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The development of digital cancer twins relies on the capture of high-resolution

representations of individual cancer patients throughout the course of their treatment.

Our research aims to improve the detection of metastatic disease over time from

structured radiology reports by exposing prediction models to historical information.

We demonstrate that Natural language processing (NLP) can generate better weak

labels for semi-supervised classification of computed tomography (CT) reports when it

is exposed to consecutive reports through a patient’s treatment history. Around 714,454

structured radiology reports from Memorial Sloan Kettering Cancer Center adhering to a

standardized departmental structured template were used for model development with

a subset of the reports included for validation. To develop the models, a subset of the

reports was curated for ground-truth: 7,732 total reports in the lung metastases dataset

from 867 individual patients; 2,777 reports in the liver metastases dataset from 315

patients; and 4,107 reports in the adrenal metastases dataset from 404 patients. We use

NLP to extract and encode important features from the structured text reports, which are

then used to develop, train, and validate models. Three models—a simple convolutional

neural network (CNN), a CNN augmented with an attention layer, and a recurrent neural

network (RNN)—were developed to classify the type of metastatic disease and validated

against the ground truth labels. The models use features from consecutive structured

text radiology reports of a patient to predict the presence of metastatic disease in the

reports. A single-report model, previously developed to analyze one report instead of

multiple past reports, is included and the results from all four models are compared based

on accuracy, precision, recall, and F1-score. The best model is used to label all 714,454

reports to generate metastases maps. Our results suggest that NLP models can extract

cancer progression patterns from multiple consecutive reports and predict the presence

of metastatic disease in multiple organs with higher performance when compared with

a single-report-based prediction. It demonstrates a promising automated approach to
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label large numbers of radiology reports without involving human experts in a time- and

cost-effective manner and enables tracking of cancer progression over time.

Keywords: digital twins, cancer, metastases, machine learning, radiology, natural language processing (NLP),

convolutional neural network (CNN), recurrent neural network (RNN)

INTRODUCTION

Healthcare is increasingly tailoring treatments to the needs
of individual patients, an approach known as personalized
medicine. To achieve this, the engineering concept of Digital
Twins is proposed to develop virtual patients that can be
computationally treated to find optimal treatment strategies
(Björnsson et al., 2020). Thesemodels are in silico high-resolution
representations of an individual based on available molecular,
physiological, and other data, which has the potential for vast
improvements in patient care (Björnsson et al., 2020; Croatti
et al., 2020). Personalized medicine stems from the assumption
that refined mathematical models of patients will result in
more precise and effective medical interventions (Bruynseels
et al., 2018). This approach uses fine-grained information on
individuals to identify deviations from the individual’s normal
to develop or select treatment focusing on a patient’s individual
clinical characterization such as diversity of symptoms, severity,
and genetic traits, as well as environmental and lifestyle factors
over time (Bruynseels et al., 2018; National Institutes of Health,
2020). Previously believed to be impossible, digital models of
patients are becoming a reality with the wide-spread availability
of molecular as well as other clinical data and substantial increase
in computational power.

Much of the information contained in a medical record is in
the form of free-text or semi-structured text data from clinical
notes. Radiology reports in particular capture information
critical to the treatment and management of cancer patients.
Therefore, the development of a Cancer Digital Twin from
routinely acquired radiology reports offers a unique opportunity
to study cancer response and progression throughout a
patient’s journey. Manual extraction of data from CT reports
requires substantial domain expertise and is prohibitively time-
consuming to perform across all cancer patients. As a result,
little is known about metastatic progression outside of cancer
clinical trials, where response rates are most typically calculated.
Data extraction from radiology reports by natural language
processing (NLP) is now increasingly performed (Pons et al.,
2016), including in large populations of patients with cancer,
so the potential application to Digital Twins is attractive. To
date, the application of NLP to radiology reports for the
classification of metastatic disease has been limited to bone and
brain metastases (Senders et al., 2019; Groot et al., 2020) or
generalized cancer outcomes (Kehl et al., 2019). We previously
presented an ensemble voting model to detect metastases from
individual radiology reports for different organs using NLP (Do
et al., 2021). This model considered only single reports for a
given patient using standard term frequency-inverse document
frequency (TF-IDF) techniques. The application of NLP to large-
scale labeling of CT reports would facilitate the development

of a Digital Twin and offer new insights into patterns of
metastatic progression across cancer sites. Identification of such
patterns will allow for the development of the high-resolution
representation required for virtual patients to be effective when
modeling a cancer patient’s disease progression over time. This
coupled with the generation of a large database of patterns of
spread, early detection, and prediction of how an individual
patient will progress will be possible.

