distribution of all samples in the entire dataset. If the topic
distribution of an expression is similar to the topic distribution
of the entire dataset, then that expression has maximum topical
information, and therefore it can be more useful. In other words,
training only on a sample of this one expression provides enough

variation in topics to be representative of the topic distribution in
the entire dataset that includes all expressions.

To calculate TDS we first trained a Latent Semantic Indexing
(LSI) topic model4 on samples from the VNC dataset. LSI
is an unsupervised topic-modeling approach based on the
distributional hypothesis (Deerwester et al., 1990). Then for each
of the 26 expressions, we calculated the KL-divergence between
the topic distribution of that expression and topic distribution
of all 26 idiomatic expressions. The inverse of KL-divergence
is reported as the distributional similarity in the TDS column
of Table 2. We calculated its correlation with Shapley values
and found a correlation coefficient of 0.3359. This correlation is
also weak but significantly better than the correlation between
Shapley and fixedness, suggesting that TDS has more influence
on an idiom’s usefulness, but still does not completely define it.

4.2.3. Idiom Literal Divergence
The second topic feature we used is the divergence between the
topic distributions of idiomatic samples and literal samples of
a given expression. If the topics of an expression’s idiomatic
samples are clearly separated from the topics of its literal usages,
then that expression will have a higher distributional divergence
between idiomatic topics and literal topics. In other words, this
feature measures the topical drift between the idiomatic and
literal sense of an expression and reflects how well a topic model
would do at discriminating idiomatic and literal usage. Similarly
to TDS, we trained an LSI topic model and reported the KL-
divergence between the topic distribution of idiomatic samples
and literal samples for each of the 26 expressions in the ILD
column of Table 2. We calculated its correlation with Shapley
values and, interestingly, found a very weak negative correlation
(−0.1036). This indicates that the usefulness of an idiomatic
expression in training is not due to the difference between
topic distributions of its idiomatic usages and literal usages. If
anything, the negative correlation implies that idioms with a
higher topical divergence are less useful, whereas idioms with a
low divergence (i.e., similar topics in both literal and idiomatic
usage) are more useful.

4.2.4. Dataset Properties
Across the expressions in our dataset there is variation both
in terms of the number of examples and the percentage of
idiomatic examples. Consequently, it may be that the Shapley
value of an expression is dependent on these data properties,
rather than on the idiomatic properties of the expressions. To
explore this possibility we first calculated the correlation between
the size of the training set (Size column of Table 2) for each
idiomatic expression and its Shapley values, and then calculated
the correlation between the Shapley values of the expressions and
the percentage of idiomatic usages (Ratio column of Table 2).
These correlations are very weak (0.1711 and 0.0235), indicating
that usefulness is a reflection neither of dataset size, nor the
percentage of idiomatic usage in the sample.

4Using the gensim library https://radimrehurek.com/gensim/.
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FIGURE 1 | Changes in performance on unseen expressions by varying

number of training expressions.

TABLE 3 | Area under the plot with different selection strategies.

Selection strategy Area under plot

Shapley 16.8260

Fixedness 16.7343

TDS 16.5950

ILD 16.3898

Random 16.2578

Size 16.2075

4.3. Generalizability of the Model
An important property of a general idiom token identification
model is its ability to distinguish idiomatic usage from literal
usage of idiomatic expressions which are not seen while training
the model. Here, an interesting question is what is the minimum
number of idiomatic expressions needed for model training
to attain generalizability. Adding more idiomatic expressions
will improve performance, but how quickly the model attains
good performance on unseen idiomatic expressions (expressions
which are not included in the training set) depends on the specific
idiomatic expressions included in training. We use the already
computed Shapley values, as well as other features, to select
idiomatic expressions for training and analyse how quickly the
model attains good generalizability.

In this experiment, we first divided the list of 26 idiomatic
expressions into 5 folds and considered expressions from
4 folds for training (train-expressions) and expressions from
the remaining fold (test-expressions) for evaluation. From the
list of train-expressions we chose the best k expressions by
using different strategies. We then trained a general idiom
token identification model using all the samples with these k
expressions and evaluated on samples with test-expressions. We
repeated this experiment for different values of k and analysed
how quickly the models attain good generalizabilty as the value
of k increases.