Time is a critical aspect of medical data.When an event occurs,
or the order of events that occurred, is as important as the events
themselves. Studies have been conducted to incorporate the
information contained in free-text clinical notes with temporal
data points for ICU-related tasks (Caballero Barajas and Akella,
2015; Khadanga et al., 2019; Huang et al., 2020). Clinical notes
have high-dimensionality and are sparsely recorded, creating a
computational challenge compared with traditional structured
time-series data (Huang et al., 2020) such as ICU data. There has
been little investigation into using radiology reports throughout a
patient’s cancer treatment to improve the detection of metastatic
spread in radiology reporting. Our research aims to fill this
gap and develop a map of disease spread in individual patients
over time.

In this paper, we extend our model presented in Do et al.
(2021) to incorporate consecutive, multi-report prediction using
several convolutional and recurrent neural network (RNN)
approaches to improve detection accuracy. We present three
NLP models that generate weak labels for semi-supervised
classification of CT reports when exposed tomultiple consecutive
reports throughout a patient’s treatment history.

MATERIALS AND METHODS

Dataset Description
The data for this study consists of consecutive radiology
reports for CT examinations of the chest, abdomen, and
pelvis, performed between July 1, 2009, and March 26, 2021,
at Memorial Sloan Kettering Cancer Center (MSKCC). Only
reports following the departmental standardized structured
template introduced in July 2009 were included; any reports
which deviated from the template were omitted from analysis.
The complete dataset includes 714,454 reports. Each report
consists of “findings” for 13 individual organs (lungs,
pleura, thoracic nodes, liver, spleen, adrenal glands, renal,
abdominopelvic nodes, pelvic organs, bowel, peritoneum, bones,
and soft tissues) and an overall “impression” field. The reports
in this dataset are semi-structured as shown in Figure 1. In
the findings section, the radiologists report observations using
free text under individual headings for each organ (e.g., lung,
liver). Important findings are summarized using free text in
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FIGURE 1 | Example report of a chest CT following the template implemented in July 2009. The “Findings” section contains observations specific to each organ sites,

while the “Impression” section can contain observations pertaining to any organ.

the impression section at the end of the report. Of note, non-
observations are often as important as observations. This is to
say that if there are “no changes” reported for a certain organ, it
could mean that in a previous report metastases were identified,
and they remain as they were. It could also mean that there are
no lesions of interest. Standardized reporting improves clarity
and consistency of clinical reports and is increasingly preferred
compared to free-text reports (Renshaw et al., 2018).

Three of the 13 available organs were selected for the study:
lungs, liver, and adrenal glands. The lungs and liver were selected
as the most common sites of metastases while adrenal glands are
one of the least common sites. Subsets of the complete dataset
were annotated for ground truth by a radiologist. Each report
in the ground truth set was labeled for the presence or absence
of metastases. For each patient in the ground truth set, five
radiologists were instructed to read all reports available before
deciding the presence or absence of metastases at each time
point. If after reviewing all the available reports, the radiologists
were unsure about the presence or absence of metastases in a
particular patient, they were instructed to skip those reports. This
resulted in the following number of annotated reports: 7,732 in
the lung metastases dataset from 867 individual patients; 2,777 in

the liver metastases dataset from 315 patients; and 4,107 in the
adrenal metastases dataset from 404 patients. Annotated reports
were used to train a single-report ensemble prediction model
for each organ. Once the model accuracy plateaued, the dataset
was deemed to be of adequate size for that organ, resulting in
differing quantities of annotated reports for each organ. Each
of the three datasets (lung metastases, liver metastases, adrenal
metastases) were randomly split into training (70%), testing
(15%), and validation (15%) sets (see Table 1). All models were
trained, tested, and validated using the same data splits to ensure
accurate performance comparison at each stage.

Data Preprocessing
The raw text data consisted of organ observations from the
report, each associated with a patient. To transform the data
into a format for multi-report analysis, individual reports were
grouped by patient and ordered chronologically from oldest to
newest. For each report rt of a patient, all previous reports (t =
0, 1, . . . , n, where n is the target report) were concatenated into
a single document. For example, if the target report is the first
report associated with the patient, the resulting document would
consist only of this report. If the target report is the third report
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TABLE 1 | Model performance results for the baseline single-report metastases prediction model and the three novel multi-report metastases prediction models.