The first strategy for selecting best k expressions is by using
their Shapley values. In this strategy we select k expressions with

FIGURE 2 | Area under the performance plot on unseen expression by using

different selection strategies after subtracting the randomized basline

performance.

the highest Shapley value, i.e., the most useful k expressions. If
the Shapley value truly reflects the usefulness of expressions, then
this strategy will attain good generalizability with a small value of
k. By way of this strategy we also validate the computed Shapley
value analysis.

We also used strategies based on the other potentially useful
features. In these strategies we select k expressions that have
the highest fixedness score, topic divergence similarity (TDS),
idiom literal divergence (ILD), and size respectively. This allows
us to compare the impact of these features: if a strategy based
on feature A attains good generalizability quicker than a strategy
based on feature B, this indicates that feature A contributes to the
usefulness of the expressions more than feature B does. We also
employ a random selection strategy where we randomly choose k
expressions, acting as a baseline in this experiment.

For each selection strategy and for each value of k we
trained and evaluated the model using 5 versions of train-
expressions and test-expressions similar to a standard 5-fold
cross validation method. We further repeated this procedure 10
times with different divisions of the 26 idiomatic expressions
into 5 folds and plotted the average values of AUC-ROC
score for each selection strategy and for each value of k in
Figure 1. If the curve corresponding to one selection strategy
is above the curve corresponding to another selection strategy,
this indicates that this strategy is better at attaining good
generalizability.

For comparing the generalizability of different selection
strategies we calculated the area under the performance plot
shown in Figure 1 and presented in Table 3. Furthermore, to
highlight the relative performance of each of these orderings
with respect to the random baseline we subtracted the area
under the plot for the random selection strategy from the
areas for each of the other strategies and charted the results
in Figure 2. From Figures 1, 2, and Table 3 it is clear that
the Shapely value-based selection strategy is the best selection
strategy for generalizability. It is then followed by fixedness
and TDS selection strategy, supporting the findings of the
correlation study in 4.2 that these two features contribute to an
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expression’s usefulness (recall that fixedness has a correlation of
0.2020 with Shapley, and TDS had a correlation of 0.3359 with
Shapley).

5. CONCLUSION

In our initial experiments we observed that BERT outperforms
Skip-Thought embeddings. We suspect that the better
performance of BERT on idiom token identification is due
to BERT embeddings amplifying the signal of contextual
incongruity more than Skip-Thought vectors do. Furthermore,
we performed a sequence of experiments exploring performance-
based metrics as proxies for idiom usefulness, as well as exploring
a range of other factors to analyse in more detail the type of
information the model finds useful.

We have found that using a Shapley value calculation provides
a very good estimate of a given expression’s usefulness on a
general idiom identification task and reveals which idioms are
most useful for inclusion in the training set. In fact, when using
Shapley ordering as few as 7 expressions are sufficient to attain
generalizability (as evidenced by an AUC of 0.87 on unseen
expressions). And though this is an exciting finding, it should be
pointed out that what we consider the usefulness of an idiom is
just as much a reflection of the usefulness of the training sample
that contains it.

In trying to understand what features actually make a given
expression more or less useful, we have explored fixedness as an
idiom-intrinsic property, as well as topic-based properties. It is
interesting that in our analysis we found that TDS rather than
ILDwas consistently a stronger indicator of expression usefulness
for learning the task of general idiom token identification. This is
slightly surprising as one might expect that providing a model
with training data where on an expression by expression basis
there is a large divergence between the topic distributions of
the idiomatic and literal samples would be the most direct
way to enable the model to learn that the topic in which an
expression is used is a signal for idiomatic versus literal usage.
This intuition would suggest that ILD should be a stronger
predictor of usefulness than it is. Instead, we found that providing

training data that maximizes coverage across topics (as measured
by TDS) is a more useful form of topic information. However,

more generally our correlation study between different features
of idiomatic expressions, and also our generalizability study, has
shown that there is no one dominant property that makes an
expression useful, but rather both fixedness and topic features
in combination contribute to an expression’s usefulness. This
finding speaks to the complexity of idiomatic usage in language,
and suggests that BERT state-of-the-art performance on the task
of general idiom token identification is attributable to its ability
to combine multiple forms of information (syntactic, topic, and
so on) rather than, as was the case in prior work on idiom
token identification, to focus on a specific information type as
the explanatory signal for idiomatic usage behavior across all
expressions.
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