Model Metric Training Testing Validation

Lung

(n = 5,413)

Liver

(n = 1,943)

Adrenal

(n = 2,874)

Lung

(n = 1,160)

Liver

(n = 417)

Adrenal

(n = 617)

Lung

(n = 1,160)

Liver

(n = 417)

Adrenal

(n = 616)

TF-IDF ensemble

model (Baseline)

Accuracy 99.69%

(±0.15%)

99.95%

(±0.10%)

99.23%

(±0.32%)

92.33%

(±1.53%)

90.12%

(±2.86%)

96.60%

(±1.43%)

93.80%

(±1.39%)

92.50%

(±2.53%)

96.10%

(±1.53%)

Precision 0.9977

(±0.00)

1.0000

(±0.00)

1.0000

(±0.00)

0.8553

(±0.02)

0.9060

(±0.03)

0.9444

(±0.02)

0.9080

(±0.02)

0.8990

(±0.03)

1.0000

(±0.00)

Recall 0.9833

(±0.00)

0.9983

(±0.00)

0.8932

(±0.01)

0.6733

(±0.03)

0.7794

(±0.04)

0.4595

(±0.04)

0.6860

(±0.03)

0.8310

(±0.04)

0.5000

(±0.04)

F1-score 0.9904

(±0.00)

0.9991

(±0.00)

0.9436

(±0.01)

0.7535

(±0.02)

0.8379

(±0.04)

0.6182

(±0.04)

0.7815

(±0.02)

0.8637

(±0.03)

0.6667

(±0.04)

Simple CNN Accuracy 99.93%

(±5.21%)

99.85%

(±7.59%)

100%

(±0.00%)

97.41%

(±0.91%)

98.56%

(±1.14%)

99.03%

(±0.77%)

96.64%

(±1.04%)

98.56%

(±1.14%)

99.51%

(±0.55%)

Precision 0.9956

(±0.00)

0.9950

(±0.00)

1.0000

(±0.00)

0.9526

(±0.01)

0.9851

(±0.01)

0.9429

(±0.02)

0.9526

(±0.01)

0.9746

(±0.02)

0.9592

(±0.02)

Recall 1.0000

(±0.00)

1.0000

(±0.00)

1.0000

(±0.00)

0.8960

(±0.02)

0.9706

(±0.02)

0.8919

(±0.02)

0.8564

(±0.02)

0.9746

(±0.02)

0.9792

(±0.01)

F1-score 0.9978

(±0.00)

0.9975

(±0.00)

1.0000

(±0.00)

0.9234

(±0.02)

0.9778

(±0.01)

0.9167

(±0.02)

0.8920

(±0.02)

0.9746

(±0.02)

0.9691

(±0.02)

Augmented CNN Accuracy 99.98%

(±0.04%)

99.90%

(±0.14%)

99.97%

(±0.06%)

97.41%

(±0.91%)

98.56%

(±1.14%)

98.87%

(±0.83%)

96.81%

(±1.01%)

99.04%

(±0.94%)

99.68%

(±0.45%)

Precision 0.9989

(±0.00)

0.9966

(±0.00)

0.9952

(±0.00)

0.9388

(±0.01)

0.9710

(±0.02)

0.9167

(±0.02)

0.9467

(±0.01)

0.9831

(±0.01)

0.9792

(±0.01)

Recall 1.0000

(±0.00)

1.0000

(±0.00)

1.0000

(±0.00)

0.9109

(±0.02)

0.9853

(±0.01)

0.8919

(±0.02)

0.8511

(±0.02)

0.9831

(±0.01)

0.9792

(±0.01)

F1-score 0.9994

(±0.00)

0.9983

(±0.00)

0.9976

(±0.00)

0.9246

(±0.02)

0.9781

(±0.01)

0.9041

(±0.02)

0.8964

(±0.02)

0.9831

(±0.01)

0.9792

(±0.01)

Bidirectional LSTM Accuracy 97.97%

(±0.38%)

99.23%

(±0.39%)

99.72%

(±0.19%)

96.66%

(±1.03%)

98.56%

(±1.14%)

98.70%

(±0.89%)

97.16%

(±0.96%)

98.32%

(±1.23%)

99.03%

(±0.77%)

Precision 0.9052

(±0.01)

0.9798

(±0.01)

0.9660

(±0.01)

0.8465

(±0.02)

0.9853

(±0.01)

0.8919

(±0.02)

0.8404

(±0.02)

0.9661

(±0.02)

0.9375

(±0.02)

Recall 0.9366

(±0.01)

0.9873

(±0.00)

0.9803

(±0.01)

0.8976

(±0.02)

0.9781

(±0.01)

0.8919

(±0.02)

0.9054

(±0.02)

0.9702

(±0.02)

0.9375

(±0.02)

F1-score 0.9206

(±0.01)

0.9835

(±0.01)

0.9731

(±0.01)

0.8713

(±0.02)

0.9817

(±0.01)

0.8919

(±0.02)

0.8717

(±0.02)

0.9682

(±0.02)

0.9375

(±0.02)

Organ datasets are split into three subsets for training (70%), testing (15%), and validation (15%). The n values correspond to the size of the sets. The highest values for each organ in each performance metric are bolded. Values in

parentheses are within the 95% confidence interval rounded to two decimal places.
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associated with the patient, the resulting document consists of the
patient’s first, second, and third reports concatenated together in
chronological order. The radiology reports often included dates
and lesion measurements. These text patterns were identified
using regular expressions and replaced with the text “date” and
“measurement”, respectively. This is done to shrink the size of
the vocabulary as well as to capture the higher-level concept
of a date or measurement being present in the text. Since the
measurements themselves were not included in any analysis, it
was beneficial to remove them from the vocabulary space. Target
values (i.e., labels) were encoded from “Yes” and “No” values to
binary values 1 and 0, respectively.

Model Development
Three models were developed to predict the presence of
metastases over time in each of the three target organs namely, a
simple convolutional neural network (CNN), a CNN augmented
with an attention layer (referred to as the Augmented CNN),
and a bidirectional Long Short-TermMemory (Bi-LSTM)model.
Convolutional neural network extract spatial features which
allows for the maintenance of context when analyzing text in
NLP applications. Adding the attention layer to the CNN allows
for increased explainability and allows the model to learn and
give higher importance to features later in the sequence. The Bi-
LSTM was selected because it learns context of information and
the sequence of patterns by traversing the text in two directions
to create superior text embedding. For the purposes of this
study, we combine multiple consecutive reports of a patient
consisting of observations made by a radiologist into a single
document which is used as the input to the model. To evaluate
the benefit of looking at multiple consecutive reports compared
to only one report, the single-report model described previously
by our group (Do et al., 2021) was used as a baseline. The
models are compared based on the following metrics: accuracy,
precision, recall, and F1 measure. F1 measure is considered the
most important metric because F1 is the harmonic mean of
precision and recall and provides a better measure of incorrectly
classified cases than accuracy. In the cases of identifying potential
metastases, the cost of missing positive cases (false negatives) is
much greater than the cost of false positives, which is reflected
in the F1 score. F1 also mitigates the effect of imbalanced class
distribution, which can be masked behind accuracy scores.

Baseline Model
We previously presented an ensemble voting model to detect
metastases from individual radiology reports for different organs
using NLP (Do et al., 2021). This model is used as the baseline
for performance evaluation of themulti-report predictionmodels
presented in the current paper. Briefly, this baseline model
processes the raw text data using a TF-IDF method. The
processed data are passed through an ensemble voting model
built with a logistic regression (LR) model, a support vector
machine (SVM), a random forest (RF) model, and an extreme
gradient boosting (XGBoost) model. The specifications for each
model are given in the following paragraph. Ensemble models
use a “voting” strategy to select the best prediction based on
predictions made by multiple underlying statistical models.

Voting can be done using either a hard vote counter or a soft
vote counter. In hard voting, the final classification is made based
on a strict count of the predictions made by the underlying
models, while soft voting gives higher importance to certain
models. In soft voting, the models in the ensemble are ranked
using a simple weighting algorithm to determine the relative
importance given to each model’s predictions. The algorithm
compares the accuracy, precision, and recall metrics of all models
on the training set to assign the weights. These values are used
such that the best-performing classification model’s prediction is
given the highest importance when tallying the votes. In addition
to this ranked weighting, the confidence values for each model’s
prediction are leveraged in making the final prediction. Our
model uses soft voting. Importance calculations were done for
each organ to better optimize model performance by location.
This means that the weights assigned to the individual models
for predicting liver metastases may be different from those for
predicting lung metastases.

The LR model is configured with a regularization strength of
15.0, it uses balanced class weighting, which automatically adjusts
the weights inversely proportional to class frequencies in the
input data. It uses the Newton-CG optimization algorithm solver
to handle multinomial loss in the multiclass prediction problem.
The SVM uses a linear kernel and all other default parameters.
The RF model is built to have 2,000 trees with bootstrapping and
the maximum number of features used when building a tree is set
to the square root of the number of features seen during fit. The
XGBoost model uses default configuration.

Simple Convolutional Neural Network
Text data from the radiology reports must be converted into a
numeric vector representation to be used as inputs to machine
learning models. Recent studies (Zuccon et al., 2015; Zhao
and Mao, 2018; Verma et al., 2021) have shown different
text encoding approaches having different complexities and
ability to represent contextual information. One of the popular
approaches is called word embedding, which includes word
context and transforms each word to a numeric vector capturing
semantic information (Ghannay et al., 2016). The transformation
allows different words having similar meanings to have vector
representations that are close together in the embedding space.
For the convolutional neural network models, the text data is
transformed using the Tokenizer from TensorFlow (Abada et al.,
2015). Tokenizer creates a vocabulary of all the unique terms in
the training corpus and allows for vectorization of the text corpus
by turning each document into a sequence of integers, where each
integer is the index of a token in a dictionary. All punctuation is
removed from the text when it is processed through Tokenizer.
When any text is processed by the Tokenizer, only the known
words are processed while the unknown words are ignored. This
processed data is then fed as input to the convolutional layers of
the model.

The idea behind convolutions in computer vision is to learn
filters that transform adjacent pixels into single values. A CNN
for NLP learns which combinations of adjacent words are
associated with a given concept, meaning they can augment the
existing techniques by leveraging the representation of language
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FIGURE 2 | The architectures of the three multi-report prediction models. (A) The Simple CNN architecture consisting of the embedding layer, 1D convolutional layer,

max pooling layer, and dense layers. (B) The Augmented CNN, consisting of the same architecture as the Simple CNN with an added Attention Layer before the max

pooling layer. (C) The Bi-LSTM, with the two LSTM layers processing inputs in opposite directions.

to learn which phrases in clinical text are relevant for a given
medical condition. In a CNN, a text is first represented as a
sequence of word embeddings in which each word is projected
into a distributed representation. Words that occur in similar
concepts are trained to have similar embeddings, meaning
misspellings, synonyms, and abbreviations of an original word
learn similar embeddings, leading to similar results. Therefore,
a database of synonyms and common misspellings is therefore
not required.

Embedded text is the input to the convolutional layer.
Convolutions detect a signal from a combination of adjacent
inputs, and each convolution operation applies a filter of trained
parameters to an input-window of specific width. A filter is
applied to every possible word window in the input to produce
a feature map. The feature map is then reduced using a pooling
operation. It is possible to combine multiple convolutions per
length and of different lengths to evaluate phrases from 1 to 5
words long, for example. A final fully connected feed forward
layer helps compute the probability of whether the text refers to a
patient with a certain disease condition.

The CNN model (Figure 2A) is built using Keras (Chollet,
2015), which consists of an embedding layer with an embedding
dimension of 50, a 1D convolutional layer with a filter size of 64,
a kernel size of 3 and using ReLU activation, followed by a global
max pooling layer, and finally two fully connected dense layers
containing 10 nodes and 1 node, respectively. The final single
output node generates a binary decision of whether the input
corresponds to the presence of a certain disease condition or not.
The penultimate layer uses ReLU activation, and the ultimate
layer uses sigmoid activation to make the final prediction. The
model is optimized using the ADAM optimizer and the binary
cross-entropy loss function.

Augmented CNN
The Augmented CNN (Figure 2B) consists of the same
architecture as the Simple CNN model as describe above
with one added layer: the Keras Sequential Self Attention
layer (SeqSelfAttention). This layer implements an attention
mechanism when processing sequential data to learn important
text embedding and attend to that information (increase weight
values) when extracting data features. It is added after the
convolutional layer in the model, and its output is fed as the input
to the global max pooling layer. The attention layer is configured
to use multiplicative attention, an attention width of 1, and uses
sigmoid attention activation. The remaining layers of the model
are the same as in the Simple CNN.

Bi-Directional LSTM
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) networks are a powerful type of RNN.
One of the main limitations of the basic RNNs is that they lose
critical information when dealing with long sequences. Long
Short-Term Memories are explicitly designed to avoid such
problems and retain information from long sequences of data to
learn dependencies in data that are far apart. Thus, the model can
remember and also forget certain information it has previously
seen. These models consist of a cell state ct−1 (i.e., the memory of
the network) and a hidden state ht−1 (used to make predictions)
with three gates that allow the gradient to flow unchanged. The
three gates are a forget gate, an input gate, and an output gate.
The forget gate determines what information are going to be
thrown away from the cell state. This gate is essentially a sigmoid
function, taking hidden state ht−1 and data xt as input, and
outputs a number between 0 and 1 for each element in the cell
state. A 0 means to completely throw away the information while
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a 1 means keep all the detail of that element. The input gate
determines what new information is going to be retained in the
cell state (update the cell state from ct−1 to c̃t). This layer has two
parts: a sigmoid layer and a tanh layer. The sigmoid layer takes
hidden state ht−1 and data xt as input and determines which
values to update by assigning a number between 0 and 1 to each
element computed in the tanh layer. The tanh layer transforms
the data xt and hidden state ht−1 to a number between −1 and
1. Next, the product of both layers yields the update to the cell
state. The cell state is updated by multiplying the output from
the forget gate elementwise, ensuring only critical information
can flow down the sequence. Next, the results from the input
gate are added elementwise to the cell state. This completes the
cell state update, yielding ct . We use the freshly updated cell state
ct to update the hidden state. In the output gate, it first passes the
hidden state ht−1 and data xt through a sigmoid layer. Then, ct
is passed through a tanh layer and these results are multiplied
together, yielding the new hidden state ht .

Bidirectional RNN models are two combined RNN models,
one model processing data sequentially from beginning to
end, while the other received input data in the opposite
direction, from end to start. These models perform data analysis
simultaneously and their results (predictions) are combined and
passed to the dense layers.

For the Bi-LSTM (Figure 2C), a self-created dictionary is used
for the word embedding. Each unique word in the reports is
extracted and sorted in the order of alphabet. Each word is then
assigned an index, reserving the first two indices for padding (0)
and unknown (1) values, respectively. This model encodes the
input documents as vectors consisting of values corresponding
to the word’s index in the vocabulary dictionary. This means that
each input vector for this model depends on the length of the
original report, which is variable. The documents are not padded
initially but will be padded to the same length for each batch while
they are passing through the data generator function. This data is
then passed through into the two LSTM layers, processing the
data in opposite directions.

The Bi-LSTM was also developed using Keras. The first layer
is an embedding layer with input dimension equal to the size
of the vocabulary and an output size of 64. This is followed
by the Bidirectional LSTM layer provided in the Keras library,
which uses the tanh activation function and sigmoid recurrent
activation. The output dimension of this layer is 64. The final
two layers of the model are similar to those found in both the
Simple and Augmented CNN models; the penultimate layer is a
fully connected dense layer with 64 nodes and ReLU activation,
while the ultimate layer is a dense layer with one output node
with no activation.

RESULTS

Metastatic disease was present in 16.6% (1,287/7,733) of the
reports in the lung dataset, 30.5% (848/2,777) of the reports
in the liver dataset, and in 7.1% (291/4,107) of the adrenal
gland dataset. These distributions were consistent in the training,
testing, and validation sets. Prediction accuracies exceeded 96%

across all organs and all models during validation, with the
lowest accuracy being the Simple CNN predicting the presence
of lung metastases. The F1 scores are especially promising,
showing balanced precision and recall scores in all models. The
F1 scores demonstrate that the Augmented CNN is the most
balanced model, though all models’ F1 scores for the lung dataset
were below 0.90. The F1 scores for lung metastases detection
are consistently the lowest, though always scoring above 0.87.
The performance metrics of the three models on the validation
dataset are presented in Table 1. We compare these results
with the performance of the baseline model outlined in section
Baseline Model, which predicts the presence of metastases from
single reports, in contrast to the three deep learning models,
which include information from previous reports concatenated
in chronological order.

The training and testing results for the baseline TF-IDF
Ensemble Voting model are as follows: in training, the model
scored 99.69 ± 0.001%, 0.9977, 0.9833, and 0.9904 (accuracy,
precision, recall, F1 score) on the lung dataset, 99.95%, 1.00,
0.9983, and 0.9991 (accuracy, precision, recall, F1 score) on the
liver dataset, and 99.23%, 1.00, 0.8932, and 0.9436 (accuracy,
precision, recall, F1 score) on the adrenal gland dataset. In
testing, the model scored 92.33%, 0.8553, 0.6733, and 0.7535
(accuracy, precision, recall, F1 score) on the lung dataset, 90.12%,
0.9060, 0.7794, and 0.8379 (accuracy, precision, recall, F1 score)
on the liver dataset, and 96.60%, 0.9444, 0.4595, and 0.6182
(accuracy, precision, recall, F1 score) on the adrenal gland
dataset. During validation, the model scored 93.80%, 0.9080,
0.6860, and 0.7815 (accuracy, precision, recall, F1 score) on
the lung dataset, 92.50%, 0.8990, 0.8310, and 0.8637 (accuracy,
precision, recall, F1 score) on the liver dataset, and 96.10%, 1.00,
0.5000, and 0.6667 (accuracy, precision, recall, F1 score) on the
adrenal gland dataset. The results from the baseline model are
also presented in Table 1.

The complete results for the Simple CNN on each dataset are
as follows: in training, the model scored 99.93%, 0.9956, 1.00,
and 0.9978 (accuracy, precision, recall, F1 score) on the lung
dataset, 99.85%, 0.9950, 1.00, and 0.9975 (accuracy, precision,
recall, F1 score) on the liver dataset, and 100%, 1.00, 1.00, and
1.00 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. In testing, the model scored 97.41%, 0.9526, 0.8960, and
0.9234 (accuracy, precision, recall, F1 score) on the lung dataset,
98.56%, 0.9851, 0.9706, and 0.9778 (accuracy, precision, recall,
F1 score) on the liver dataset, and 99.03%, 0.9429, 0.8919, and
0.9167 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. During validation, the model scored 96.64%, 0.9526,
0.8564, and 0.8920 (accuracy, precision, recall, F1 score) on
the lung dataset, 98.56%, 0.9746, 0.9746, and 0.9746 (accuracy,
precision, recall, F1 score) on the liver dataset, and 99.51%,
0.9592, 0.9792, and 0.9691 (accuracy, precision, recall, F1 score)
on the adrenal gland dataset. The results from the Simple CNN
model are also presented in Table 1.

The complete results for the Augmented CNN on each dataset
are as follows: in training, the model scored 99.98%, 0.9989, 1.00,
and 0.9994 (accuracy, precision, recall, F1 score) on the lung
dataset, 99.90%, 0.9966, 1.00, and 0.9983 (accuracy, precision,
recall, F1 score) on the liver dataset, and 99.97%, 0.9952, 1.00, and
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0.9976 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. In testing, the model scored 97.41%, 0.9388, 0.9109, and
0.9246 (accuracy, precision, recall, F1 score) on the lung dataset,
98.56%, 0.9710, 0.9853, and 0.9781 (accuracy, precision, recall,
F1 score) on the liver dataset, and 98.87%, 0.9167, 0.8919, and
0.9041 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. During validation, the model scored 96.81%, 0.9467,
0.8511, and 0.8964 (accuracy, precision, recall, F1 score) on
the lung dataset, 99.04%, 0.9831, 0.9831, and 0.9831 (accuracy,
precision, recall, F1 score) on the liver dataset, and 99.68%,
0.9792, 0.9792, and 0.9792 (accuracy, precision, recall, F1 score)
on the adrenal gland dataset. The results from the Augmented
CNN model are also presented in Table 1.

The complete results for the Bi-LSTM on each dataset are as
follows: in training, the model scored 97.97%, 0.9052, 0.9366, and
0.9206 (accuracy, precision, recall, F1 score) on the lung dataset,
99.23%, 0.9798, 0.9873, and 0.9835 (accuracy, precision, recall,
F1 score) on the liver dataset, and 99.72%, 0.9660, 0.9803, and
0.9731 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. In testing, the model scored 96.66%, 0.8465, 0.8976, and
0.8713 (accuracy, precision, recall, F1 score) on the lung dataset,
98.56%, 0.9853, 0.9781, and 0.9817 (accuracy, precision, recall,
F1 score) on the liver dataset, and 98.70%, 0.8919, 0.8919, and
0.8919 (accuracy, precision, recall, F1 score) on the adrenal gland
dataset. During validation, the model scored 97.16%, 0.8404,
0.9054, and 0.8717 (accuracy, precision, recall, F1 score) on
the lung dataset, 98.32%, 0.9661, 0.9702, and 0.9682 (accuracy,
precision, recall, F1 score) on the liver dataset, and 99.03%,
0.9375, 0.9375, and 0.9375 (accuracy, precision, recall, F1 score)
on the adrenal gland dataset. The results from the Bi-LSTM
model are also presented in Table 1.

DISCUSSION

Wedeveloped three novel models for detectingmetastatic disease
in three separate organs using NLP over multiple consecutive
radiology reports. Both the CNNmodels and the Bi-LSTMmodel
demonstrated high performance in accomplishing this task. Our
results demonstrate the added predictive power of exposing an
NLP model to historical patient information. Indeed, F1 score
increased from 0.7815, 0.8637, and 0.6667 to 0.8964, 0.9831, and
0.9792 in the lung, liver, and adrenal gland datasets, respectively,
when multiple reports were considered. Accuracy, precision,
and recall all improved with the multi-report model. The best-
performing model—the Augmented CNN—achieved the highest
F1 scores at all three organ sites during validation. Through the
model development process, the model performance remained
consistent through training, testing, and validation. During
training, the models were exposed to records with varying
number of concatenated reports, meaning the models have been
trained to detect metastases with varying amounts of available
information so the models can be used at any point within a
patient’s course of treatment.

Performance on the lung dataset was lowest for all three
models, with F1 scores of 0.8920, 0.8964, and 0.8717 achieved
by the Simple CNN, the Augmented CNN, and the Bi-LSTM,

respectively. This is likely because the lung can be subject
to a large variety of ailments, such as infections, some of
which overlap in appearance with metastatic disease because
they appear to radiologists as pulmonary nodules. In analyzing
the model’s decision-making by extracting the most predictive
terms from the vocabulary, it was identified that the presence
of measurements in a report were highly indicative of the
presence of a metastatic disease. This is not surprising since
radiologists commonly rely on measurements to document
response to treatment in their report. Use of this feature is
excellent in detecting metastases in the liver and adrenal glands,
however there are more types of lesions that are measured for
the lung, including benign lung nodules. Predicting based on
the presence of measurements in the case of lung metastases
therefore, results in higher frequency of false positives. The
F1 scores for liver and adrenal metastases predictions on
the validation sets exceeded 0.9691, and the Bi-LSTM was
only slightly lower at 0.9375 when predicting the presence of
adrenal metastases.

There are many papers that describe the usage of NLP for
text mining clinical notes, linking events described in notes to
time series data (typically for prediction of mortality or length
of stay) (Caballero Barajas and Akella, 2015; Khadanga et al.,
2019; Huang et al., 2020). A recent study used NLP and deep
learning for case-level context for classifying pathology reports
has demonstrated the success of CNNs, RNNs, and attention
models (Gao et al., 2020), such as those presented in our study.
While presenting similar models, this previous study focused
on several multi-class classification problems, while our study
focuses on the binary classification of the presence or absence
of metastatic disease. Both studies demonstrate the benefit of
capturing case-level context from consecutive reports compared
with single-report prediction, however our models demonstrate
higher F1 scores overall. To our knowledge, ours is the first
demonstration ofmulti-report detection in consecutive radiology
reports. Specifically, we consider the order that metastases appear
for each patient by concatenating reports but do not consider
the length of time between metastatic events. Given the overall
high performance of our models, factoring in the actual time
may not be warranted for simple detection of labels. As we
advance our methods to metastatic phenotype identification, the
goal of our cancer digital twin, time will likely be an important
factor. When included in a digital twin, the series of metastatic
cancer labels will show how the individual’s state is changing over
time and construct the high-resolution representations required.
We were the first to demonstrate the benefit of semi-structured
narrative reports in the largest study using NLP for identifying
metastatic disease (Do et al., 2021), combined with the new
models proposed in the current study, we are unlocking the
potential of using cancer digital twins for anticipating cancer
response and progression.

Our study is not without limitations. It is important to
note that the human annotators had access to slightly different
information compared to what the models had access to at the
time of prediction. The human annotators had access to both
historical and future reports, while the models only had the
text from previous reports concatenated to the target report to
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FIGURE 3 | Lung metastases developing on serial CT scans (arrows). Axial images of the lung from three consecutive CT scans, showing the development of a lung

nodule, in the posterior right lower lobe (A–C). A separate nodule in the anterior right lower lobe also grew between the second (D) and third CT scan (E). A third

nodule appeared in the left lower lobe on the third scan only (F). The first CT was negative for metastasis (A), with the text in the “Lungs” section of the findings

reading “No suspicious findings.” The model predicted correctly that there were no metastases described with 100% confidence. The second CT (B,D) was labeled

as positive for metastases by the radiologist who had access to all three scans, but negative by the CNN (with a confidence of 99.60%) which only had reports for the

first two. The third CT (C,E,F) was labeled as positive by both radiologists and the CNN (with 100% confidence).

make their predictions. This resulted in false negative errors
(example provided in Figure 3), though the model was able
to correct the prediction for later reports. The implications
of this depend on the use-case of the model. In the case
where “future” reports (with respect to the target report) are
available, such as in a retrospective study of disease pattern,
exposing the model to these future reports would be desired.
However, if the use-case is predicting the presence of metastases
in a patient currently undergoing treatment and all reports
to-date are presented to the model, the model is not missing
any information.

In conclusion, the multi-report NLP prediction models
presented in this paper generate more reliable weak labels
of radiology reports compared with a single-report prediction
model. The success of digital cancer twins relies heavily on the
access of high-resolution representations of individual cancer
patients over time. The ability to automatically generate accurate
labels of metastatic disease from radiology reports will improve

the viability of these digital twins, while enabling recognition
of disease progression patterns through the availability of such
a large database of generated weak labels. This will allow
for earlier detection of potential progression of disease in
individual patients allowing for more successful intervention
during disease management.
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